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Abstract: In this paper we consider the problem of allocating multiple resources to a number of
clients by a group of heterogeneous agents over time such that the clients can produce products
while maximizing a profit function. We propose an approximate optimization framework in
which every client provides multiple bids from which the agents choose such that an allocation
is feasible and that the profit function is maximized over time. The proposed framework exploits
decomposition techniques that can be used for large-scale multi-agent resource allocation
problems in which the cost objective is additive, the dynamics of product generation is non-linear
and the agents have different capabilities. Interestingly, the decomposition can be solved in a
distributed fashion, enabling application to large-scale problems. We apply this decomposition
to the management of resources and agents in precision agriculture as an inspirational and
important application domain of the obtained results. We show that our framework can be used
in order to schedule the time, location and quantity of resources that every agent must provide
whilst optimizing the profit of the entire farm over the growing season.
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1. INTRODUCTION

In this paper we consider the problem of delivering multi-
ple resources to various clients in order to optimize the
production of certain products. The delivery has to be
carried out by a group of heterogeneous agents. A prime
instance of this problem can be found in precision farming
of crops. The resources in precision farming include water,
fertilizer and pesticides, which the (sub)fields (the clients
in this case) need in order to grow crops effectively. The
objective is to devise a control strategy for the allocation
of agents and resources such that the profit at the end
of the season is maximized. The profit is defined as the
difference between the income generated from the amount
of harvested crops and the costs incurred by the usage
of agents and resources. The (centralized) optimization of
resource usage over all fields, whilst taking into account
agent constraints, is a large and complex problem as the
number of (sub)fields and the number of agents differ by
several orders of magnitude and the optimization problem
per (sub)field is already rather complex due to the highly
nonlinear behaviour of crop growth. The decomposition
proposed in this work must therefore significantly improve
on the centralized global optimization problem by being
computationally tractable and yet close to optimal.

� This work is supported by ‘Toeslag voor Topconsortia voor Kennis
en Innovatie’ (TKI HTSM) from the Ministry of Economic Affairs,
the Netherlands.

Precision agriculture concerns the knowledge of when,
where and how much resources should be delivered in order
to grow crops most effectively. One way of increasing this
knowledge is by using optimal decision making techniques.
Since there can be a large variance in crop states over a
farmland, increasing the temporal and spatial resolution of
decision making increases the quality of decision making.
Increasing the spatial resolution implies that a field on a
farmland can be subdivided into multiple subfields. It is
therefore very likely to have in the order of one thousand
subfields. The agents in precision agriculture are the
irrigation machines, fertilizer machines, pesticide spraying
machines, etc. Typically these are in the order of 1-10 per
type per farm and thus there is a large asymmetry between
the number of agents and clients in this application.

There has been a wide variety of studies done in the
field of multi-agent resource allocation (MARA), for re-
cent overviews see Chevaleyre et al. (2006) and Shoham
and Leyton-Brown (2009). A common theme in these
problems is the analysis of MARA over networks, (e.g.,
Lesser et al. (2005); Nowzari et al. (2017); Xiao et al.
(2004); Obando et al. (2017)), bandwith allocation (e.g.,
Xiao et al. (2004)) and computation time allocation (e.g.,
Bredin et al. (2000)). These approaches do not fit the
problem of precision agriculture as the dynamics of crop
growth are highly nonlinear. The optimization for a single
client/subfield is nonconvex, which prevents the usage of
techniques such as ADMM (Boyd et al. (2010)) in order
to distribute the optimization problem.
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Contrarily to these mentioned works, our approach for the
decomposition results naturally from an approximate dy-
namic programming viewpoint of the problem for precision
agriculture. As mentioned before, the precision agriculture
problems entail approximately thousands of fields and
hence dynamic programming becomes sheer impossible
due to the curse of dimensionality (Bertsekas (2017)).
In our approach, we resolve this by an approximation in
which the clients solve smaller optimization problems in
parallel and a subsequently an optimization is done by the
agents as a group.

In MARA problems, task allocation of the agents often
happens on a different time scale than the dynamics of
the effects of the resources on product generation at the
clients. In fact, this is typically the case in the mentioned
precision agriculture application. Tasks such as irrigation
or applying fertilizer can be done by agents in the time-
span of several hours, whereas the effects of these actions
can be seen in time-spans of days to weeks. Contrarily to
the works mentioned previously, the decomposition that
we will propose in this paper, explicitly exploits this time
scale separation. In the example of precision farming, the
allocation of agents should occur at an hourly to daily
basis, whereas the demand of resources that a field needs,
should be satisfied on a daily to weekly basis. The reason
for this is that the farmer needs to know what the agents
are required to do on an hourly basis since that is the order
of magnitude of time a task generally takes, whereas the
crop growth tends to develop at a much slower rate.

The main contributions of this paper can be summarized
as follows. First, a formal introduction of what we call the
‘dynamic heterogeneous multi-agent resource allocation’
(D-H-MARA) problem relevant to precision agriculture
applications is given. The second contribution is the struc-
tured description of a decomposition that can be applied
to many D-H-MARA problems in which the cost function
is nonconvex, the agents are heterogeneous, the product
dynamics is nonlinear and the time scales of resource
allocation and product dynamics are different. Finally,
the third contribution is the application of this novel
framework in the context of precision agriculture. This
will show that with our new framework we can schedule
the actions of all agents with a high temporal resolution
whilst optimizing the profit for the entire farm over the
growing season. This is a key result in precision farming.

The remainder of the paper is structured as follows.
We will first define the distributed heterogeneous MARA
we consider and state our assumptions in Section 2.
Then we will introduce the multi-bidding decomposition in
Section 3 and the allocation constraints in Section 4. The
resulting optimization problem of the decomposition is
presented in Section 5. We will demonstrate the technique
using a simulation example in Section 6 and then provide
conclusions and recommendations for future work.

2. PROBLEM FORMULATION

2.1 Mathematical notation and terminology

When using the ‘=’, ‘≤’ or ‘≥’ operators in matrix equa-
tions, we mean an element-wise comparison. We use 1n

and 0n to denote the n-dimensional vectors of all ones and

all zeros, respectively, and In denotes the n × n identity
matrix. If M is a matrix, then [M ]ij denotes the element
on the i-th row and j-th column of M and [M ]j denotes
the j-th column ofM . We use diag (v) to denote a diagonal
matrix with the elements of vector v on the diagonal. We
use N[α,β] to denote the set of natural numbers in the
closed interval [α, β] with α, β ∈ N; the binary set B is
defined as B = N[0,1] = {0, 1} and R≥0 denotes the set of
non-negative real numbers.

Throughout the rest of this paper we will use the word
‘clients’ instead of ‘fields’ as to illustrate that the proposed
decomposition has many more applications in which a
large, complex and dynamic MARA optimization is per-
formed.

2.2 System parameters and description

Let n denote the number of agents, labelled from the
set N := {1, 2, . . . , n} and let m denote the number of
clients, labelled from the set M := {1, 2, . . . ,m}. There
are a total of p different types of products that clients
can produce and there are r different types of resources
that the group of agents can deliver to the clients. Each
resource is labelled from the set R := {1, 2, . . . , r}. The
time horizon of the optimization is denoted by T ∈ N
and in the example of precision agriculture, this would
typically be the duration of the growing season in days.

We define the amount of resources a client j ∈ M receives
at time t ∈ N[0,T ] as uj

t ∈ Rr
≥0 and ρ ∈ Rr

≥0 denotes a
vector where each entry ι ∈ R coincides with the cost per
unit for resource ι. Finally, let σ ∈ Rn

≥0 denote the vector
where each entry σi, i ∈ N , is the cost of operation per
time unit of agent i. This could also include the cost of the
agent’s operator.

Similarly, we denote the state of a client j ∈ M at time
t ∈ N[0,T ] by zjt ∈ Ro (o thus equals the state dimension)
and assume that the discrete-time dynamics equals

zjt+1 = zjt + f̃ j(zjt , u
j
t , w

j
t ),

for some mapping f̃ j : Ro×Rr
≥0×Rv → Ro, where wj

t is a

disturbance (assumed to have dimension v) at time t. The

probability density function (pdf) of a disturbance wj
t is

equal to hj
t : Rv → [0, 1]v for all j ∈ M at time t ∈ N[0,T ].

We assume that these pdfs are known and that they can
vary over time.

Not all of the states are interesting for the final profit. Crop
growth models, for instance, typically have a large amount
of states, including the leaf area size, soil-water content,
root depth and more (e.g., see Shibu et al. (2010)). These
are relevant for describing the state of the product (e.g.,
the biomass of storage organ) but not for the final profit.

Let xj
t ∈ Rp

≥0 denote the vector with the amounts of each
products at client j ∈ M at time t ∈ N[0,T ]. It is assumed
that this can be computed from the state of client j by
using a constant matrix Hj ∈ Rp×o such that

xj
t = Hjzjt .

We can thus state that the dynamics of the products at a
client j ∈ M equals

xj
t+1 = xj

t + f j(zjt , u
j
t , w

j
t ), (1)
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Contrarily to these mentioned works, our approach for the
decomposition results naturally from an approximate dy-
namic programming viewpoint of the problem for precision
agriculture. As mentioned before, the precision agriculture
problems entail approximately thousands of fields and
hence dynamic programming becomes sheer impossible
due to the curse of dimensionality (Bertsekas (2017)).
In our approach, we resolve this by an approximation in
which the clients solve smaller optimization problems in
parallel and a subsequently an optimization is done by the
agents as a group.

In MARA problems, task allocation of the agents often
happens on a different time scale than the dynamics of
the effects of the resources on product generation at the
clients. In fact, this is typically the case in the mentioned
precision agriculture application. Tasks such as irrigation
or applying fertilizer can be done by agents in the time-
span of several hours, whereas the effects of these actions
can be seen in time-spans of days to weeks. Contrarily to
the works mentioned previously, the decomposition that
we will propose in this paper, explicitly exploits this time
scale separation. In the example of precision farming, the
allocation of agents should occur at an hourly to daily
basis, whereas the demand of resources that a field needs,
should be satisfied on a daily to weekly basis. The reason
for this is that the farmer needs to know what the agents
are required to do on an hourly basis since that is the order
of magnitude of time a task generally takes, whereas the
crop growth tends to develop at a much slower rate.

The main contributions of this paper can be summarized
as follows. First, a formal introduction of what we call the
‘dynamic heterogeneous multi-agent resource allocation’
(D-H-MARA) problem relevant to precision agriculture
applications is given. The second contribution is the struc-
tured description of a decomposition that can be applied
to many D-H-MARA problems in which the cost function
is nonconvex, the agents are heterogeneous, the product
dynamics is nonlinear and the time scales of resource
allocation and product dynamics are different. Finally,
the third contribution is the application of this novel
framework in the context of precision agriculture. This
will show that with our new framework we can schedule
the actions of all agents with a high temporal resolution
whilst optimizing the profit for the entire farm over the
growing season. This is a key result in precision farming.

The remainder of the paper is structured as follows.
We will first define the distributed heterogeneous MARA
we consider and state our assumptions in Section 2.
Then we will introduce the multi-bidding decomposition in
Section 3 and the allocation constraints in Section 4. The
resulting optimization problem of the decomposition is
presented in Section 5. We will demonstrate the technique
using a simulation example in Section 6 and then provide
conclusions and recommendations for future work.

2. PROBLEM FORMULATION

2.1 Mathematical notation and terminology

When using the ‘=’, ‘≤’ or ‘≥’ operators in matrix equa-
tions, we mean an element-wise comparison. We use 1n

and 0n to denote the n-dimensional vectors of all ones and

all zeros, respectively, and In denotes the n × n identity
matrix. If M is a matrix, then [M ]ij denotes the element
on the i-th row and j-th column of M and [M ]j denotes
the j-th column ofM . We use diag (v) to denote a diagonal
matrix with the elements of vector v on the diagonal. We
use N[α,β] to denote the set of natural numbers in the
closed interval [α, β] with α, β ∈ N; the binary set B is
defined as B = N[0,1] = {0, 1} and R≥0 denotes the set of
non-negative real numbers.

Throughout the rest of this paper we will use the word
‘clients’ instead of ‘fields’ as to illustrate that the proposed
decomposition has many more applications in which a
large, complex and dynamic MARA optimization is per-
formed.

2.2 System parameters and description

Let n denote the number of agents, labelled from the
set N := {1, 2, . . . , n} and let m denote the number of
clients, labelled from the set M := {1, 2, . . . ,m}. There
are a total of p different types of products that clients
can produce and there are r different types of resources
that the group of agents can deliver to the clients. Each
resource is labelled from the set R := {1, 2, . . . , r}. The
time horizon of the optimization is denoted by T ∈ N
and in the example of precision agriculture, this would
typically be the duration of the growing season in days.

We define the amount of resources a client j ∈ M receives
at time t ∈ N[0,T ] as uj

t ∈ Rr
≥0 and ρ ∈ Rr

≥0 denotes a
vector where each entry ι ∈ R coincides with the cost per
unit for resource ι. Finally, let σ ∈ Rn

≥0 denote the vector
where each entry σi, i ∈ N , is the cost of operation per
time unit of agent i. This could also include the cost of the
agent’s operator.

Similarly, we denote the state of a client j ∈ M at time
t ∈ N[0,T ] by zjt ∈ Ro (o thus equals the state dimension)
and assume that the discrete-time dynamics equals

zjt+1 = zjt + f̃ j(zjt , u
j
t , w

j
t ),

for some mapping f̃ j : Ro×Rr
≥0×Rv → Ro, where wj

t is a

disturbance (assumed to have dimension v) at time t. The

probability density function (pdf) of a disturbance wj
t is

equal to hj
t : Rv → [0, 1]v for all j ∈ M at time t ∈ N[0,T ].

We assume that these pdfs are known and that they can
vary over time.

Not all of the states are interesting for the final profit. Crop
growth models, for instance, typically have a large amount
of states, including the leaf area size, soil-water content,
root depth and more (e.g., see Shibu et al. (2010)). These
are relevant for describing the state of the product (e.g.,
the biomass of storage organ) but not for the final profit.

Let xj
t ∈ Rp

≥0 denote the vector with the amounts of each
products at client j ∈ M at time t ∈ N[0,T ]. It is assumed
that this can be computed from the state of client j by
using a constant matrix Hj ∈ Rp×o such that

xj
t = Hjzjt .

We can thus state that the dynamics of the products at a
client j ∈ M equals

xj
t+1 = xj

t + f j(zjt , u
j
t , w

j
t ), (1)
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with f j = Hj f̃ j . Let π ∈ Rp
≥0 denote the price vector,

where the i-th element denotes the price per unit of
product type i.

As mentioned before, we consider the problem in which
the allocation of agents happens on a faster time scale
than the effects of the resources on growth of products
at clients. From now on, for convenience, we will call the
slow time scale ‘time’ and the fast time scale ‘subtime’.
Between two instances of time, we assume that there are
q ∈ N units of subtime, which means that the agents can
be allocated q times to different clients within one time
unit. If the amount of subtimes q is chosen such that one
unit of subtime corresponds to a typical task duration of
an agent (including recovery time), then it is realistic to
make the assumption that each agent visits at most one
client at an instance of subtime.

We assume that the agents can have different maximum
capacities of each resource. Let Cmax ∈ Rr×n

≥0 denote the

capacity matrix such that [Cmax]ki denotes the maximum
quantity of resource k ∈ R that agent i ∈ N can deliver
at an instance of subtime. Note that [Cmax]ki = 0 means
that agent i cannot deliver resource k.

2.3 Profit function

We aim to optimize the total profit of the system at the end
of the time horizon. This means that at a time ι ∈ N[0,T−1],
the goal is to maximize

Jι = E

{∑
j∈M

(
π�xj

T −
T−1∑
t=ι

(
ρ�uj

t + σ�[At]j
))}

, (2)

where At ∈ Nn×m
[0,q] is the allocation matrix of which [At]ij

denotes the number of times agent i ∈ N serves client
j ∈ M between time t and time t + 1. The decision
variables are the amount of delivered resources uj

t , for all
t ∈ N[ι,T ] and all j ∈ M, and the allocations of agents
and clients [At]ij ∈ N[0,q], for all t ∈ N[ι,T ]. We use the
expectation operator E to denote the expected values with
respect to the disturbances wj

t .

2.4 D-H-MARA problem definition

Let us now formally define a dynamic heterogeneous
MARA.

Definition 1. (D-H-MARA). A dynamic heterogeneous
multi-agent resource allocation (D-H-MARA) is defined as

Σ = (m,n, π, ρ, σ, T, q, Cmax, {f̃ j , Hj}mj=1, Jι),

with the parameters as previously discussed in this section.

We call it heterogeneous as the agents can have different
capabilities in terms of delivering types and quantities of
resources, but also the clients can produce different types
of products with different dynamics.

The D-H-MARA problem is then finding a policy µt for u
j
t

and At that maximizes (2) given a D-H-MARA and pdfs

hj
t . The policy is therefore of the form

(u1
t , . . . , u

m
t , At) = µt(z

1
t , . . . , z

m
t ).

3. DECOMPOSITION THROUGH MULTI-BIDDING

In this section we will use approximate dynamic program-
ming (see Bertsekas (2017)) in our approach of solving the
D-H-MARA problem, i.e., finding a policy that maximizes
(2).

3.1 Rewriting the cost function

The objective function in (2) is a summation over the
clients. Note that there is a coupling between the clients
and the agents not only due to the term [At]ij but also

through the constraints on the term uj
t which depend on

the clients (see Section 4). We will now decompose the
problem of computing the required amount of resources
and the allocation problem into separate problems.

Let us rewrite (2) using the dynamics (1) as

Jι = E

{∑
j∈M

(
π�xj

ι +

T−1∑
t=ι

π�fj(zjt , u
j
t , w

j
t )− ρ�uj

t − σ�[At]j

)}

Since we are interested in the selection of uj
ι and Aι, we

observe that the term π�xj
ι is not influenced by either of

them and can thus be removed from the cost function of
the optimization problem. Hence, we obtain the following
adjusted cost function (with the same optimizer)

J ′
ι =

∑
j∈M

(
π�E

{
T−1∑
t=ι

fj(zjt , u
j
t , w

j
t )

}
− ρ�E

{
T−1∑
t=ι+1

uj
t

}

−ρ�E
{
uj
ι

}
− σ�E {[Aι]j} − σ�E

{
T−1∑
t=ι+1

[At]j

})
,

where we also split the summations over uj
t and [At]j . Note

that J ′
ι is a function of all uj

ι and this is potentially a highly
nonlinear and nonconvex function. We keep the notation of
the expectation operator over the uj

t and At since these are
policies dependent on the future states and disturbances.

3.2 Sampling of allocation space using bids

We will now take samples in the space of possible allo-
cations and propose the approximate decomposition. We
assume that every client computes an amount of s sce-
narios at each time instant, labelled from the set S :=
{1, 2, . . . , s}. We call these scenarios bids and formally
define these as follows.

Definition 2. (Bid). A bid bjk(ι), k ∈ S, of a client j ∈ M
at a time ι ∈ N[0,T ] is defined as the triple

bjk(ι) =
(
gjk(ι), �

j
k(ι), ū

j
k(ι)

)
∈ Rp × Rr

≥0 × Rr
≥0,

where

gjk(ι) = E

{
T−1∑
t=ι

f j(zjt , u
j
t , w

j
t )

}

is the expected total future gain of products given that the
client receives at least ūj

k(ι) resources at time ι. Similarly,

�jk(ι) = E

{
T−1∑
t=ι+1

uj
t

}

is the expected total future use of resources needed to
realize gjk(ι) if ū

j
k(ι) resources are delivered at time ι.
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Using these bids, we are essentially sampling in the space
of allocations and resource deliveries such that the opti-
mization of resources can be done by each client sepa-
rately and thus in parallel (distributed) and the agents
use these results to solve the allocation. The best way to
interpret gjk(ι) and �jk(ι) is that π�gjk(ι) − ρ��jk(ι) is an
approximation of the cost-to-go for client j at time ι if the
client receives ūj

k resources at time ι. Also note that the

pdfs hj
t of the disturbances are taken into account in the

computation of the bids.

The decomposition we propose assumes that each client
computes gjk(ι) for several values of ūj

k(ι) such that uj
t

follows a certain base policy (Bertsekas (2017)) for t ∈
N[ι+1,T−1]. One such example of a base policy is that the
clients assume that they will not receive any resources
after time ι and thus uj

t = 0 for all t ∈ N[ι+1,T−1] and

�jk(ι) = 0r. A second example is the policy in which the
agents compute the amount of resources needed for largest
growth of the crop.

The results of these computations are then passed to the
agents in the form of bids. The agents will then use these
bids to allocate the resources while taking into account
the allocation constraints. Let δ ∈ Bs×m denote the bid
decision matrix. If the agents choose that the k-th bid is
the scenario for client j that they wish to execute, then
δjk = [δ]kj equals one, otherwise it is zero. We assume that

one bid is selected and thus δjk = 1 ⇒ δjk′ = 0 for k �= k′

for all j ∈ M. We use this bid decision matrix to provide
the following approximation of J ′

ι

J̃ι =
∑
j∈M

(∑
k∈S

δj
k

(
π�gj

k
− ρ�

(
ūj
k
+ �j

k

))
− σ�[Aι]j

)
. (3)

Also, we assume that the value of the future num-
ber of agents that will be allocated to all clients, i.e.,∑T−1

t=ι+1

∑
j∈M[At]j , does not vary significantly with re-

spect to ūι and therefore leave it out of the objective
function.

4. OPTIMIZATION CONSTRAINTS

In this section we will show how the assumptions on
bid selection, agent capabilities and allocation constraints
translate to mathematical formulations that can be used
in the optimization problem.

All decision variables, bid parameters and constraints in
this section are evaluated for the same time ι ∈ N[0,T−1].
For notational clarity, we omit this dependency on time.

4.1 Bid selection constraints

We assume that the agents always select exactly one bid
for each client and hence∑

k∈S

δjk = 1, j ∈ M,

or otherwise stated,

δ�1s = 1m. (4)

4.2 Allocation constraints

Let A(τ) ∈ Bn×m denote the allocation matrix at subtime
τ such that if aij(τ) := [A(τ)]ij equals one, a agent i
delivers resources to client j at subtime τ ∈ {1, 2, . . . , q} =:
Q. As stated in Section 2, we can assume that at every
instant of subtime, an agent can deliver resources to at
most one client and every client can receive resources from
at most one agent. This results in

A(τ)1m ≤ 1n, (5a)

A(τ)�1n ≤ 1m, (5b)

for all τ ∈ Q.

4.3 Agent constraints

Let D(τ) ∈ Rr×m
≥0 denote the receive matrix such that

[D(τ)]j = dj(τ) is the vector of resources delivered to
client j ∈ M at subtime τ . Furthermore, let C(τ) ∈ Rr×n

≥0

denote the delivery matrix such that [C(τ)]i = ci(τ) is
the vector of resources that agent i ∈ N has delivered at
subtime τ . Under the assumption that all resources that
are delivered by an agent are received by a client, we have
that

ci(τ) =
∑
j∈M

dj(τ) aij(τ), τ ∈ Q, i ∈ N , (6)

or stated otherwise,

C(τ) = D(τ)A(τ)�, τ ∈ Q.

Since [C(τ)]ki denotes the k-th resource that agent i
delivers, we can incorporate capacity constraints to the
agents by the capacity matrix Cmax ∈ Rr×n

≥0 and enforcing
the constraints

C(τ) = D(τ)A(τ)� ≤ Cmax, τ ∈ Q. (7)

Note that these inequalities include products of decision
variables dj(τ) and aij(τ) and thus these are bilinear
constraints.

4.4 Flow constraints

If a client receives resources from an agent, then that agent
must be allocated to that client. We must therefore have

dj(τ) =
∑
i∈N

aij(τ)ci(τ), j ∈ M, τ ∈ Q.

Substitution of (6) yields

dj(τ) =
∑
i∈N

aij(τ)
∑
h∈M

aih(τ) dh(τ),

and since aij(τ)aih(τ) = 0, j �= h due to (5a) and
(aij(τ))2 = aij(τ) as aij(τ) ∈ B, we can write

dj(τ) =
∑
i∈N

aij(τ)aij(τ) dj(τ) =
∑
i∈N

aij(τ) dj(τ)

and therefore(
1−

∑
i∈N

aij(τ)

)
dj(τ) = 0r, τ ∈ Q, j ∈ M. (8)

We observe that if an agent is allocated to client j, then
1−

∑
i∈N aij(τ) = 0 and dj(τ) is not restricted further by

this constraint. If no agent is allocated to client j, then
1−

∑
i∈N aij(τ) = 1 and dj(τ) = 0r is the only solution.
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Using these bids, we are essentially sampling in the space
of allocations and resource deliveries such that the opti-
mization of resources can be done by each client sepa-
rately and thus in parallel (distributed) and the agents
use these results to solve the allocation. The best way to
interpret gjk(ι) and �jk(ι) is that π�gjk(ι) − ρ��jk(ι) is an
approximation of the cost-to-go for client j at time ι if the
client receives ūj

k resources at time ι. Also note that the

pdfs hj
t of the disturbances are taken into account in the

computation of the bids.

The decomposition we propose assumes that each client
computes gjk(ι) for several values of ūj

k(ι) such that uj
t

follows a certain base policy (Bertsekas (2017)) for t ∈
N[ι+1,T−1]. One such example of a base policy is that the
clients assume that they will not receive any resources
after time ι and thus uj

t = 0 for all t ∈ N[ι+1,T−1] and

�jk(ι) = 0r. A second example is the policy in which the
agents compute the amount of resources needed for largest
growth of the crop.

The results of these computations are then passed to the
agents in the form of bids. The agents will then use these
bids to allocate the resources while taking into account
the allocation constraints. Let δ ∈ Bs×m denote the bid
decision matrix. If the agents choose that the k-th bid is
the scenario for client j that they wish to execute, then
δjk = [δ]kj equals one, otherwise it is zero. We assume that

one bid is selected and thus δjk = 1 ⇒ δjk′ = 0 for k �= k′

for all j ∈ M. We use this bid decision matrix to provide
the following approximation of J ′

ι

J̃ι =
∑
j∈M

(∑
k∈S

δj
k

(
π�gj

k
− ρ�

(
ūj
k
+ �j

k

))
− σ�[Aι]j

)
. (3)

Also, we assume that the value of the future num-
ber of agents that will be allocated to all clients, i.e.,∑T−1

t=ι+1

∑
j∈M[At]j , does not vary significantly with re-

spect to ūι and therefore leave it out of the objective
function.

4. OPTIMIZATION CONSTRAINTS

In this section we will show how the assumptions on
bid selection, agent capabilities and allocation constraints
translate to mathematical formulations that can be used
in the optimization problem.

All decision variables, bid parameters and constraints in
this section are evaluated for the same time ι ∈ N[0,T−1].
For notational clarity, we omit this dependency on time.

4.1 Bid selection constraints

We assume that the agents always select exactly one bid
for each client and hence∑

k∈S

δjk = 1, j ∈ M,

or otherwise stated,

δ�1s = 1m. (4)

4.2 Allocation constraints

Let A(τ) ∈ Bn×m denote the allocation matrix at subtime
τ such that if aij(τ) := [A(τ)]ij equals one, a agent i
delivers resources to client j at subtime τ ∈ {1, 2, . . . , q} =:
Q. As stated in Section 2, we can assume that at every
instant of subtime, an agent can deliver resources to at
most one client and every client can receive resources from
at most one agent. This results in

A(τ)1m ≤ 1n, (5a)

A(τ)�1n ≤ 1m, (5b)

for all τ ∈ Q.

4.3 Agent constraints

Let D(τ) ∈ Rr×m
≥0 denote the receive matrix such that

[D(τ)]j = dj(τ) is the vector of resources delivered to
client j ∈ M at subtime τ . Furthermore, let C(τ) ∈ Rr×n

≥0

denote the delivery matrix such that [C(τ)]i = ci(τ) is
the vector of resources that agent i ∈ N has delivered at
subtime τ . Under the assumption that all resources that
are delivered by an agent are received by a client, we have
that

ci(τ) =
∑
j∈M

dj(τ) aij(τ), τ ∈ Q, i ∈ N , (6)

or stated otherwise,

C(τ) = D(τ)A(τ)�, τ ∈ Q.

Since [C(τ)]ki denotes the k-th resource that agent i
delivers, we can incorporate capacity constraints to the
agents by the capacity matrix Cmax ∈ Rr×n

≥0 and enforcing
the constraints

C(τ) = D(τ)A(τ)� ≤ Cmax, τ ∈ Q. (7)

Note that these inequalities include products of decision
variables dj(τ) and aij(τ) and thus these are bilinear
constraints.

4.4 Flow constraints

If a client receives resources from an agent, then that agent
must be allocated to that client. We must therefore have

dj(τ) =
∑
i∈N

aij(τ)ci(τ), j ∈ M, τ ∈ Q.

Substitution of (6) yields

dj(τ) =
∑
i∈N

aij(τ)
∑
h∈M

aih(τ) dh(τ),

and since aij(τ)aih(τ) = 0, j �= h due to (5a) and
(aij(τ))2 = aij(τ) as aij(τ) ∈ B, we can write

dj(τ) =
∑
i∈N

aij(τ)aij(τ) dj(τ) =
∑
i∈N

aij(τ) dj(τ)

and therefore(
1−

∑
i∈N

aij(τ)

)
dj(τ) = 0r, τ ∈ Q, j ∈ M. (8)

We observe that if an agent is allocated to client j, then
1−

∑
i∈N aij(τ) = 0 and dj(τ) is not restricted further by

this constraint. If no agent is allocated to client j, then
1−

∑
i∈N aij(τ) = 1 and dj(τ) = 0r is the only solution.
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These constraints can be written into one matrix equation
as

0r×m = D(τ)
(
Im − diag

(
A(τ)�1n

) )
, τ ∈ Q.

These equations are also bilinear in the decision variables.

4.5 Inter time scale constraints

In accordance with previous definitions, we must have
that the allocation in subtime must be congruent with the
allocation in time, i.e.,

At =
∑
τ∈Q

A(τ). (9)

Furthermore, the resources that are delivered to client j
in all instances of subtime together should be equal to the
amount received in an instant of time t ∈ N[0,T ]

uj
t =

∑
τ∈Q

dj(τ), j ∈ M, (10)

where we must impose that the delivered resources are
equal to the amount stated in the accepted bid and thus∑

k∈S

δjk ūj
k = uj

t , j ∈ M. (11)

4.6 Overview of constraints

Summarizing the effects of the constraints, we have that

i) exactly one bid is accepted for each client through (4);
ii) the amount of resources delivered to a client is equal

to the amount stated in the accepted bid, which is
guaranteed by (11);

iii) through (10) we have that the delivered amount of
resources to a client equals the total amount delivered
to that client in subtime;

iv) there are no free deliveries through (8), i.e., if re-
sources are delivered to a client, then an agent must
be allocated;

v) it is guaranteed that the agents deliver the resources
below their maximum capacity through (7);

vi) through (9) we have that the number of usages of
agents in time is equal to the number of usages in
subtime.

5. OPTIMIZATION OF THE DECOMPOSITION

Using the constraints presented in the previous section, we
can rewrite J̃t in (3) and thereby the optimization problem
for the agents becomes a Mixed Integer Bilinear Program
(MIBP) with a linear objective function:

max
δ,A(τ),
D(τ)

∑
j∈M

∑
k∈S

δj
k
(π�gj

k
− ρ��j

k
)−

∑
τ∈Q

(ρ�D(τ) + σ�A(τ))1m

subject to, for all τ ∈ Q,
δ�1s = 1m,

A(τ)1m ≤ 1n,
A(τ)�1n ≤ 1m,

−
[∑

τ∈Q D(τ)
]
j
+
∑

k∈S δjkū
j
k = 0r, j ∈ M,

D(τ)
(
Im − diag

(
A(τ)�1n

) )
= 0r×m,

D(τ)A(τ)� ≤ Cmax,

δ ∈ Bs×m, A(τ) ∈ Bn×m, D(τ) ∈ Rr×m
≥0 .

(12)

This optimization problem has m(s + q(n + r)) decision
variables and

• m(1 + qr) linear equality constraints;
• q(n+m) linear inequality constraints;
• qrm bilinear equality constraints;
• qrn bilinear inequality constraints.

This has now become an optimization problem of a smaller
complexity than a centralized optimization in which the
optimal resource computation and the allocation is solved
simultaneously.

Now that the optimization problem of the decomposition
is clear, let us formally define the decomposition.

Definition 3. (Decomposition). A decomposition with
multi-bidding of a D-H-MARA Σ is defined as the pair
(Σ, s) with s the number of bids per client per time
instance and the optimization problem (12) is solved at
every time instance.

If the clients’ bids are too high relative to the agents
capacities, the optimization problem might not provide
a feasible solution. We will give a sufficient condition on
the bids to ensure feasibility. To this extend, we use the
notion of zero bids. A zero bid bjk(ι) is defined as a bid
k ∈ S of an agent j ∈ M at a time ι ∈ N[0,T−1] such that

ūj
k(ι) = 0r. The sufficient condition for feasibility is given

in the following proposition.

Proposition 1. (Sufficient condition for feasibility). If all
clients have a zero bid among their bids, i.e.,

∀j ∈ M, ∃k ∈ S : bjk = (·, ·,0r),

then the optimization (12) has at least one feasible solu-
tion.
Proof. If all clients j ∈ M place at least one bid where
ūj
k(ι) = 0r, then these bids can be selected and through

(11) no resources are delivered. This implies that no agents
need to be allocated and hence all allocation constraints
are satisfied. �

In the example of precision agriculture, inclusion of a zero
bid is a reasonable assumption as not all fields need to be
served at each time instant.

6. SIMULATION EXAMPLE

As a simple, yet illustrative example, we present the
results of a simulation of farm management of spring
wheat. To this extend we use the celebrated and well
known LINTUL2 crop growth model, the documentation
of which can be found in Spitters and Schapendonk (1990).
In LINTUL2 it is assumed that the crop grows under
water-limited stress and other limiting factors such as
nitrogen stress and pests are assumed to be absent. We
use spring wheat as an example since the parameters in
LINTUL2 have been extensively validated with regard to
this particular crop.

This simulation example considers m = 30 subfields of
equal area and n = 3 irrigation agents. There is one
product (p = 1) represented by the mass of the storage
organ of the crop. Water is the only resource (r = 1)
that the agents can deliver in this example. The agents’
capacities are equal to Cmax = [1 1 2] [mm water/subtime]
(arbitrarily chosen). We evaluate the dynamics for each
day and assume that agents can be allocated twice a day
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(q = 2). We set π = 100 [e/(kg/m2)], ρ = 1 [e/mm water]
and σ = 0n (i.e., agent allocation is ‘free’). We have rather
arbitrarily set these costs and reserve an investigation
into real costs for future work. At every time instant,
the bids for all agents are computed for ūj

k ∈ N[0,5] [mm
water/time], and thus s = 6. All clients compute the
bids under the assumption that they will not receive any
resources in the future and thus �jk = 0 for all k ∈ S and
j ∈ M.

The simulation was carried out in MATLAB where SCIP
was used to solve the optimization problem (12) (see
Gleixner et al. (2017)). The simulation uses historical
weather data (supplied with LINTUL2, weather data
recorded in 1991 in Wageningen, The Netherlands) of rain,
temperature and irradiation to compute the predicted
future amount of product. However, in the evaluation of
the state updates, a random disturbance from a normal
distribution with a mean of −5 and standard deviation
of 5, is applied to the amount of rain (excluding negative
values of rain).

Under these weather conditions, if we would keep the water
at field capacity (i.e., maximum capacity such that there
is no water stress for the crop), 11 909 units of water would
be needed to achieve the theoretical maximum yield per
field of 7.676 ton/ha of dry matter of the storage organ
(DM). This may give the largest amount of product, but
not the largest amount of profit due to the large amount
of irrigation needed. In fact, the agents do not have the
capacity to deliver 11 909 units of water in this timespan
and thus an evaluation of profit J0 in (2) is meaningless in
this case. If no irrigation would be applied and the fields
would only receive water due to rain, then the yield would
be 5.215 ton/ha of DM at a profit of J0 = 1.56 · 106.
Using our proposed framework, a feasible allocation was
computed in which the clients were able to generate an
average of 6.739 ton/ha of DM using 1 358 units of water
at a total profit of J0 = 2.02 · 106 [e]. This yield is 88%
of the theoretical maximum yield and the profit increased
by 29% compared to no irrigation. This is summarized in
Table 1.

Table 1. Simulation results

Resource [mm] Yield [ton/ha] Profit J0 [e]
Optimal yield 11 909 7.676 -
No irrigation 0 5.215 1.56 · 106
Proposed 1 358 6.739 2.02 · 106

7. CONCLUSIONS AND FUTURE WORK

This paper described an approximate dynamic solution
to the dynamic heterogeneous MARA (D-H-MARA) such
that a large part of the allocation optimization can be
distributed over the clients (i.e., the computation of bids).
Many relevant problems fit in the class of D-H-MARA
problems as the description is general and, as shown,
encompasses allocation problems in precision agriculture.

The performance of the decomposition is for a large part
based on the quality of the bids. In future work we will
analyse the situation in which agents try to improve the
quality of their bids by communicating with other clients
(either all clients or clients in a certain neighbourhood)
before submitting them to the agents. Further exploration
of the relation between the problem presented in this paper

and the ‘knapsack problem’ is reserved for future work
(Kellerer et al. (2004)). Another direction of research is
the study of the effects of other baseline policies for the
clients to use in order to compute their bids as mentioned
in Section 3.

For the application in precision agriculture, further re-
search is needed into the use of more encompassing crop

growth dynamics, i.e., functions f̂ j . Further research in
temporal ordering constraints of resources is also needed,
as well as resource constraints over the entire season.
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arbitrarily set these costs and reserve an investigation
into real costs for future work. At every time instant,
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problems as the description is general and, as shown,
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of the relation between the problem presented in this paper
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the study of the effects of other baseline policies for the
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