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Abstract

Stable operation of axial and centrifugal compressors is lim-
ited towards low mass flows due to the onset of surge. The
stable operating region can be enlarged by active control. In
this study, we use a control valve which is nominally closed
and only opens to stabilize the system around the desired
operating point. Hence, only non-negative control values
are allowed which complicates the controller design con-
siderably. A novel positive feedback controller is proposed
with clear design parameters to obtain a desirable closed-
loop behavior. The technique has successfully been applied
to a compression system model. For arbitrarily large con-
trol valve capacities, the system can be stabilized in the en-
tire operating region. Simulations show that the surge point
mass flow can be reduced up to 15% for the relatively small
control valve to be implemented on the actual installation.
Using this efficient control strategy, the stabilized operating
point is reached with zero control valve mass flow.

1 Introduction

Compressors are widely used for the pressurization of
gases. Applications involve air compression for use in air-
craft engines and industrial gas turbines, and pressurization
and transportation of gas in the process and chemical in-
dustries [1]. Towards low mass flows, the stable operating
region of axial and centrifugal compressors is bounded due
to the occurence of aerodynamic flow instabilities: rotating
stall and surge [4]. These instabilities can lead to the fail-
ure of the compressor system because of large mechanical
and thermal loads in the blading, and limit its performance
and efficiency. Suppressing these phenomena improves life
span and performance of the machine. One way to cope with
these instabilities is active control [2]. In this approach, the
dynamics of the compression system are modified by feed-
ing back perturbations into the flow field. This resuits in an
extension of the stable operating region beyond the “natu-
ral” stability boundary.

This study focuses on active control of surge in a laboratory-
scale gas turbine installation. Surge is an unsteady, axisym-
metric oscillation of the flow through the entire compression
system. It is seen in the compressor map as a limit cycle os-
cillation, see Fig. 1. In this study, a control valve is used for
active surge control. Similar to [8], this valve is nominally
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Figure 1: Compressor map with surge cycle.

closed and only opens to stabilize the system in the nominal
operating point. As the control valve position can only be-
come positive, positive feedback stabilization [S) is applied.
The overall efficiency of the compressor system will be im-
proved compared to studies which only accept a nonzero
nominal control valve mass flow or pressure drop. The main
contribution of this study is the proposal of a new positive
feedback structure that guarantees stabilization of the lin-
earized compression system. In contrast with [8], the influ-
ence of the control valve dynamics and the control valve
constraint can be dealt with in the presented stability anal-
ysis. The construction of the feedback has clear design pa-
rameters which can be used to obtain a desirable behavior
of the closed loop system. The control strategy has success-
fully been applied to a compression system model.

This paper is organized as follows. First, the positive feed-
back stabilization problem is considered, which will be ap-
plied for the control of the compressor. Section 3 discusses
the studied compression system whereas the Greitzer com-
pression system model is described in Section 4. Section 5
deals with the stability of the linearized compression sys-
tem in the presence of valve saturation and valve dynamics.
Simulation results are presented and discussed in Section 6.
Finally, conclusions are drawn and directions for future re-
search are given.

2 Positive Feedback Stabilization

Consider a linear system (A, B) given by
x(t) = Ax(t) + Bu(1),
where u(z) € R is the scalar control input and x(r) € R" the

state at time ¢. The input functions are assumed to belong
to the Lebesgue space L, of measurable, square integrable



(i.e., [3° llu(2)||dt is finite) functions on R, := [0, 00) tak-
ing values in R. Moreover, the controls are only allowed to
take non-negative values. Hence, the control constraint set
is equal to the positive half line R, . The objective is to con-
struct a non-negative state feedback of the form

0
Kx(1)

_ _ if Kx(t) <0

u(t) = max(0, Kx(t)) = { if Kx(t) > 0
with K being a constant row vector. Switching occurs be-
tween the ‘controlled mode’ (linear state feedback is active)
and the ‘uncontrolled mode’.

Definition 2.1 (Positive Feedback Stabilizability) (A, B)
is said to be positive feedback stabilizable, if there exists a
K such that all solutions x of

x(t) = Ax(t) + Bmax(0, Kx(t)) 1)

are contained in L7.

In the following theorem we describe a solution to this prob-
lem in case the matrix A has only one unstable complex
conjugate pole pair. For control of the compressor, it suf-
fices to consider this particular situation. Observe that the
proof is constructive and allows synthesis of a feedback
max(0, Kx). In the formulation of the theorem, o(A) de-
notes the set of eigenvalues of A.

Theorem 2.2 Suppose that (A, B) has a scalar input and
A has at most one pair of unstable, complex conjugate
eigenvalues. The problem of positive feedback stabilizabil-
ity is solvable if and only if (A, B) is stabilizable' and
c(A)NR, = @.

Proof: Since we only need the sufficiency part in this paper,
we refer to [5] for the necessity part.

If A has no unstable complex eigenvalues, 6(A)NRy = @
implies that A is stable and consequently, K = O results in
a stable closed loop system (1). Hence, consider the case
where A has one pair of complex conjugate eigenvectors
with nonzero imaginary parts. There exist a nonsingular
transformation S and a decomposmon of the new state vari-
able ¥ = Sxin (x],x; )7 such that the system description

becomes
xi() = Anx (1) +Byu(r) (2a)
X() = Anxa(t) +Bou(t) (2b)

with Aj anti-stable (i.e., —A;; stable), A, stable and
(A1, By) controllable. The stability of Ay, implies that for
any u € L, the corresponding state trajectory x; € L, (for
arbitrary initial state). Hence, if we can construct a feed-
back of the form u = max(0, K;x;) (depends only on x;)
that positively stabilizes (2a), the proof is complete.

We concentrate on (2a). Note that x;(r) € R%. Since
(A1, By) is controllable, the eigenvalues of Aj; + B K can
be placed arbitrarily by suitable choice of K. Denote the
eigenvalues of Ay; by op £ jwo with wp 5% 0. We claim that

1in the ordinary sense, i.e., there exists a matrix K such that A + BK is
stable.
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if K; is designed such that the eigenvalues of Aj; + B1K;
are contained in?

(A=o+jweClo<0and | Z1< 2y @3

g ap

then the resulting closed-loop system (2a) with u =
max (0, K)x;) is stable. A solution corresponding to initial
state xo will be denoted by x,, (omitting the subscript 1).
Consider the following two cases.
1. Eigenvalues of A;; + B K, are real. We claim that the

system will eventually remain in the stable controlled mode.
Indeed, suppose that K;xp < 0. As long as Kjx,,(7) <0,

@

for certain real constants ¢ 7 0 and ¢. This implies that a
sign switch must occur. Denote the time of the first sign
switch by 7, and the corresponding state by Xxo, respec-
tively. For a positive time interval the system evolves ac-
cording to the dynamics of the controlled mode x(r) =
(A1 + B1K)x(t). Observe that KjelAn+BiKnNt—1)z, cap
have at most one zero, because Ay + B K has only two
real (possibly equal) eigenvalues. Since there is a zero for
t = 1y, there will be no switch of dynamics beyond #, and
the system stays in the stable controlled mode, so clearly,
Xz, € L. Note that the above reasoning also applies, when
Kixo = 0 and Kjx,(7) < 0 for some 7 > 0, by replacing xo
by xx, (7).

2. Eigenvalues of A} + B; K; are complex, say o £ jow.
Eventually, the system will switch between the two modes
as long as the state x, (#) does not become equal to zero.
This is most easily seen from (4). For the controlled mode,
similar arguments can be used. From this, it can also be seen
that the time spent in the controlled mode equals |—Z~| and
similarly, in the uncontrolled mode IJEJ The norm of the
state decays in one complete cycle of the controlled and un-
controlled mode by el - eW)Ql which is strictly less than 1

due to the choice of the eigenvalues of Ay + B; K] in (3)
SO Xy, € L.

K%z, (1) = K121 xg = ¢ €% cos(wot + ¢)

We would like to extract the following observations from
the proof. Under the assumptions of the theorem with one
unstable pole pair, the closed-loop system is stable if and
only if the eigenvalues of A;; + B; K, are taken inside the
cone (3). Moreover, the rate of decrease of the state variable
can be determined. When the eigenvalues of Ay + B; K are
real, the decay is determined by the dominant eigenvalues of
x = (A + BK)x. If the eigenvalues are complex, it can be
seen that the duration of one cycle of the controlled (u =
Kx) and uncontrolled (# = 0) phase is ﬁ + 177:13 in which

a0y

the norm of the state x; decreases by a factor el . gl
The decay is determined by this factor and the eigenvalues
of Ay, (the stable eigenvalues of A). This elucidates how
the eigenvalues o + jw of A}y + B K, should be chosen to
obtain desirable closed-loop behavior. Finally, note that the
equilibrium of the closed-loop system is not only stable in
the sense of Def. 2.1, but also globally exponentially stable
and asymptotically Lyapunov stable.

Extending the proof above to multiple unstable pole pairs
seems complicated.

2In case og = 0 it suffices to place the eigenvalues of A;} + B K] in
the open left half plane.



3 Compression System

Positive feedback stabilization is applied to suppress surge
in a laboratory-scale gas turbine installation. For surge con-
trol experiments, the system will be operated in the config-
uration shown in Fig. 2. The single-stage centrifugal com-
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Figure 2: Scheme of the studied gas turbine installation.

pressor is part of a turbocharger (BBC VTR 160L) and it is
driven by the turbine. To independently vary the compres-
sor mass flow and the power delivered by the turbine, exter-
nally supplied compressed air is used. It flows via the vessel
into the combustion chamber where natural gas is added and
burned. The hot exhaust gasses expand over the turbine and
deliver the power to drive the compressor. The compres-
sor discharges via the compressor blow-off valve and the
instrumented blow-off duct into the atmosphere. The rela-
tively slow blow-off valve represents the pressure require-
ment of the system, e.g, downstream processes. For active
surge control the system will be equipped with a relatively
fast control valve, as shown in Fig. 2. This valve has to sta-
bilize the compression system around its nominal operating
point. Further details about the gas turbine installation can
be found in [6].

4 Greitzer Compression System Model

The behavior of the uncontrolled compression system dur-
ing surge can reasonably be described by the Greitzer com-
pression system model, as reported in [6]. This lumped pa-
rameter model is modified to account for the effect of the
control valve, as shown in Fig. 3. The flow in the ducts is
assumed to be incompressible and one-dimensional. Com-
pressibility effects are associated with the isentropic com-
pression of the gas in the plenum while inertia effects are
lumped on the acceleration of the gas in the compressor
duct. Moreover, temperature effects and the influence of ro-
tor speed variations on system behavior are neglected. The
original model is described concisely in [3].

Assuming quasi-steady compressor behavior leads to the
following set of dimensionless equations:

dd,

= = Al¥(Po+ do) — Yo — ¥ 5
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dv 1 . . . A
7‘;’ = 5(Pa+ b= @)~ 04, DI (©

where @ is the dimensionless compressor mass flow and
is the dimensionless plenum pressure rise defined as:

; A
do= - and y= P2

PaA U %anxZ’

with compressor mass flow 71, and plenum pressure rise
Ap, = pp — Ps and the dimensionless time ¢ = ¢ - wy is

obtained using the Helmholtz frequency wy = a %};. The

subscript 0 indicates quantities in the nominal operating
point Yo = W.(P.o) whereas " indicates deviations from the
nominal operating point. The meaning and values of the pa-
rameters used in the Greitzer model can be found in Table 1.

plenum

compressor

—A Oy
_cox}trol
valve

K u

Figure 3: Compression system model.

Table 1: Parameters used in the Greitzer model.

Symbol Value/Meaning
Speed of sound a [m/s] 340

Air density p, [kg/m®] 1.20
Compressor flow through area A, [m?] 9.56-1073
Compressor duct length L. [m] 1.00
Plenum volume V), [m3} 3.75-1072
Helmholtz frequency fy [Hz] 27.34
Throttle parameter ¢, [-] 0.2994
Rotor radius r, [m] 0.09
Rotational speed N [10°- rpm] 18-25
Rotor tip speed U, = Z2 N [10%- m/s] 1.70 - 2.35
Greitzer stability parameter f = ZWLL 0.49 - 0.69
Slope of compr. charact. m, o
Slope of equiv. throttle charact. - YPLD) | o)

Slope of control valve charact. V 4%25 | (wo-p0)

To describe the behavior of the compressor, throttle, and
control valve, quasi-steady characteristics are used. The
measured compressor characteristic W.(®$.) is approxi-
mated by a commonly used cubic polynomial in ®:

3 (% 1 (@, ?



where the peak of the compressor characteristic corresponds
to &, = 2F and the valley point is laid at &, = 0. Further
details about the applied approximation can be found in [6].
For subsonic flow conditions, the dimensionless throttle and
control valve characteristics are given, respectively, by:

®, = city Yo + ¥ and @y = cp(upo + i)y Yo + ¥

with the dimensionless nominal throttle position u,g and the
dimensionless nominal control valve position ugg (for posi-
tive feedback stabilization: upo = 0). The throttle and con-
trol valve parameter ¢, and ¢; are a measure for the capac-
ity of the fully opened valve, whereas c; is estimated from
available steady-state measurements.

For the moment, we assume that the control valve dynam-
ics can be neglected. This implies that a linearization of the
model around (P9, o) results in the following second or-
der system:

1// B Bmye 1//
N—— r— e —

=:A

w | =<

5 Active Control

Greitzer [4] shows that the uncontrolled compression sys-
tem (7) is stable if and only if:

1
B2m,
Roughly speaking, this corresponds with operating points
on the compressor characteristic where @, > 2F. Active

control can enlarge the range of operation points for which
the system is stable [2].
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Figure 4: Block scheme of the compression system model

5.1 State feedback

Using active control we have to deal with the limitations of
the actual dimensionless valve position i, which is con-
strained to take values between O (closed) and 1 (fully
open). In [7], it is shown that the linearized system (7)
is positive feedback stabilizable for 0 < &, < 2F. Note
that for sufficiently small values of x = [&,, 170]"- the feed-
back satisfies the upper bound on i,. Hence, local stabil-
ity is always guaranteed. To obtain a large domain of at-
traction, the amplitude of the control input has to be made
as small as possible. Application of the Kalman-Jakubovic-
Popov (KJP) equality learns that for LQ-control the least
control energy (L;-norm) is needed to stabilize the system
if the closed-loop poles approach the mirror images of the
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“unstable” open-loop poles. Nevertheless, in that.case the
upper constraint on the valve position may still be violated.
Another solution to overcome the problems caused by the
upper constraint is to increase the capacity ¢ of the control
valve.

5.2 Static output feedback

A drawback of the controller derived above is that accurate
state measurements of [®, Y] are required. In the installa-
tion, only reliable measurements of the plenum pressure are
available. Therefore, it is interesting to know what can be
achieved with static output feedback 7, = max(0, Kv/). As
K is simply a scalar, standard root locus techniques can be
used to decide if a feedback K exists that places the eigen-
values of A+ BKC (with C =[0 1] and A, B as in (7)) in
the cone (3). It can be verified that such a feedback exists for
operating points with N = 25,000 [rpm] and &, > 1.7F.
This corresponds to a 15% extension of the stable operating
region.

5.3 Extended model with valve dynamics

In the previous cases, the dynamics of the valve are ne-
glected (i, = i2). Here, the control valve is supposed to be-
have as a linear second order system [8] (see Fig. 4):

2 A ~
d Up dub 2

—BIT + 2{(4)50 d? + wzoﬁb = (‘)ca

i (3
where w., = %{ﬂ Linearization of (5), (6), and (8) around
(Pc0, Vo, tpo, Upo) results in the following dimensionless
state equations for the complete system (iipo = upo = 0).

o I AL A |2
:‘.p = B _ﬂmlz 0 _FZ }(’
ap 0 0 —28we, —wg, u:b
lib 0 0 1 0 Up

0

0 N

+ wga u (9)
0

Then, we can only influence # instead of controlling #,, di-
rectly. This means that we do not have control constraints,
but state constraints. One possibility to tackle this more dif-
ficult problem with state constraints is to implement an in-
verse model of the control valve dynamics. In case of exact
cancellation of the control valve dynamics, the system (9)
reduces to the second order system (7) and the controllers
proposed in the Sections 5.1 and 5.2 can be used. How-
ever, two problems obstruct the real implementation of this
method: (i) the cancellation is never exact (although simu-
lations show that the controller is robust for mismatches),
and (ii) implementation of the exact inverse valve dynamics
requires differentiation of measured signals which is not re-
liable due to non-smoothness and noise. Therefore, the fol-
lowing realization is applied:

0=

w? (52 +20w, s+ w},,) e (10)

w2 \ 52+ 20015+ 0?



with i4* one of the controllers proposed in the Sections 5.1
or 5.2, and w’m and ;‘I approximations of w, and ¢. If the
approximation of the inverse model is accurate enough for
the relevant frequencies of the system, one expects that the
closed-loop behavior remains stable. This will be validated
by simulations.

Note that i, is not necessarily non-negative, although i#* is.
However, if the transfer function from #* to i, is given by:

2
@,

H. =
2(5) 52+ 282w + W)

an

and £, > 1 (overdamped system), then i, is non-negative
as well. This follows from the non-negativity of the impulse
response corresponding to (11) and of &*.

5.4 State feedback for extended model
For (9), it is possible to construct a state feedback:

4 =max(0, K[®, ¥ ity 5]

that guarantees the stability of the system. Indeed, for 0 <
@0 < 2F and stable control valve dynamics, the conditions
of Theorem 2.2 are satisfied. If the control valve dynamics
are overdamped (¢ > 1), the non-negativity of () implies
that i, () is non-negative for all ¢, but the upper constraint
on 4, can still be violated. For ¢ < 1, an alternative approach
is to implement a realization as in (10) with £; > 1. If the
control valve dynamics are exactly cancelled (w/w = W
and ¢ = ¢), a situation arises where the control valve dy-
namics are replaced by (11) with w, = w1 and &§, = & > 1.
The main disadvantage of this state feedback is the need for
measurements of the states of the control valve and com-
pression system. Current research is concerned with the ex-
istence of stabilizing static output feedback controllers or
the use of state observers as applied in, e.g., [1].

6 Simulation Results

Simulations are done with the nonlinear compression model
in MATLAB/SIMULINK. In all simulations, the uncontrolled
model is initially disturbed from its nominal operating point
for N = 25,000 [rpm]. This resuits in a limit cycle oscil-
lation for @, < 2F. Then, after 0.25 [s] the controller is
switched on and the response is observed. Preliminary, the
state [<i>c, 1}1]T is assumed to be available from measure-
ments. The control valve that will be implemented on the
installation has a capacity of 7% of the throttle capacity.

Table 2: Pole placement in case of state feedback (N =
25,000 [rpm], ®o = 1.7F, and A gpen 100p = 0.4057 £ j0.8886).

Case  Closed-loop poles
I )\|=—l; )»2:—0.1
I Agjp=—0.4067 4 jO.8886

First, the state feedback controller discussed in Section 5.1
is examined. In the simulation model, saturation of &y is
included, but the control valve dynamics are omitted ini-
tially (&, = #). Fig. 5 shows the results for the two cases
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listed in Table 2. The upper left-hand figure shows the sys-
tem’s response in the compressor map. In this map, the com-
pressor characteristic is plotted for reference. Furthermore,
the time traces of the compressor mass flow and plenum
pressure perturbations and the actual control valve position
are shown. It is seen that in Case I the system is stabilized
after two surge cycles. The nominal operating point is fi-
nally reached with zero control valve mass flow. Obviously,
the domain of attraction of the nominal operating point in-
cludes the surge cycle of the uncontrolled system. In Case
11, the energy of i, is minimized in order to keep i, as
small as possible. This results in a slower response than in
Case I since the system operates frequently in the uncon-
trolled mode. During this period, the state has time to grow.
Additional simulations show that if the closed-loop poles

N = 25000 [rpm]; ®w= 1.7F cb=0.07cl: %:0

0.1
0 Waw--—--—-———-——a-
-0.1
02
-03
0.4
05 1
time [s)
0.1 !
0.05 038 — Case [
— Case Il
Y 06
& X
-0.05 04
01 o h
015 0 MMMMMM
0 05 1 0 05 1
time (s] time {s]

Figure 5: Influence of pole placement for state feedback.

are shifted further to —oo the upper constraint is limiting.
Although the linearized system is stable, for ®, < 1.7F
the applied control system can only reduce the amplitude
of the perturbations and the nominal operating point is not
reached. By sufficiently increasing cp, the domain of attrac-
tion is enlarged such that surge is stabilized in the entire re-
gion 0 < P < 2F For instance, stabilization in ¢ =1.0F
from the surge cycle is possible with zero control valve mass
flow for ¢, = 0.23¢;.

Reliable, transient mass flow measurements are (currently)
not available in the installation. As a result, the stabiliza-
tion of surge is studied using a static output feedback con-
troller (Section 5.2) based on plenum pressure measure-
ments. For &, = 1.7F, the results are shown in Fig. 6.
The results for K = 27.0 and 28.8 correspond with the
closed-loop poles A;2 = —0.1110 £ j0.2260 and A, =
—0.0051 and — 0.2858, respectively. As shown in [7], for
N = 25,000 [rpm] stabilization from surge is limited to
1.7F < & < 2F using static output feedback. In this case,
increasing ¢p has no effect.

To study the effect of the control valve dynamics on sys-
tem behavior, the simulation model is extended with a lin-
ear second order valve model (8). The bandwidth of the
control valve is f;,, = 60 [Hz]. In this valve model, the
control valve position &, is constrained during integration
and the control valve velocity is reset to zero if the posi-
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Figure 6: Results for static output feedback.

tion is constrained. The state feedback controller designed
for system (7) is applied to control the nonlinear compres-
sion system with control valve dynamics. As the control
valve dynamics can make the closed-loop system unstable,
these dynamics are compensated using (10) with w_, = wc,,
t=0=110= 2’;—‘:’ and ¢; = 1.1. Note that this guar-
antees local stability according to Section 5.3. The results
are shown in Fig. 7. It is seen that in Case I the system is

N = 25000 [rpm]); @cn =17F €= 0A07c‘; fw =60 [Hz]; "bo=0
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Figure 7: Results for state feedback with compensation of control
valve dynamics.

stabilized in the desired operating point, but the response
time is slower than in Fig. 5. This is caused by the remain-
ing dynamics after compensation. In Case II, on the other
hand, the response is faster for this system with valve dy-
namics. Furthermore, the robustness of the nonlinear sys-
tem for non-exact cancellation is studied for Case I. For the
range 0.8w¢, < w’m < 1.2w,, the surge cycle is still stabi-
lized.

7 Conclusions and Future Research

Active surge control has been examined for a compression
system with a centrifugal compressor. For this compression
system, a positive stabilizing feedback controller has been
proposed. The stability of the controlled linearized system
without contro} valve dynamics can be guaranteed in the en-
tire operating region 0 < @ < 2F by the theory developed
in Section 2. Although the actual control valve position is
bounded between 0 and 1, it is shown that fully developed
surge can be stabilized for sufficiently large control valve
capacities cp. For the relatively small control valve to be
implemented on the installation, the surge cycle oscillations
can be stabilized for ®, > 1.7F. This corresponds with
a reduction of 15% in surge point mass flow. Similar re-
sults are obtained using a static output feedback controller
based on plenum pressure measurements. If persistent dis-
turbances and measurement noise are absent, the desired op-
erating point is reached with zero control valve mass flow.
The static output feedback strategy is planned to be imple-
mented on the installation in the near future. Then, the sim-
ulation results can be validated.

To prove stability of the linearized system with control valve
dynamics, state feedback can be applied. A drawback of this
state feedback is that measurements of the instantaneous
mass flow and valve position and velocity are required. Cur-
rent research focuses on the existence of stabilizing output
feedback controllers or the use of state observers as applied
in [1]. Furthermore, the nominal operating point is supposed
to be known a priori. However, pressure requirements in,
e.g., jet engines or gas compressor stations, are generally not
known. For these systems, techniques have to be developed
to determine the desired equilibrium points or controllers
have to be applied that do not use ¥y, e.g., based on . As
the linearized system (7) varies for different nominal oper-
ating points, we will also search for controllers that stabilize
surge in a large range of &, such that gain scheduling is not
required or use LPV based controllers.
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