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Abstract— Bayesian estimation can be used to estimate the
state of dynamical systems, but its applicability is hampered
due to the curse of dimensionality. This paper aims to miti-
gate this bottleneck for a relevant class of systems consisting
of a linear plant with bounded input, driven by stochastic
disturbances with non-linear noisy output; the distributions
of the disturbances and noise have a bounded support but
are otherwise general. Using a frequency-domain interpretation
of the operations of the Bayes’ filter, we show that, under
mild assumptions, exact Bayesian estimation can be pursued
in a countable space of Fourier series coefficients, rather
than in the usual functional space of probability densities.
This fact leads to a natural approximate method, where the
Fourier series coefficients corresponding to high frequencies
are discarded. For this approximate method, the complexity of
the conditioned state distribution, measured by the number of
Fourier coefficients, remains constant at prediction steps and
grows only linearly at each update step. The applicability of
the results is illustrated in the context of electron microscopy,
where a residual error analysis indicates that the approximation
is accurate.

I. INTRODUCTION

Bayes’ filtering is a general approach to the state esti-
mation problem of dynamical systems [1]. It provides the
state probability density function (pdf) given previous control
inputs and measurements based on two recursive steps:
update and prediction. The update step relies on the most
recent measurement and the prediction step on the dynamical
model.

When the dynamical and output equations are linear and
the noise statistics are Gaussian, the Bayes’ filter boils
down to the Kalman filter. In such a case, the conditioned
state distribution is Gaussian at every time step, provided
that this is the case at time zero [2]. More generally, the
conditioned state distribution is a sum of Gaussians, when
the distributions of the initial state, the noise, and the
disturbances are sums of Gaussians, although if the noise
statistics cannot be represented by a single Gaussian, the
number of Gaussians grows exponentially with time [3].
The Kalman filter is one of the rare cases in the context
of multivariable systems with general state dimension nx
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for which Bayesian estimation is tractable. In fact, without
the linear and Gaussian assumptions, one can typically only
rely on discretization of the pdf; however, when nx ≥ 3
is large, keeping track of a pdf in Rnx easily becomes
computationally intractable.

There are many approximate methods, such as the Ex-
tended Kalman Filter [4], Unscented Kalman Filter [5],
Particle Filter [6], Multiple Model Estimation Algorithm [7],
Sequential Monte Carlo Algorithm [8], Variational Bayes’
filtering [9], or methods that use Fourier densities to ap-
proximate pdfs and perform Bayes’ filtering [10]. Although
the results are certainly of interest, in general it is hard to
quantify the quality of the approximation for these methods.

In this paper we are interested in a class of systems
for which we show that exact Bayesian estimation can be
pursued and accurately approximated in a tractable way. This
class is characterized by:

(i) A linear system with a bounded set of admissible initial
states.

(ii) General (non-linear) output equations with bounded
independent and identically distributed measurement
noise with a general distribution.

(iii) Bounded, independent, and identically distributed pro-
cess noise with a general distribution.

(iv) Bounded control inputs.

Conceivably, ignoring the assumptions regarding the bounds
on the sets constraining the inputs, noise and disturbances
for a moment, this is a much broader class of systems when
compared to the underlying assumptions in the context of
the Kalman filter (or the sums of Gaussian approach).

For the class of systems satisfying (i)-(iv) above, we will
interpret the operations of the Bayes’ filter in the frequency
domain through the Fourier transform of the conditioned
pdf. In general, keeping track of such a Fourier transform
would be intractable. Since the assumptions render bounded
sets, it is possible to represent it in a lossless manner, with
samples corresponding to the Fourier series. This means that
exact Bayesian estimation can be pursued in the countable
space of Fourier series coefficients uniquely representing the
conditioned state pdf, rather than in the usual functional
space of pdfs. This leads to a natural approximate method,
where the Fourier series coefficients corresponding to high
frequencies are discarded. For this approximate method, the
complexity of the conditioned state distribution, measured
by the number of Fourier coefficients, remains constant at
prediction steps and grows only linearly at each update step,
as we will see.
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The use of Fourier series in a Bayesian estimation context
can lead to large data efficiency gains (see the numerical
examples in Section IV below) as well-known in other
domains (compression into JPEG-images and MP3-files).
Due to this, it can provide a viable solution for medium-
scale problems 4 ≤ nx ≤ 6 where discretization would not
be feasible. The use of Fourier series in this context has also
been proposed in [10]. Contrary to [10], our proposed method
uses Fourier series rather than their approximated Fourier
densities, and does not require a transition density function
but uses the linear system dynamics directly to compute the
pdf of the state in the prediction step.

The proposed model and estimation method were inspired
by a problem in the electron microscopy field. Electron mi-
croscopes require tuning by an expert operator to compensate
for present aberrations [11]. The estimation of the aberration
relies on the visual inspection of a so-called ronchigram
[12], [13]. Based on one single ronchigram, it is impossible
to uniquely identify the aberrations [14]. To address this
problem in a systematic manner, it turns out to be useful
to consider the electron microscope as an integrator (and
thus linear) system, where the (unknown) states describe the
aberrations and the control inputs are the tuning knobs to
compensate for those aberrations. The output is a complex
non-linear function based on the states. As this setting fits
the assumptions of our framework, we apply the proposed
method in this context and discuss its effectiveness through
a residual error analysis. This analysis indicates that the
approximation is accurate.

This paper is structured as follows. The proposed model
is introduced in Section II, where the Bayes’ filter in the
time-domain is reviewed. The exact Bayes’ filter written with
Fourier transforms and Fourier series, and the approximate
Bayes’ filter using only a finite number of Fourier coeffi-
cients are given in Section III. Two numerical examples of
the approximate method that demonstrates the performance
of the Bayes’ filter with Fourier basis functions are given
in Section IV, including a comparison with the Unscented
Kalman Filter. Finally, in Section V, conclusions are drawn
and directions for future research are given.

II. PROPOSED MODEL AND BAYES’ FILTER

Consider the system

xt+1 = f(xt, ut, wt) (1)
yt = g(xt, vt) (2)

with linear dynamics, i.e.,

f(x, u, w) = Ax+Bu+ w (3)

and where xt ∈ Rnx is the state, ut ∈ U ⊆ Rnu is
the control input, yt ∈ Rny the measured output at time
t ∈ T := {0, 1, . . . , h}, where h ∈ N∪{∞} is a time horizon
of interest. The initial state is assumed to belong to a state
x0 ∈ X0 ⊆ Rnx . Moreover, wt ∈ W ⊆ Rnx and vt ∈ V ⊆
Rny , t ∈ T , form sequences of zero-mean, independent and
identically distributed, and mutually independent, random

variables, representing the process disturbances and the mea-
surement noise, respectively. Disturbances and measurement
noises wt and vt, t ∈ T , can be described by any probability
density function (pdf), and are therefore not restricted to
zero-mean Gaussian noise. We denote these pdfs by pw(w)
and pv(v), respectively. Hence, for all t ∈ T , A ⊆ W ,
B ⊆ V , it holds that∫
A
pw(w)dw = Prob[wt ∈ A],

∫
B
pv(v)dv = Prob[vt ∈ B].

(4)
The function g(·, ·) may be a general nonlinear function,
and we do not put any particular restrictions on it. We can
equivalently characterize the output equation (2) by a pdf
py(y;x) such that, for all t ∈ T ,∫

C
py(y;x)dy = Prob[yt ∈ C|xt = x] =

∫
BC

pv(v)dv, (5)

where BC := {v ∈ V|g(x, v) ∈ C}. Similarly, we can
equivalently characterize the process equation (1) by a pdf
q(x̄;x, u), such that, for all t ∈ N0,∫
D
q(x̄;x, u)dx̄ =Prob[xt+1∈D|xt=x, ut=u]=

∫
ED

pw(x̄)dw

(6)
with ED := {w ∈ W|f(x, u, w) ∈ D}. The initial state x0

is assumed to be distributed according to a pdf p̄0(x0), with
support X0. A standing assumption is the following.

Assumption 1. The sets W , V , U and X0 are bounded.

A direct consequence of this assumption is that, for all
t ∈ T ,

xt ∈ Xt, for some bounded sets Xt.

The sets Xt are assumed to be minimum volume sets such
that xt ∈ Xt. We define the set of rectangular sets in Rnx as

R={[L1, L̄1]× · · · × [Lnx
, L̄nx

]|L̄i>Li, i ∈ {1, ..., nx}}.

Here Li and L̄i are the lower- and upper-bounds, respec-
tively, for the i-th entry of Xt. The volume of [L1, L̄1] ×
· · · × [Lnx

, L̄nx ] ∈ R is L̃ = Πnx
i=1Li, Li = L̄i −Li. Let Rt

be the set in R with minimal volume such that Xt ⊆ Rt. Let

R := ∪ht=1Rt.

Assumption 2. When h =∞, R is bounded.

A sufficient condition for this assumption to hold is that
the system matrix A is Schur. If this holds, the system is
input-to-state stable, which implies that when X0, U and W
are bounded, Xt is also bounded.

Assumption 3. A is invertible.

Assumption 3 is met, for instance, when the dynami-
cal model results from an exact time-discretisation of a
continuous-time dynamical model.

The Bayes’ filter allows us to keep track of conditioned
pdfs pi|j(·), where i ∈ T is the timestep to be estimated
and j ≤ i the input and output information available at
timestep i, that is, {u0, ..., uj−1, y0, ..., yj}. The Bayes’ filter
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recursively performs the following two steps for every t ∈ T
with p0|−1(x) = p̄0(x), and given ut, for every x ∈ X0.

(i) Update step:

pt|t(xt) =
1

α
py(yt;xt)pt|t−1(xt), xt ∈ Xt, (7)

with α =
∫
Xt

py(yt; s)pt|t−1(s)ds
(ii) Prediction step:

pt+1|t(xt+1) =

∫
Xt

q(xt+1;xt, ut)pt|t(xt)dxt,

xt+1 ∈ Xt+1.

(8)

For the linear model considered, we can write the
prediction step as follows. Consider two scalar functions
a : A → R, b : B → R with domains in sets A ⊆ Rn,
B ⊆ Rn. If A and B are bounded sets, extend these functions
to Rn by setting a(x) = 0, x ∈ Rn\A, b(x) = 0, x ∈ Rn\B,
respectively. Then, convolution c = a ⊗ b is denoted by
c(x) = (a⊗ b)(x) =

∫
Rn a(x− s)b(s)ds for x ∈ Rn.

Proposition 1. The prediction step can equivalently be
written as

pt+1|t(x) =
1

det(A)
pt|t(A

−1(x−But))⊗ pw(w), x ∈ Xt+1

(9)
for every t ∈ T . □

While pt+1|t(x) and pt|t(x) have only been defined by the
Bayes’ filter in the intervals Xt+1 and Xt, it is convenient
to define them for every x ∈ Rnx by setting pt+1|t(x) = 0
if x ∈ Rnx \ Xt+1, pt|t(x) = 0 if x ∈ Rnx \ Xt. In turn
py(y;x) and pw(w) only needs to be defined for x ∈ X
and w ∈ W , but we also define them for every x ∈ Rnx

by setting py(y;x) = 0, if x ∈ Rnx \ X , pw(w) = 0 if
w ∈ Rnw \W .

Performing the Bayes’ filter operations is in general com-
putationally unfeasible when nx is large (typically when
nx ≤ 3 one can still rely on spatial discretization, but
for larger nx this becomes unfeasible). This motivates the
problem considered here which is to represent pt+1|t(x) and
pt|t(x) in an efficient way and to provide a numerically
efficient method to perform these operations.

III. BAYES’ FILTER WITH FOURIER TRANSFORM
AND FOURIER BASIS FUNCTIONS

In this section, the Bayes’ filter is pursued using the
Fourier transform and Fourier basis functions. Section III-A
provides an exact method, which requires an infinite num-
ber of coefficients. Section III-B provides an approximate
method with a finite number of coefficients.

A. Exact method

For every t ∈ T , ω ∈ Rnx , let

Pt|t(ω) :=

∫
Rnx

pt|t(x)e
−jω·xdx,

Pt|t−1(ω) :=

∫
Rnx

pt|t−1(x)e
−jω·xdx,

Pw(ω) :=

∫
Rnw

pw(w)e
−jω·wdw,

Py(y;ω) :=

∫
Rny

py(y;x)e
−jω·ydy

(10)

be the Fourier transforms of the pdfs pt|t(x), pt|t−1(x),
pw(w) and of py(y;x), where a·b denote the inner production
of two vectors a ∈ Rn, b ∈ Rn. Then, the operations of the
Bayes’ filter can be written as follows.

Lemma 1. The Fourier transforms (10) are related for every
t ∈ T by

• Update step:

Pt|t(ω) =
1

α
Py(yt;ω)⊗ Pt|t−1(ω) (11)

for all ω ∈ Rnx with α = Py|x(yt;ω)⊗ Pt|t−1(ω)|ω=0

• Prediction step:

Pt+1|t(ω)=Pt|t(A
Tω)e−jω·(But)Pw(ω), ω ∈ Rnx (12)

□

Interestingly, while the update and predictions steps in
the time domain correspond to a product and a convolution
(besides the affine transformation), respectively, in terms of
the Fourier transform the update and predictions steps in the
frequency domain correspond to a convolution and a prod-
uct (besides the affine transformation). Hence, running the
Bayes’ filter with Fourier transforms is equally intractable.
However, since the state belongs to a bounded set we only
need enough samples to reconstruct the Fourier transform,
and we can compute the Fourier series instead.

Let k = [k1 . . . kn]
⊺ with ki ∈ Z, so that k ∈

K := {[k1 . . . kn]
⊺|ki ∈ Z}. Moreover, let k./L :=

[k1/L1 . . . kn/Ln]
⊺. Suppose that we sample and scale the

Fourier transforms Pt|t(ω), Pt|t−1(ω), Py(y;ω) obtaining
the Fourier coefficients for every k ∈ K, for every t ∈ T

ct|t[k] =
1

L̃
Pt|t(ω)|

ω=(
2πk1
L1

,...,
2πkn
Ln

)

ct|t−1[k] =
1

L̃
Pt|t−1(ω)|

ω=(
2πk1
L1

,...,
2πkn
Ln

)

cy[y; k] =
1

L̃
Py(y;ω)|

ω=(
2πk1
L1

,...,
2πkn
Ln

)
.

(13)

These Fourier coefficients are enough to write the condi-
tioned pdfs in xt ∈ R, xt+1 ∈ R,

pt|t(xt) =
∑
k∈K

ct|t[k]e
j2π(k./L)·xt , xt ∈ R,

pt|t−1(xt+1) =
∑
k∈K

ct|t−1[k]e
j2π(k./L)·xt+1 , xt+1 ∈ R,

py(y;x) =
∑
k∈K

cy[y; k]e
j2π(k./L)·x, x ∈ R.

(14)
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Outside R, the formulas on the right-hand side define peri-
odic replications of these pdfs.

Due to the crucial fact that xt ∈ R for every t ∈ T , where
R is a bounded set, which follows from Assumption 1, we
can use the sampling theorem, to conclude that these Fourier
coefficients fully characterize the Fourier transforms Pt|t(ω),
Pt|t−1(ω). In fact, let

B1(ω,L, k) :=

nx∏
i=1

2 sin((ωi − 2π/Liki)
Li
2
)

(ωi − 2π/Liki)
e−j(ωi−2πki/Li)(L̄i+Li)/2

where sin(x)
x is assumed to be extended by continuity so that

sin(x)
x |x=0

= 1. Then, for every ω ∈ Rnx , t ∈ T ,

Pt|t(ω) =
∑
k∈K

ct|t[k]B1(ω,L, k),

Pt|t−1(ω) =
∑
k∈K

ct|t−1[k]B1(ω,L, k)

Py(y;ω) =
∑
k∈K

cy[y; k]B1(ω,L, k)

(15)

To perform the Bayes’ filter operations with the Fourier
series coefficients requires the discrete convolution operation.
The convolution of c : K → R and d : K → R, is denoted
by g[k] = c[k]⊗ d[k] =

∑
r∈K c[k − r]d[r], k ∈ K.

Lemma 2. The Fourier coefficients (13) are related for every
t ∈ T by

• Update step: for k ∈ K

ct|t[k] =
1

α
cy[yt; k]⊗ ct|t−1[k] (16)

with α = cy[yt; k]⊗ ct|t−1[k]|k=0

• Prediction step: for k ∈ K

ct+1|t[k] =

1

L̃

∑
k∈K

ct|t[k]B1(A
Tω,L, k)

 e−jω·(But)Pw(ω)|
ω=(

2πk1
L1

,...,
2πkn
Ln

)

(17)
□

Note that when A = I , the prediction step (17) boils down
to a much simpler expression

ct+1|t[k] = ct|t[k]e
−jω·(But)Pw(ω)|

ω=(
2πk1
L1

,...,
2πkn
Ln

)
, (18)

where each ct+1|t[k] only depends on ct|t[ℓ] if k = ℓ.

B. Approximate method

Suppose we approximate the initial conditioned state dis-
tribution with a finite number of Fourier coefficients

ĉ0|−1[k] :=

{
c0|−1[k] if k ∈ K0|−1,

0 otherwise ,
(19)

where

K0|−1 = {−m0|−1,−m0|−1 + 1 . . . ,m0|−1 − 1,m0|−1}

with m0|−1 ∈ N, i.e., we discard the coefficients correspond-
ing to k ∈ Kc

0|−1 = K \ K0|−1. Then

p̂0|−1(x) =


∑

k∈K0|−1

ĉ0|−1[k]e
j2π(k./L)·x, if x ∈ R,

0, if x ∈ Rnx \ R.
(20)

Note however that p̂0|−1(x) is in general not a pdf, since
it is not necessarily positive and does not necessarily inte-
grate to one. However, given any p̂(x) in the space P of
bounded functions in the bounded set R we can defined a
normalization operator N : P → P that to each p̂(x) ∈ P
provides p̃(x) = p̂(x)+ϵ

α(ϵ) with ϵ = min{c ≥ 0|p̂(x) + c ≥
0 for all x ∈ R} and α(ϵ) =

∫
R(p̂(x) + ϵ)dx. If p̂(x) =∑

k∈K c[k]e2π(k./L)·x for a set K with finite cardinality
nK = |K| this induces a normalization procedure to the ĉ[k],
defined by map Nc : RnK → RnK ,

c̃[k] =


ĉ[k]

α(ϵ)
, if k ∈ K \ {0},

ĉ[0] + ϵ

α(ϵ)
if k = 0.

(21)

Thus, p̃0|−1(x) = N(p̂0|−1(x)) is described by

p̃0|−1(x) =


∑

k∈K0|−1

c̃0|−1[k]e
j2π(k./L)·x, if x ∈ R,

0, if x ∈ Rnx \ R,
(22)

where
c̃0|−1[k] = Nc(ĉ0|−1[k]), (23)

which is a pdf.
Likewise suppose that we approximate py(y;x) with a

finite number of Fourier coefficients

ĉy[y; k] :=

{
cy[y; k] if k ∈ Ky,

0 otherwise ,
(24)

where Ky = {−my,−my+1 . . . ,my−1,my} with my ∈ N.
Then, letting c̃y[y; k] = Nc(ĉy[y; k]), k ∈ Ky , results in a pdf

p̃y(y;x) =


∑
k∈Ky

c̃y[y; k]e
j2π(k./L)·x, if x ∈ R,

0, if x ∈ Rnx \ R.
(25)

This leads naturally to the following approximate
Bayes’ algorithm, which provides estimates p̃t|t(xt) and
p̃t+1|t(xt+1) of pt|t(xt) and pt+1|t(xt+1). Let Kt|t =
{−mt|t,−mt|t+1 . . . ,mt|t}, Kt+1|t = {mt+1|t,−mt+1|t+
1 . . . ,mt+1|t − 1,mt+1|t}.

Algorithm 1. (Approximate Bayesian estimation)
Consider initially (23) and then, for every t ∈ T :
• Update step: Set mt|t = mt|t−1 +my and for k ∈ Kt|t

compute

c̃t|t[k] = Nc(c̃y[yt; k]⊗ c̃t|t−1[k]) (26)

and set

p̃t|t(xt) =
∑

k∈Kt|t

c̃t|t[k]e
j2π(k./L)·xt , xt ∈ X .
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• Prediction step: Set mt+1|t = mt|t and for k ∈ Kt+1|t
compute

c̃t+1|t[k] =

Nc

1

L̃

 ∑
k∈Kt|t

c̃t|t[k]B1(A
Tω,L, k)

e−jω·(But)Pw(ω)|
ω=(

2πk1
L1

,...,
2πkn
Ln

)


(27)

and set

p̃t+1|t(xt+1) =
∑

k∈Kt+1|t

c̃t+1|t[k]e
j2π(k./L)·xt+1 , xt+1 ∈ X .

□
Note that the factor mt|t = mt+1|t determining the

number of coefficients (2mt|t−1 + 1 ) only grows linearly
with time t, mt|t−1 = m0|−1 + tmy. In fact, the complexity
of the conditioned state distribution, measured by the number
of coefficients, remains constant at prediction steps and
grows only linearly at each update step. The number of
coefficients m0|−1 and my to be selected depends on the
balance between accuracy and computational effort; more
coefficients increase the accuracy of the pdf at the expense
of computational effort. A natural choice is to remove the
coefficients, whose power is below a predefined threshold
after the update step.

IV. NUMERICAL EXAMPLES

In this section, two examples are discussed. The first
example considers a scalar linear system with Gaussian noise
and process disturances, which allows us to compare the
accuracy of the proposed approximate method of Section III-
B to the exact conditioned pdfs obtained using the Kalman
filter. In the second example, we consider an example in-
spired by electron microscopy.

A. Comparison with the Kalman filter for simple example

Consider the following first-order linear system

f(xt, ut, wt) = xt + ut + wt, (28)
g(xt, vt) = xt + vt, (29)

where X := {xt ∈ R|−10 ≤ xt ≤ 10}, U := {ut ∈ R|−1 ≤
ut ≤ 1}, and t ∈ N0. The disturbances and measurement
noises are independent, zero mean, and distributed according
to a Gaussian: wt ∼ N (0, 0.1) and vt ∼ N (0, 0.1). The
Gaussian distributions are truncated and scaled such that
wt ∈ [−5, 5] and vt ∈ [−5, 5]. We set x̂0 = 0, and
E[(x0 − x̂0)

2] = 3. The Fourier series coefficients that
characterize the output equations c̃y[yt; k] are obtained by
sampling the pdf’s of the output equations py(yt;xt) for
several values of xt ∈ X , and computing the Fourier series
coefficients of these samples. The factor that determines
the initial number of Fourier series coefficients is set to
m0|−1 = 1600, and my = m0|−1.

Fig. 1(a) shows how the approximated pdfs p̃t|t(x) vary
over time t. Fig. 1(b) compares x̂t = E[xt], computed
from these pdfs, with the actual state xt in. The estimation
closely follows the actual state. For comparison, the state
estimates and residual error of both the Kalman filter as

(a) Estimated pdf FBF
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(b) State estimation

0 10 20 30 40 50

-1

-0.5

0

0.5

1

(c) State estimation error
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(d) Residual error

Fig. 1: Comparison of the Fourier basis functions (FBF)
method with the Kalman filter for the first example

well as the Fourier basis method are visualized in Fig. 1(c).
The performance is assessed based on the residual errors,
similar to [3]. The residual errors are calculated according
to rt = yt−E[g(x̂t, 0)], and shown in Fig. 1d. From Fig. 1,
it can be concluded that the Fourier basis functions method
has a similar performance to the (optimal) Kalman filter
benchmark.

B. Application to electron microscopy

Part of the tuning of an electron microscope is determining
the level of aberrations (modeled as states), which are
coupled to features of a ronchigram (outputs) [14]. It is not
possible to estimate the level of aberrations from a single
ronchigram. In general multiple hypotheses on this level
should be tracked. In this numerical example, two types of
aberrations are considered: focus and astigmatism (modelled
x1 and x2, respectively). Those two aberrations are linked to
two outputs (y1 and y2) by non-linear output equations. The
control inputs (u1 and u2) act on each aberration directly
without couplings, while also each aberration is completely
decoupled, thus the system has integrator dynamics. This
leads to a simplified model of the electron microscope cal-
ibration problem, which considers the problem of inferring
the state from features, and given by

f1(·)= x1,t + u1,t + w1,t, f2(·) = x2,t + u2,t + w2,t,

g1(·)=α1x
2
1,t + α2x

2
2,t + v1,t,

g2(·) =
α3x1,t

α4 + α5(x2
2,t − x2

1,t)
2
+ v2,t

where X := {xt ∈ R2|[−5, 5] × [−5, 0]}, U := {ut ∈
R2|[−1, 1]2}, t ∈ N0, and αi with i ∈ {1, .., 5} are constants.
This model was obtained from system identification from
available data; the details of the identification procedure
are omitted here. The disturbances are independent and
uniformly distributed in the sets: wi,t∈[−0.2,0.2], i∈{1, 2}.
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Fig. 2: Evolution of p̃t|t(x) over time

The measurement noises are independent, zero mean and
distributed according to a Gaussian with a variance of 0.1:
vi,t ∼ N (0, 0.1), i ∈ {1, 2}. Furthermore, they are truncated
and scaled such that vi,t ∈ [−1, 1], i ∈ {1, 2}. The
initial position estimate p̃0,−1(x) is considered as a uniform
distribution with support X . In the simulations, the control
inputs are selected such that the states do not leave set X .
Both p̃0|−1(x) and p̃(y;x) are sampled on a grid of 125×75
Fourier series coefficients.

The evolution of the approximated pdf is visualized in
Fig. 2 for the first 3 timesteps. The figure shows clearly the
development from an initial uniform distribution towards a
small region with high probability, indicating the certainty
in the estimate improves over time. A more detailed figure
on the quality of the estimation is given in Fig. 3, where
a comparison is made with the Unscented Kalman filter
(UKF), as proposed in [5]. Since the UKF cannot deal
with uniform distributions, the disturbances are estimated by
w̃i,t ∼ N (0, 0.15), i ∈ {1, 2}, the initial state estimate is set
on x̂0 = [0,−2.5]T , and

P0 = E
[
(x0 − x̂0)(x0 − x̂0)

T
]
=

[
4 0
0 2

]
.

The Fourier basis function method’s estimate converges
faster to the true state than the UKF. In addition to the
faster convergence, the proposed method has a better tracking
performance, since it does not have the requirement of
Gaussian noise statistics, as the UKF has. The computation
time of the UKF on the other hand is less than the Fourier
basis function method. Furthermore, Fig. 3(d) shows clearly
that the residual error does not grow unboundedly.

V. CONCLUSIONS AND FUTURE WORK

In this paper, exact Bayesian estimation is pursued for the
class of systems with linear dynamics and arbitrary (non-
linear) output equations in the frequency domain through the
Fourier transform, using the countable number of Fourier co-
efficients. This perspective naturally leads to an approximate
method, where high frequencies are disregarded to obtain
a finite number of Fourier coefficients. The approximate
method is computationally tractable, since the number of
coefficients grows only linearly with time. Future research
directions include analyzing the estimation error, in order to
give error bounds for the approximate method.
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Fig. 3: Comparison of the Fourier basis functions (FBF)
method with the Unscented Kalman filter (UKF) of the
second example
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