620 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 2, FEBRUARY 2020

/G

o \EEE

= CSS

Periodic Event-Triggered Control for Nonlinear
Networked Control Systems

Wei Wang ““, Romain Postoyan

Abstract—Periodic event-triggered control (PETC) is an
appealing paradigm for the implementation of controllers
on platforms with limited communication resources, a typ-
ical example being networked control systems. In PETC,
transmissions over the communication channel are trig-
gered by an event generator, which depends solely on the
available plant and controller data and is only evaluated at
given sampling instants to enable its digital implementation.
In this paper, we consider the general scenario, where the
controller communicates with the plant via multiple decou-
pled networks. Each network may contain multiple nodes, in
which case a dedicated protocol is used to schedule trans-
missions among these nodes. The transmission instants
over the networks are asynchronous and generated by lo-
cal event generators. At given sampling instants, the local
event generator evaluates a rule, which only involves the
measurements and the control inputs available locally, to
decide whether a transmission is needed over the consid-
ered network. Following the emulation approach, we show
how to design local triggering generators to ensure input-to-
state stability and £, stability for the overall system based
on a continuous-time output-feedback controller that ro-
bustly stabilizes the network-free system. The method is
applied to a class of Lipschitz nonlinear systems, for which
we formulate the design conditions as linear matrix inequal-
ities. The effectiveness of the scheme is illustrated via sim-
ulations of a nonlinear example.

Index Terms—Lyapunov methods, networked control sys-
tems, nonlinear control systems, robust stability.
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I. INTRODUCTION

ETWORKED control systems (NCSs) refer to systems,
N in which the plant and the controller communicate via
networks. Integrating networks into control systems, compared
with the traditional dedicated point-to-point (wired) links, has
major advantages, such as lower cost, reduced weight and
power, simpler installation and maintenance, and higher relia-
bility [1]. Moreover, the NCS configuration is essential when
the plant consists of many subsystems, which are physically dis-
tributed and interconnected to coordinate their tasks and achieve
an overall objective; see their applications in smart grids, wide-
area systems, or for systems with distributed sensors, actuators,
and controllers. A major challenge in NCSs is to design control
strategies, which do not “overuse” the network, to limit the trans-
mission delays and the occurrence of packet losses, which may
destroy the desired closed-loop system properties. An attractive
approach in this context is event-triggered control (ETC), which
adapts the transmission instants based on the current state, input,
and/or output measurement of the plant (see [2] and the refer-
ences therein). The idea of ETC is to use the network only when
this is needed by generating transmissions whenever a state- or
output-dependent condition is satisfied. Most literature on ETC
focuses on continuous event-triggered control (CETC), in the
sense that the triggering condition is evaluated at all times (see,
for instance, [3]-[7]). Although CETC may significantly reduce
the number of transmissions compared with traditional periodic
sampling, the continuous evaluation of the triggering condition
causes issues when sensors are battery powered for mobility
and/or flexibility reasons. Moreover, it is not even possible to
evaluate triggering rules continuously when the implementation
platform is digital. In this case, it is more natural to evaluate the
triggering criterion at some discrete sampling instants, leading
to periodic event-triggered control (PETC) (see [8] and [9]).

Hybrid systems are commonly used to model CETC systems
(e.g., [4], [7], [10], [11]), as the plant and the controller are of-
ten described by continuous-time systems, and transmissions are
discrete events, which can be modeled by jumps. The generic re-
sults in [12] about the sampled-and-hold implementations of hy-
brid controllers ensure that the emulation of a continuous event-
triggered controller as a periodic event-triggered controller still
“works,” if the sampling period is sufficiently small. To be more
precise, the uniform global asymptotic stability of a compact
set ensured by CETC is semiglobally and practically preserved
for fast sampling by PETC. Unfortunately, these results do
not provide exploitable explicit bounds on the sampling pe-
riod. Furthermore, it is of interest to preserve global asymptotic
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stability properties in PETC, instead of semiglobal practical
asymptotic stability. Works addressing these points have mostly
been developed for systems with linear dynamics (see [8] and
[13]-[16]). On the other hand, PETC results for nonlinear
systems are scarce. In [9, Ch. 6.5] and [17], itis explained how to
convert general continuous state-feedback event-triggered con-
trollers to periodic event-triggered ones, while (approximately)
preserving the properties of the former. The work in [18] de-
velops observer-based output-feedback controllers for a class of
nonlinear Lipschitz systems, and a practical stability property
is ensured at the end. Another work is [19], where the output-
feedback PETC scheme is studied to ensure global asymptotic
stability for a class of polynomial nonlinear systems. Obviously,
PETC for nonlinear systems is at its early stage, and a lot re-
mains to be done. In particular, there is a need for systematic
design frameworks, which are flexible enough to cope with out-
put feedbacks, as well as exogenous disturbances. The primary
aim of this paper is to address this challenge.

We study plants modeled by a continuous-time nonlinear sys-
tem affected by exogenous disturbances and for which only
some output is available for control. We proceed by emula-
tion to design the periodic event-triggered controller. Thus, we
first assume that we know an output-feedback controller, which
robustly stabilizes the plant in the absence of communication
constraints, in the sense that it ensures either an input-to-state
stability or an £,, stability property for the closed-loop system
with respect to the exogenous disturbances, as well as output and
input noises. At this stage, any continuous-time design technique
can be applied. We then implement the controller over networks.
We investigate the scenario where multiple asynchronously op-
erating networks are used to connect the controller to the plant:
this is an additional novelty of this paper. This setup is relevant,
forinstance, when one network ensures the communication from
the sensors to the controller, and another one is used to connect
the controller to the actuators. The sensors and the actuators are
grouped into nodes, which are connected to a given network. The
transmissions over each network are generated by a local trig-
gering generator. The latter collects measurements and control
inputs, which are locally available; at some sampling instants
specific to the considered network (and not necessarily peri-
odic), it evaluates a criterion and then decides whether a node
needs to transmit its packet over this network. The transmitting
node is selected according to the local scheduling rule, such
as the round-robin (RR) or try-once-discard (TOD) protocol
considered in [1] and [20]. To design local triggering genera-
tors, we, therefore, have to define three elements: the criterion,
the sampling instants at which the criterion is evaluated, and
the scheduling rule. Regarding the scheduling rules, we require
that they are uniformly globally asymptotically stable (UGAS)
as characterized in [20], which cover the RR, TOD, and the
sampled-data protocols. We also make assumptions on the ro-
bust stability of the original closed-loop system in the absence
of a network, which can be checked a priori. Note that im-
posing robust stability properties is required for any nonlinear
control systems to be implementable in practice. Based on these
assumptions, we provide the expression of the local triggering
conditions, as well as an explicit bound on the maximum allow-
able sampling periods (MASP), which are used to characterize

the sampling instants. We actually show that there is a tradeoff
between the MASP of each triggering generator and a parameter
used to define the corresponding triggering condition.

The overall system is modeled as a hybrid system using the
formalism of [21] and [22], for which a jump corresponds to
a sampling instant of one local triggering generator. We then
ensure an input-to-state stability or an £, stability with respect
to the exogenous disturbances, depending on the assumptions.
These results lead to a uniform global asymptotic stability prop-
erty in the absence of disturbances. The analysis relies on a
novel hybrid Lyapunov function. We apply the results to a class
of globally Lipschitz nonlinear systems and formulate the as-
sumptions as linear matrix inequalities (LMIs). The obtained
LMIs are always verified in special cases when the nonlinearity
only involves the measured output or for any stabilizable and de-
tectable LTI systems. The latter case appears to be a contribution
in its own right, as it extends the centralized and state-feedback
PETC for linear systems in [13] and [8] and the output-feedback
PETC in [14] to decentralized implementations. Simulation re-
sults on a nonlinear system, which is not globally Lipschitz, are
also provided.

The decentralized setup we investigate is similar to the one
in [4], where continuous event-triggered controllers are synthe-
sized. The fact that we consider PETC, as opposed to CETC,
benefits for digital implementations, which leads to additional
difficulties. Because the triggering rules are continuously eval-
uated in CETC, properties, which are essential to guarantee
stability, are ensured at all times. This is no longer the case
in PETC, as the triggering criteria are only checked at some
sampling instants and may, therefore, be violated between two
successive sampling instants. As a result, our approach requires
a new hybrid model, a different set of assumptions, as well as
a novel hybrid Lyapunov function compared to [4]. Note that
CETC as proposed in [4] relies on time regularization, as the
triggering criterion is evaluated continuously after a fixed wait-
ing time has elapsed since the previous event. This is different
from PETC as done in this paper, as the triggering conditions
here are evaluated only at some sampling instants, which fa-
cilitates digital implementations. Compared to [9, Ch. 6.5] and
[17], the results are applicable for decentralized output-feedback
control, tolerate the presence of exogenous disturbances, and ex-
plicitly reveal a link between the triggering conditions and the
sampling instants. Compared to [18], we consider exogenous
disturbances, a decentralized scenario, we do not restrict our
attention to nonlinear systems with a specific structure, and we
ensure asymptotic stability in the absence of perturbations. Con-
ference versions of this paper can be found in [23] and [24]. In
particular, a centralized full-state-feedback PETC is provided
for disturbance-free systems in [23], and a centralized output-
feedback control for systems implemented on a single network
is studied in [24], where only input-to-state stability results are
provided.

To summarize, our work leads to the following contributions
on PETC:

1) a generic design framework of triggering generators
for nonlinear systems, which is applicable for output-
feedback control, as well as in the presence of exogenous
disturbances;
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2) decentralized PETC strategies over multiple asyn-
chronously operating networks, for the first time to the
best of our knowledge;

3) a novel hybrid Lyapunov function is constructed to in-
vestigate stability properties of the system;

4) even in the particular case of linear systems, the results
extend those in [8], [13], and [14] to decentralized output-
feedback control.

The rest of this paper is organized as follows. The notation
and preliminaries on hybrid systems are given in Section II. We
state the problem and present the hybrid model in Section III.
The main results are provided in Section IV and applied to
a class of globally Lipschitz nonlinear systems in Section V.
Simulation results for a nonlinear system are given in Section VI,
and conclusions are provided in Section VII. The proofs are
postponed to the Appendixes, where technical lemmas are also
provided.

[I. PRELIMINARIES

Let Z~o:={1,2,...}, Z>y:={0,1,2,...}, R:=(—o0,
oo)and Rsq := [0,00). Forkg € Z>gandT' C Zsg, ko + T :=
{ko + k : k € T'}. For sets A and B in a universe U, A\ B :=
{reU:x€Aand x ¢ B}. Let 0, and 1,,, n € Z~, be the
n-dimensional vector, for which elements are all zeros and ones,
respectively. Let 0,,«,, and I,, »,, be the square zero matrix and
the identity matrix of dimension n, respectively. Let || denote
the Euclidean norm of the vector x € R". Let A, (P) and
Amax (P) stand for the minimum and maximum eigenvalues of
real symmetric matrix P, respectively. Forx € R" andy € R™,
(z,y) stands for [z7, y*]7. Given a set A C R" and z € R",
we define the distance of = to A as |z]4 :=infycq |z —y|.
A set-valued mapping M : R™ =2 R" is outer semicontinuous
when its graph {(y, z) € R™ x R" : z € M (y)} is closed (see
[22, Lemma 5.10]). A function 7y : R>y — R is of class-/C,
if it is continuous, zero at zero, and strictly increasing, and
it is of class-K, if, in addition, it is unbounded. A function
~v:Rsg X Rog — Rxgisofclass-KCL, if itis continuous, (-, 1)
is of class-KC for each r € R, and for each s € R, (s, ) is
decreasing to zero. The notation (¢, j') < (¢, 7) refersto ¢’ <t
and j' < j witht,t' € Ry and j,j' € Z>¢. For z,v € R" and
locally Lipschitz U : R” — R, U°(x;v) is the Clarke deriva-
tive of the function U at « in the direction v, i.e., U°(x;v) :=
limsup,_, ;0 M This notion will be useful as we
will be working with locally Lipschitz Lyapunov functions,
which are not differentiable everywhere. We omit the defini-
tions on hybrid systems and refer the reader to [21] and [22].

lll. PETC SETUP AND HYBRID MODEL

In this section, we introduce the setup and model the overall
system as a hybrid system. We then formally state the problem.

A. PETC Setup
We consider the plant model
&y = fp(@p, u,w)

(D
Y= gp(7p)

N networks

iw

Plant

Controller

Fig. 1. Block diagram of the setup.

where x,, € R"» is the state, w € R"* is the exogenous distur-
bance, © € R"¢ is the control input, and y € R" is the plant
output. As already mentioned in Section I, we use an emulation-
based design approach. We, therefore, assume that we know an
output-feedback controller

Te = fe(we,y)
2
u = ge(.)

with state x. € R", which robustly stabilizes the origin of
(1) in a sense made precise in Section IV-A. The functions
fp and f, are assumed to be continuous, and g, and g. are
assumed to be continuously differentiable and zero at zero. Any
controller design method can be used to obtain controller (2),
such as backstepping, forwarding, feedback linearization, high-
gain techniques etc.

We consider the scenario, where plant (1) and controller (2)
communicate with each other via multiple networks, as illus-
trated in Fig. 1. In particular, sensors and actuators are con-
nected by N € Z- independently and asynchronously op-
erating networks N7,...,Ny. Let N :={1,2,..., N} and
v:= (y,u) € R™ ™"« For simplicity of exposition, we as-
sume v = (vy,...,vy) (after reordering, if necessary), where
v, 1 € N, corresponds to the sensors and the actuators whose
signals are transmitted through network ;.

A local event-triggering generator generates the sequence
of transmission instants for each network N, i € N, in the
following manner. A triggering condition is evaluated at each
sampling instant s;, i € N, j € Z>g, where

g < sl — s < T, 3)
with 7; > 0 the upper bound on the intersampling times and
e; € (0,T;] the minimum time between two successive evalua-
tions of the triggering condition. Note that each network has its
own sequence of sampling instants, which is not necessarily pe-
riodic or synchronized with the other networks. Consequently,
the sequence of transmission instants of network N;, which we
denote {t] }« cz.,, is a subsequence of {s)};cz_,, and two
successive transmissions are spaced by at least €; units of time
in view of (3), thereby avoiding the Zeno phenomenon. Param-
eter ¢; reflects the minimum achievable transmission interval
given by the hardware constraints. Note that £; can be chosen
arbitrarily in the set (0, 7;]. In fact, the stability and performance
results below apply for any ¢; € (0,7;]. In practical, &; > 0 is
determined by the hardware constraint. We assume that trans-
mission delays and quantization effects are negligible. Each
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transmission generator consists of a triggering law and a
scheduling rule. We need to introduce some variables before
presenting those.

We denote by @ the networked version of w available to plant
(1). Similarly, controller (2) has access to gy, the networked
version of y. We let © be the networked version of v and we
partition it as (01,...,0y) in the same way as v is. Thus, ¥;,
i € N, is related to the network N;. Between two successive
transmission instants, 9; is governed by

O = fu, (0, 9p (), ge(xc)), t € (s},s}H) ,jE€ELsy, i €N
) )
where f,. is the holding function corresponding to network
N;, and we define ﬁ = ( ﬁ,l s fL\ ). Zero-order-hold de-
vices correspond to fl, = 0 for instance. Other holding func-
tions can also be envisioned, like model-based ones (see, for
example, [5]). Before modeling the dynamics of ¥, i € N, at
each sampling instant sé—, we introduce the vector of network-
induced errors e¢; := 0; — v; € R"i, where n., € Z~ satis-
fies Zivzl ne, = ny +n,. Hence, n,, is the number of sen-
sor/actuator signals associated with network N;.

At each sampling instant s}, j € Z>o and ¢ € N, a function
T, : R"i xR X Z>y — ]R is evaluated, which depends on
v;, ¥;, and an auxiliary variable x;, which counts the number of
transmissions over network A;. The expression of Y; will be
given in Section IV-B. A transmission is triggered depending on
the sign of Y';, which leads to the update law for v; given by

{Uz +XZ el( ) KZ(SJ))}
when Ti(e ( ) vi(sh), ml(s ) >0
{0:(s7)}

when Y, (e; (s ©)

vi(s) ) € ), 0i(s), i) < 0
{0(83) ( )"'Xt(@?( )'%Z<SJ))}
when TZ-( i (s ) ”Uz(S )s i (8 )) =0

where y; models the scheduling protocol corresponding to net-
work A;, such as the RR! or TOD protocol,2 or the so-called
sampled-data protocol for which x; = 0 when the network is
composed of a single node. Expressions of y; for various pro-
tocols are available in [20] and [25], and the cases of RR and
TOD are provided next for completeness.

Example 1 (TOD protocol): Let i € N and ¢; € Z~ de-
note the number of nodes of N network. TOD protocol is
modeled as x;(e;) == (I — Vi(e;))e;, where W;(e;) := diag
{7/’1( ) n ><7L1' ) 7»02( )Inl2 Xnho o 7U)é ( ) rLI ><n } The func-
tions 1/12 satisfy 1;2 (e;) =1 when s = mln(arg maxje{l,“__’ B
le%]) and 9, (e;) = 0 otherwise, for s € {1,2,..., £} [ |

Example 2 (RR protocol): The RR protocol has the form

of x;(ei, #;) = (I — A;(ki))e;, where A;(rk;) = diag{d] ()
In,’l xn' 05 (K )In’ Xnbyte s 5@, (’ii)Ingi xny, b 52 (ki) =1 for
s€{1,2,...,4;} whens — 1 = x; mod ¢; and 6 (k;) = 0 oth-
erwise. |

IThe RR protocol assigns access to network in a predetermined and cyclic
manner.

2The TOD protocol gives access to the node with the largest mismatch be-
tween the current signal value and the last transmitted one.

Let ¢; € Z~ be the number of nodes of network N;, and
v; and ¥; are, respectively, partitioned as (v; 1,...,v; ), and
(Vi1s--.,0i0 ) (after reordering these, if needed), where Vi
and ¥; j, j € {1,...,¢}, denote a group of sensors or/and
actuators associated with the same node on Nj. In view of
(5), when T;(ei(s}),vi(s}), n,( %)) >0, a transmission oc-
curs over network J\/- at time s and the scheduling protocol
grants access to the network to a single node, say the kth
node with k € {1,2,...,¢;}. Then, @,i,k(sjw = vj 1 (s}) and
Vim (s}+) = 0j . (s}) for all m e {1,2,...,4}\{k}. When
T; (ei(s}), vi(sh),ki(s))) <0, no transmission occurs and
k; and the complete vector v; remain unchanged. When
T; (ei(s5), vi(sh), ki(s))) = 0, the model allows two possibil-
ities: either a transmission occurs or not. This construction en-
sures that the jump map in (5) is outer semicontinuous, which
is essential for the hybrid model presented below to be (nomi-
nally) well-posed (see [22, Ch. 6] for more details). Note that
the transmissions over the N networks are independently gen-
erated; as a result, several transmissions can occur at the same
time, but over distinct networks.

We are almost ready to model the overall system. Before
that, we need to write the dynamics of the network-induced
errors. Letz := (z,,z.) € R"* andn, := n, + n.. We deduce
from (5) that the variable e; has the following dynamics at
jumps:

ei(s;~+) € h; (x(sqj),e,(slj),m(sj)) (6)

where

hi(z, e, ki) = (1= Ty(es, vi, 5:))ei+Tiler, vi, ki) xi (€5, ki)

)

andT; : R" x R" x Zso = {0, 1} in (7) indicates whether
a transmission occurs. Based on the discussion above (5),
Ti(ei,vi, ki) = {1} when Y;(e;,v;,k;) >0, which corre-
sponds to a transmission and h;(x,e;, k;) = x;(e;, K;) in this
case. When Y;(e;,v;, ki) <0, T;(e;,vi, k) = {0}, and this
corresponds to no transmission and h;(z,e;, k;) = e;. When
Y;(e;,vi, ki) = 0,T;(e;,v;, ki) = {0, 1} covers the above two
possibilities. In agreement with [20], we call (6) the profocol
map. We see from the right-hand side of (7) that ; depends on
v; and not on the complete vector of x. Writing

vi = g, () ®)

since v; is composed of components of y and w, which depend
on z in view of (1) and (2), we make h; depend on x and not
v; in (7), for the sake of convenience. We note that h; depends
on the state = contrary to [20], [26], and [27], which will have
important consequences on the stability property and analysis
of the protocols compared to the latter references (see Remark
3 in Section IV-B).

B. Hybrid Model

We model the overall system as a hybrid system using the
formalism of [21] and [22] so that we can resort to the analyti-
cal tools of [21] and [22] to study the stability properties of the
system. We introduce for this purpose clock variables 7; € R>¢
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fori € N to keep track of the time elapsed since the last evalu-
ation of the triggering criterion of network N;. Thus, 7; and x;,
the transmission counter of network A;, have the dynamics

f=1

T;_ =0
ki € ki + (e, v, ki)

when 7; € [0, T;]

when 7; € [Ei,zﬂ

where I'; is introduced after (7). Let 7:= (7,...,7n)
and s := (ky,...,5y). We model the overall closed-loop

system as
¢=F(qw), q€C ©
q" € G(q), qeD
where ¢ := (z,€,k,7) € X := R" x R" x ZV¥ x RN
C:=R" xR"™ xZ¥ x Ty x --- x Ty
N )
D= !1 D; 10,

D; :==R" x R"™ x Z% x Ty x -+ x Ti_y x [g, T3]
X Tig X+ x Ty

and T; :=[0,7;]. The mapping F in (9) is defined as: for
qeC, F(qw):=(f(z,e,w),g(x,e,w),0y,1y), where
f(@,e,w) = (fp(xp, g (@) + eu, w), fe(@e, gp(2p) +€y))s

gz, e,w) := (g1 (z,e,w), ...

)
Gi (xa ¢, w) = fr,, (gv, (.’E) + éi, v, (.’E)) - fv, (.’t, ¢, w)

forlre,) = 2 e, w)

, gn (z,e,w)), and for i € N,

an

with f,, gy, fe, Ges f“ ,and g,, coming from (1), (2), (4), and (8),
respectively. The set-valued mapping G is defined, for ¢ € &,
as G(q) := U}, Gi(q) with

Gi(q) =
T
Hi(w,e, ) _ when g € D;
k+Tiler, z, ki) A\; "(12)
AT
0 when ¢ ¢ D;

where A; € RV>*N and A; € RV*Y are diagonal matrices; for
the former, the diagonal elements are 1 except the ith one, which
is 0, and for the latter, the diagonal elements are 0 except the
ith one, which is 1. Hence, A; + A; = Iy« . The function
H; R x R" x ZY) — R is defined as H;(z,e, k) =
(61,62, ey ei,1,hi(x, €, Iii), Citly---y 6N>, where hz comes
from (7). The map G; describes how e jumps when a transmis-
sion occurs over network N;: e; is updated to h; (z, €;, K; ), k; is
incremented to x; + 1 when the local generator triggers a trans-
mission; otherwise, it keeps the same value, and 7; is always reset
to 0 after a jump. The function G; keeps z, e;, 5, 7; unchanged

for all j € N\ {i}. In model (9), simultaneous transmissions
over different networks are modeled by successive jumps with
no flow in between.

C. Problem Statement

Our objective is to design the local triggering generators,
namely Y; and 7}, i € N, to ensure either input-to-state stability
or L, stability properties for system (9), as defined next.

Definition 1: Set S C X is input-to-state stable (ISS) for
system (9) if there exist § € KL and ¢ € I such that any so-
lution pair (¢, w) satisfies® [p(t, 5)|s < B(|¢(0,0)|s,t + j) +
¥ (|Jw]|o) forall (¢, j) € dom . We say that S is exponentially
ISS with a linear gain when (3(s1, s2) = ks exp(—csy) and
¥(s) = s for some k, ¢,y > 0 and for sy, s9,$ > 0. [ ]

We define £, stability with respect to output z := n(z, w),
which may correspond to y or not.

Definition 2: System (9)is L, stable from w to z with respect
to set S C A with gain less than or equal to 0, if there exists
7 € K such that any solution pair (¢, w) satisfies*||z[|;, <
3(1(0,0)]) + ][], 7

IV. MAIN RESULTS

In this section, we first state the assumption we make on the
closed-loop system (1), (2) and the scheduling rule, based on
which we construct the triggering condition T'; and the bound
on T}, for i € N. We then present the stability guarantees.

A. Assumptions

We assume that each e; system in (9) satisfies the following
properties.

Assumption 1: Foreachi € N, there existalocally Lipschitz
function W; : R"¢i X Z>y — R, a continuous function H; :
R™ x R™ x R"™ — R, gy, , aw, € Ks, pi € [0,1), and
Ly, > 0 such that the following hold.

i) For any e¢; € R" and K; € Z>o, agy, (ei]) < Wiles,
ki) < aw, (|ei])-

ii) For any (e;,z,K;) € R x R" X Z=o, W;(xi(es,
ki), ki + 1) < piWi(ei, Ki).

iii) Foralmostalle; € R"<i,allk; € Z>p and (z,w) € R"=

x Rie, (Pt g (o e, w)) < L, Wiler, ki) +

H;(x,e,w) with g; coming from (11).

|

Items (i) and (ii) are exclusively related to the scheduling pro-
tocol implemented on network ;. Indeed, these items state that
the protocol is UGAS (see [25, Definition 1]). These conditions
are always satisfied for the sampled-data case and RR and TOD
protocols for which expressions of W; are available (see [20]).
Then, given W;, item (iii) of Assumption 1 essentially requires
that W; exponentially grows on flows. Such a property is natural,
as the e; system is typically unstable between two transmission
instants. Item (iii) of Assumption 1 is always feasible when W;

3See the definition of ||w||~ in [21].
#See the definition of ||w||, in [4].
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is globally Lipschitz in e; uniformly in x;, and g; satisfies a
linear growth condition for instance (see [20, Remark 11]).

We assume that controller (2) has been designed to robustly
stabilize system (1) in the following sense.

Assumption 2: There exist a locally Lipschitz function V' :
R" — Rxq, ay,ay,ay € Ko, locally Lipschitz functions
9; : R"i — Ry satisfying 6;(0) = 0, and continuous func-
tions ay : R" x R" x R" — R and J; : R"* x R™ x
R" — Rsg,7 >0, Ls, €R, 7 € N, such that the following
hold.

i) Forall z € R", oy, (|2]) < V(2z) < @y (Jz|).

ii) For almost all z € R"™ and all (e,w) € R" x
R, (VV(2), f(z,e,w)) < —ay (2, €,w) + i,
(VW2 (ei, ki) —ﬁf (x,e,w) — J;(z,e,w) — 6; (v;)),
where W; and ﬁ, come from Assumption 1.

iii) Foralmostallz € R" andall (e, w) € R x R™"» (V
8 (vi), fo, (z,e,w)) < L, 8; (v;) + H (x,e,w) + J;
(z, e, w) with f,, coming from (11). |

Assumption 2 states properties of the closed-loop system (1),
(2), and it neither requires any knowledge on the network nor
implies the stability of (9). Indeed, variable e is here understood
as a generic perturbation affecting (y, u). To verify whether As-
sumption 2 holds, we simply have to take the Lyapunov function
V' used to ensure the stability of (1) and (2) in the absence of
network and study whether the required conditions are verified.

The function &y, in Assumption 2 will be taken in the follow-
. ~ N
ingas @y (z, ¢, w) = av (|]) + aw (el) — Y, ov.i(fwl]) for
some ay , aqgy, ov,; € Ko, ¢ € N, when investigating input-to-
state stability, and as ay (x,e,w) = —p(6?|wP — |2|P) with
> 0,0 > 0, when studying £, stability. Item (ii) of Assump-
tion 2 means that either the origin of (1) and (2) is ISS with
respect to input (e, w) or system (1), (2) is £, stable from w to
z. These types of conditions are natural as we approach the prob-
lem by emulation, that is, the original closed-loop system needs
to satisfy some robustness properties to cope with the errors in-
duced by the network, as does any nonlinear controller, which is
implemented in practice. But again, this does not mean that (9)
satisfies desired stability properties because the e system is typ-
ically unstable. Similar assumptions as item (ii) of Assumption
2 are often made in the literature on NCSs; see, e.g., [4], [10],
and [28], where examples of systems satisfying these conditions
are provided. The functions ¢; in Assumption 2 will be used to
define the local event triggering condition. Item (iii) is an expo-
nential growth condition of §; on flows, where the function J;
is used to collect the redundant terms when we bound the norm
of the derivative of §; (v;) with Ls, 6; (v;) + H? (z, e, w).

We show in Section V how to satisfy Assumptions 1 and 2
for a class of globally Lipschitz systems. A nonlinear example,
which is not globally Lipschitz and satisfies all the required
conditions, is provided in Section VI.

Remark 1: Assumptions 1 and 2 may be verified by systems
subject to model uncertainties. Indeed, these Lyapunov-like con-
ditions do not necessarily require a precise model of the plant
to checked, as will be illustrated in Section VI. |

Remark 2: Assumptions 1 and 2 impose conditions on the
class of systems to which the results apply. It is possible to

relax these assumptions to only hold in a given compact set. In
this case, the forthcoming results can be adapted to derive local
stability properties, at the price of more technicalities, which
we do not present in order not to blur the main message of this
paper. |

B. Local Triggering Generators

We exploit Assumptions 1 and 2 to design the triggering
generators and T;, i € N. We define Y; in (5) as, for v;,e; €
R" and Kk; € Z>o,

Ti(eiavi?K’I) _%W (eu’ﬁ) )‘iﬁi(si(vi)

where 7, := max{p;, 1JX,AL[3, } >0 with p; and W; coming

(13)

from Assumption 1, Ls, € R, ~; > 0, §; coming from Assump-
tion2,and A; > Oisadesign parameter. The triggering condition
(13) is similar to those proposed in [3], [4], [10], and [11] for
CETC in different contexts. Note that p; in (13) depends on
p; and thus on the scheduling protocol. The mapping T; only
depends on the local variables e;, v;, and «;, and not the whole
state ¢, which is essential for the envisioned setup and for the
decentralized implementation of the triggering rule.

We select A; in (13) such that ; < A7, where A is defined as

min < 1, )
{ L6 +’71}
Al

when Ls, < —v;

(14)
when L5, > —;.

Given A; € [0,17), we select T; defined after (9) such that
T, < Twvasp. Z( ), where TMASP Z( 2) is the MASP of network
N; and is defined as

L7 arctan(v;),  when~; > Ly,
1 1-7
ThiAs i )\,1 = — 72, when i:L
MAsP,i (i) Tw 117, ¥ W,
arctanh(v;), when~; < Ly,
W, T
(15)
where p; is defined above, r;:=  /[(7=)* — 1|, ¥; =
117 (Lil _ﬁ11>)+1+p ,and Ly, > 0 and y; > 0 come, respec-

tively, from Assumptions 1 and 2.

The bound in (15) depends on the triggering parameter A;.
More precisely, the bound is decreasing in ;. In other words,
the larger the A;, the smaller Tyiasp ;(A;) and vice versa.

Remark 3: The local event-triggering condition in (13) en-
sures that the protocol equation (6) is ISS with respect to v;
(see [29, Definition 5.3]). In particular, in view of the defini-
tion of Y'; in (13) and item (ii) of Assumption 1, a transmission
is triggered when W (e;, k;) > \/A;p;0; (v;)/~:, which ensures
that W; (xi(ei, ki), ki + 1) < piWi(ei, K;), where p; € [0,1),
for any v;,e; € R"¢i. Although the actual protocol equation
(6), which is implemented, is ISS, the scheduling rule it-
self, which is modeled by x; and decides which nodes gets
access to the network, is UGAS in view of items (i) and
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(ii) of Assumption 1; see the definition of UGAS protocols
in [20, Remark 7]. [ |

Remark 4: When A; = 0, i € N, the triggering function Y;
is always nonnegative. Consequently, transmissions occur at
every sampling instant according to (5). We then recover the
time-triggered results of [28], in particular the bound on the
maximal allowable transmission interval is the same when a
single network is used, and there are no disturbances, i.e.,w = 0,
as well as those in [27] when the network consists of a single
node. |

C. Input-to-State Stability

We are ready to state the next result about the input-to-state
stability of system (9).

Theorem 1: Consider system (9) and suppose the following
hold. _

1) Assumption 1 holds with H;(z,e,w) = H;(z,e) +
ow, (Jw|) for some continuous functions H; : R"" x
R" — R and g, € Ko, i € N.

2) Assumption 2 holds with ay(x,e,w) = ay (|z]) +
aw (le]) = SN ov.i(Jw]) for some ay, aw, oy, €
K. € N.

3) For each i € N, let A; € [0,A}) and T} € [g;, Thiasp
(Ai)), where 17 and Tyasp ; (A;) are defined in (14) and
(15), respectively.

Then, the set A:={qe CUD :z2=0,e=0,k; € Z>o,
7 € [0,T;],i € N} is ISS for system (9).

Theorem 1, whose proof is given in Appendix A, shows that
set A is ISS for system (9). This implies that: 1) z and e globally
converge to a neighborhood of the origin, whose “size” depends
on the norm of the disturbance w; and 2) the set A is UGAS
[22, Definition 3.6] when w = 0.

Remark 5: Theorem 1 relies on small-gain techniques. The
general idea is that the x-system is assumed to satisfy an ISS
property with respect to (w, Wi (e1, %1),..., Wy (en,kn)) on
flows according to items (i) and (ii) of Assumption 2, and re-
mains constant at jumps. On the other hand, Assumption 1 leads
to an ISS property of the e-system with respect to (z, w) as well,
as shown in [20, Proposition 6], thanks to the definition of the
event generators. Then, by carefully selecting the triggering
conditions and 7;, the small-gain condition applies, and the de-
sired result is obtained. While the connection with small-gain
techniques is easier to see in the case where the controller is a
state-feedback law and there is only one network as in [24], the
fact that output-feedback control is addressed and the decentral-
ized scenario we investigate prevent us to directly apply existing
hybrid small-gain results. That is the reason why we propose a
completely novel hybrid Lyapunov construction in the proof of
Theorem 1. |

Tailored results can be derived from Theorem 1 either under
stronger conditions or for more specific implementation setups.
Thus, an exponentially ISS property is obtained by strengthen-
ing the conditions of Theorem 1 as stated next, whose proof
follows directly from the proof of Theorem 1 and is, therefore,
omitted.

Corollary 1: Consider system (9). Suppose that items
1) and 2) of Theorem 1 are satisfied, and there exist
ayy,aw,, 4y, ay,ay,ay > 0,7 € N, such that Assumptions
1 and 2, respectively, hold with ay (s) = ay, s, aw, (s) =
aw, s, ay(s) =ays?, ay(s)=ays, ay(s)=ays?, and
aw (s) = ay s* for s > 0. Then, the set A defined in Theo-
rem 1 is exponentially ISS with a linear gain. ]
When a single network is used and the state of plant z, is
available for control, i.e., y = x,, in (1), we can relax Assump-
tion 2 and modify the triggering condition. Since we consider
only one network here, only one triggering generator is needed.
We, therefore, use the notation Y to define the triggering condi-
tion, and x to denote the scheduling rule. As we need to specify
the expressions of H; and J; in Assumptions 1 and 2 for this
special case, we rewrite those conditions here as follows.
Assumption 3: There exist locally Lipschitz functions V :
R" — Rspand W : R" x Z>y — R>( with V and W posi-
tive definite, oy € K, and continuous functions ayy : R™* x
R™ x R — Rzo, p e [0, 1), ay,y>0,and Ly,Ly >0
such that the following hold.
i) Forany (e, z, k) € R" X R" x Z>o, W(x(e, k), Kk +

1) < pW (e, k).
ii) For almost all e € R", all kK € Z>y and (z,w) €
R™ x R"v, (W,g(z,e,w» < LyWi(e, k) +

Ly /V(2) + ow (Jw]).
iii) For almost all z € R"* and all (e,w) € R™ x R™,
(VV(2), f(z,e,w)) < —ay V(z) — ay (z,e,w) + +*
W2 (e, k). |
We define the single triggering condition T, as, for (z,e) €
R" x R" and k € Z>y,
Y(e,z, k) = YW?(e, k) — ApV (x) (16)

where p := max{p, %} We select A such that A < A* with

A= min{l,av}.
Y

For each A € [0, %), the MASP Tyiasp (1) is defined as

A7)

Tor arctan(d),  whenyLy > Ly
Taasp (A) := ij :_7;7 when yLy = Ly
arctanh(¢), when~yLy < Ly

wr (18)

where 7 is defined below (16), r := | /|(755—)? — 1], 9 :=

T(21 —p)
20 (- T )14
from Assumption 3. The MASP in (18) is different to (15),
since extra parameters Ly > 0 and ay > 0 are introduced in
Assumption 3, and it is consistent with (15) when L%/ Jay = 1.
We can state the next theorem.
Theorem 2: Consider system (9). Suppose that Assump-
tion 3 holds with ay (x, e, w) = aw (le|) — oy (Jw|) for some
aw, v € Ky from Assumption 3. Let A € [0,A%) and T <

, Ly ,Ly >0, and ay,v > 0 come
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Thmasp (1), where A* and Tyasp(A) are defined in (17) and
(18), respectively. Then, set A defined in Theorem 1 is ISS. B

Theorem 2 extends the main result of [23] to scheduling and
allows considering exogenous disturbances acting on the plant
and [24] to scheduling. Note that the conditions in [24], which
are parallel to Assumption 3, are slightly different, where p = 0
and H;, J; are not specified as in Assumption 3.

D. L, Stability

We now consider the input-to-output stability of system (9)
from w to the output z = n(x, w).

Theorem 3: Consider system (9) and suppose the following
hold.

1) Assumptions 1 and 2 are verified with ay (z,e,w) =
— (0P |w|P — |n(x,w)|?) for some y, 6 > 0.

2) For each i € N, let A; € [0,A) and T} < Taasp.i (i),
where A7 and Tyasp ;(A;) are defined in (14) and (15),
respectively.

Then, system (9) is £,, stable from w and to z with respect
to the set A defined in Theorem 1 with gain less than or equal
to 6. |

Like in Section IV-C, we derive a tailored result for the case,
where a single network is used and y = x,,. Its proof follows
from the ones to Theorems 2 and 3 and is, therefore, again
omitted.

Theorem 4: Consider system (9). Suppose that Assumption
3 holds with oy (z, e, w) = —p(6? |lw? — |n(x,w)?) for some
w0 > 0. Let A € [0,1*) and T < Tyrasp (%), where A* and
Tymasp (1) are defined in (17) and (18), respectively. Then, sys-
tem (9) is £, stable from w and to z with respect to the set A
defined in Theorem 1 with gain less than or equal to 6. |

V. CASE STuDY
A. Setup and Hybrid Model

We consider nonlinear systems of the form

&, = Apzy + Byu+ Dyip(zy) + Epw (19)
y=Cpayp
where x, € R"» is the state; u € R" is the control input;
w € R™ is the external disturbance; y € R"v is the mea-
sured output; A,, B,, C,, D,, and E, are matrices of appro-
priate dimensions; (A,,B,) and (A4,,C,) are assumed to be
stabilizable and detectable, respectively; and ) : R"» — R"r
satisfies 10(0) = 0 and |¢(z1) — P (x2)| < L|xy — 22| for all
r1, 29 € R with constant L > 0, where n, € Z-. 0.
We focus on observer-based controllers of the form

i, = Apz. + Byu+ Dpp(x.) — M(Cprz. — y)

(20)

where z. € R"™ is the state estimate, and M and K
are matrices of appropriate dimensions such that A4; :=
[ 1»}45” A+ Bf IKIiH Cp] is Hurwitz, which is always possible,
since (A,,B,) and (A,,C,) are stabilizable and detectable,

respectively.

u= Kz,

We consider the scenario where the plant and the controller
communicate via N independently operating networks, as de-
scribed in Section III. Zero-order-hold devices are used so that
f,, = 0 as defined after (4). Each network is scheduled by an
arbitrary uniformly globally exponentially stable (UGES) proto-
col, whenever the local triggering rule is satisfied. Hence, items
(i) and (ii) of Assumption 1 hold with WW; : R"¢i X Z>¢ — R,
pi €10,1), aw, (s) = aw, s, ayy, (s) = ay, s, i € N, for some
aw, > ay, > 0andall s > 0, which depend on the considered
protocol. We further assume that there exists wo; > 0 such that
|W| < w; foralmostall e; € R"*i and k; € Z>(, which
is the case for the sampled-data case and RR and TOD protocols
according to [20, Section V].

Let z = (zp,2.) € R"™, v=(y,u) e R™, e=(0—v),
ng =mny + ne, and n, =n, +n,. We write v:=Cz, C:

[CO" IO(] € R *" and

v = 62510 eR"™i i€ N 21

be the ith element of v associated with network N; with C; €
R"i %" Definee, := 9§ —y = Cye, e, = —u= Cye, with
appropriate matrices C,, € R"»*"* and C,, € R"+ "<,

In this case, the hybrid model (9) is given by

Ayx + Bie + Diy(z) + Ew
Aoz + Boe + Dath(x) + Eyw

- Oy T
1y
gt € Glg), g€ D
where
q=(z,e,K,7), B := f;g: D1 = [Dop l;)p ’
CiA
&= || B = W) ) A== |1
Cn Ay
CB; C1Dy
By := — : Do o= — : ’
CnBy CnDy
and
Ci&
& = — :
Cn&

The flow and jump sets C' and D are defined after (9), and the
jump map G is given in (12).
B. Input-to-State Stability

Before stating the main results of this section, we need to
introduce some notation. For any 7 = (7, ..., 7y ) € RY, we

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 17,2021 at 17:40:06 UTC from IEEE Xplore. Restrictions apply.



628 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 65, NO. 2, FEBRUARY 2020

define

U(r) = diag{ﬂ'llm1 s NIy, b e RN, (23)

Let

\I/i = dlag{()npl PUTPR

aongiil XNe, 4 7Inei XMe, s

Ne XN
0 s 0p,  xn,,, } € R

Mejpg XMejpg 2

By = CiBi (I,

— ;) e R™i "™ j €N,
and

B?l

)

- e XMNe
By := eR R

Ba, n

where C; comes from (21).

The next proposition states that all conditions of Corollary 1
hold if the LMI in (24) is satisfied.

Proposition 1: 1If there exist a positive-definite symmetric
matrix P, av,aw,é&w[ 6 >0, w; > ay, and v; > ay +
@?|Bs.i|?, i € N, such that the following LMI holds:

211 * *
o1 Y99 * | <0 (24)
Y31 gQT\I/T (W)W(W)EQ Y33

where U is defined in (23), w:= (wi,...,@wN), €:=

(61,. . .,GN), 211, 221, 222, 231 and 233 are given in Ta-
ble I . Then, Assumptions 1 and 2 hold with the data given
in Table I. |
Animmediate consequence of Proposition 1 is that the set A =
{qeCUD :2=0,e=0,k; € Z>o,7; €[0,T}],i € N} isex-
ponentially ISS with a linear gain for system (22) according
to Corollary 1 by suitably defining A; and 7;, as Proposition 1
ensures the satisfaction of all the conditions of Corollary 1.

C. L, Stability

We now consider L stability for system (22) using Theorem
3, with respect to the performance output z := C.x + D, w.

We can follow the proof of Proposition 1, provided in Ap-
pendix A, to show that the conditions of Theorem 3 hold.

Proposition 2: 1If there exist a positive-definite symmetric
matrix P, 11,0, ¢;, ay, > 0,w; > ay,andy; > @?|By ;|0 €
N, such that (24) holds. Then, Assumptions 1 and 2 hold with
the data given in Table L. |

Based on Proposition 2, system (22) is £, stable from w to
z with respect to the set A with gain less than or equal to ¢
according to Theorem 3, when A; < Af and T; < Thiasp i (i)
with A} in (14) and Ty asp ;(A:) in (15).

D. Special Cases

When % in (19) only depends on the output y, not the state x,,,
and D, = B, condition (24) slightly differs and can be shown
to always hold as formalized next.

Lemma 1: Consider system (19) with ¢ (y) instead of ¢(z, ),
and D, = B,. Let D; := " ] and replace ¢(z) in (22) by
P(y,e) = [w(”)ﬂg(y”” )]. Then, there exist a positive-definite
symmetric matrix P, ay,ay , 9~, ay.,€ >0, @w; > ay., and
v; Z ayw —|— L2|D1 |2 ‘P‘Z/CLV —|— wf |Eg‘i|2 —|— E?L2 ‘éipl |2 —|— 2
@?(L*|CiDy|? + L|C;Dy||Ba.i]), i € N, such that (24) holds
with 31, ¥31, and X33 from Table I and ¥ := AT P +
PA + AT (97 (V20) ¥ (vV2w) + U7 () ¥ (€))As + 2av Iy,
+ T UT()V()T,  Soy i= —U(v) + (aw + LDy 2| P2/
ay )1, + Ba U7 (@) U(w)Ba+ 07 (eL|Ds|) U (eL|Dy|)+ 7T
(k@)W (ko) with k* = 202Dy | + 2L|Dy|Bs|. As a result,
Assumptions 1 and 2 hold with the data from Table I except
that Hl(x, 6) = wL(|61A1£L' +BQ_’1'€| —+ L|€ZD2||€ ), ’}/22 =
(Vl' — (G,V[/ + L2 |D1 |2|P|2/av + W? |Bg_i|2 + 6?.[/2 |62D1 |2 +
2w} (L*|CiD1 > + LIC: D1 ||Bai))) /iy, . i@, e,w) =€
(AT} Tidi| + [CiP)laf? + L2[CDilef?) + 2627 T;
Ci(Bre + &w)|. [ ]

It is important to note that Lemma 1 covers linear time-
invariant systems as in this case ¢)(y) = 0. In other words, the
proposed approach can always be applied to stabilizable and
detectable linear time-invariant systems.

VI. ILLUSTRATIVE EXAMPLE

In this section, we provide an example of a nonlinear sys-
tem, which is not globally Lipschitz contrary to the systems
addressed in Section V, to which our results apply. The control
system consists of two coupled plants P, and P,, whose origin
is unstable, as in [4, Section VILB]. The plants P, i € {1,2},
are modeled as

T :dlx%—x:{’—i—xg +u; +w
1 (25)
Yy = X1
j:gzdgx%—a:‘;’—i—ml—i—w +w
Y2 = T3

where x; € R, i € {1,2}, is the state of subsystem P;, y; =
x; 1is its output, di,dy € R are unknown uncertain parameters
(potentially time-varying) verifying |d;| < 1 and |d»| < 1, and
w € R is the exogenous disturbance. For each subsystem, its
own controller is collocated with the actuator and is given by
U; = —Qyi.

We consider the case where the output measurements
of y; and y» are, respectively, transmitted via two inde-
pendently operating networks, A7 and A, and received
by the controller as ¢; and go, as illustrated in Fig. 2.
Zero-order-hold devices are used to implement the con-
troller, and this gives ﬂ, =0, as defined after (4). Let
e =11 —y1 and es = ¢ — yo be the networked-induced
errors (there is no need to introduce @ — u since the controller
is static), « = (x1,22), and e = (e1,e2). Let 7= (11,72)
with 71,79 € R>. Note that k € Z>( in (9) is irrelevant here,
since both networks have only one node. We obtain system
(9) with ¢ = (z,e,7), F(q,w) = (f(e,z,w), g(e, z,w),1,1),
flx,e,w) = (diax? — 23 + 29 — 2(21 +€1) + w,dyx3 — 23
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TABLE |
EXPRESSION OF FUNCTIONS AND PARAMETERS IN SECTION V

Proposition 1/Lemma 1

Proposition 2

AT P+ PAy + ay Iy, + D3 9" (V2wL)¥(V2wL)D;
+2L[D1|P + AT (U7 (@) ¥(w) + W7 () W(c)) Az

ATP+PA; + DI 0T (wL)W(wL)Ds
+2L|D1|P + AT (9T (@) ¥ (w) + 0T () ¥(c)) AT

T = +DIUT (VoLw)U(V2Lo) As +DF ¥ (V2Lew) ¥ (v/2Lew) g
+CT 0T (e/2L[D1| + 1) (ey/2L[D1| + 1)C +C W7 (/20D ] + 1)W(ey/2L|D1| +1)C + pCT C.
Yo BIP + By 07 (w)U(w) Ay + BLUT (e)W(e)C BYP + Ba 07 (w)U(w) Ay + BLUT (e)W(e)C
Yoo 1= —(¥(v) —awln,) + By VT (@)¥(w)Bs —U(v) 4 B3 U7 () ¥ () B B
Y3 = ETP+ &5V (w)W(w) Az 4+ €5 W (€)U(e)C ETP 4+ eT0T (w)U(w)Ax + ETUT ()W (e)C + uDT C,
Y33 1= —0I,,, + EXUT (@)U (w)ET — 6%, +uDT D, + ETIT (@)U (w)E
ayy, (s) == Ay, S Ay, $
aw; (S = aw,;s aw,; s
Ly, == wi/ay,|CiB1Y,| @i/ay,|CiB1V;|
Hi(z,e) := Wi(EiAlz + Baie| + LIC;D1|z|) wi(EiAlm+EQ,1‘€+L|61’D1HI|)
ow, (w) = w;|Ci&1]|w| w;|CiE1w|
V(z):= 2T Px 2T Pz
6i(vi) = e lvi? 8i(vi) = € |vs|?
ay (s) == /\min(P)s2 )\min(P)s2
ay(s) = )\max(P)s2 )\max(P)s2
N
1 -
ay(z,ew) = avlz]’ +awle* = > 0w w(|Cza + Dzw|? — 0% |w]?)
1=1 N
vi —aw — w2 |Ba,;|?
Yi = 3
Gy,
e € ([arcTcun|+ 2z elem| ) o & ([arcicum|+ 2 clem| ) o
(e, w) =
+2¢2 mTéféi(Ble + 51w)‘ +2¢2 zTéféi(Ble + Elw)‘
Ls, := 1 1
w Assumption 2. Since 25159 < s% + s% for any s1,s0 € R, we
u, l_l_l u, have that
Y A4
2
> 2 2, 2\.2 2 2
Controller 1 ID1 P2 Controller 2 <VV($)’ f(l‘, & w)> S a (Z[(b tc )ei + 05(b +c )
« i=1
2 6 5 4 3
N N w” 4 (—c+ 1.5)x] 4+ cd;x} + (—=b — 2¢)x; + bd;x;
jyl Y hes y2t<—
> PETC 2
PETC 1 9 3 3
% + (=2b+ 1.5)x7] 4+ 2bxy oy + cxjzy + caxyay ).
N, 2
Noting that 2 <2(s? 4+ s2) for an R
Fig. 2. Control setup of the two coupled systems. & (51 + 52)° < 2(si + 53) Y s, 52 €K,

+x —2(xe +e2) +w), glz,ew)=—f(x,e,w), C,D
defined as after (9), and G(q) in (12), with h;(e;, z) being
defined as h; (e;, ) = (1 —Ti(e;, x))e;, i € {1,2}.

We now verify Assumptions 1 and 2. Let i € {1, 2}, we take
Wi(ei) = |ei|. Assumption 1 holds with oy, (s) = aw, (s) =
s for all s >0, p; =0 (since the networks consist of one
node), Ly, =2, and H;(z,e,w) = |—d;x? + 2} — 23, +
2| + |w|, i € {1, 2}.

To verify Assumption 2, we take d; (v;) = 0.5y7 and cons1der
the candidate Lyapunov function V() = a® 37_, (b— + c—)
for any x; € R, some a,b,c>0 and i€ {1,2}. Since
(Vi (i), fo, (z,e,w)) < =222 + |djz? + w3 — 2200, +
ziw| < —48;(v;) + |dix} — xf + s _| + 227] + |ei]* +
|w|?> < L, 6; (v;) + J;(x, e,w), item (iii) of Assumption 2
holds  with  Ls, = —4, Jj(x,e,w) = |2} + 2,23 +
|2d; 22| + |e?| + |w|?, i € {1,2}. We now verify item (ii) of

flf(z,e,w) <2(—dia? +a} — w3 +23;) + 2w? < 4(—d;
x? + a4 2x;)% + 423 +2w? < 4(af — 2d;x) 45z} — 4d;
o +4a?) 4+ 423, +2w? and J;(x,e,w) < 0.527 + 0.5(z?
+x3-)? +2djx? + €2 +w® <l + 23+ (2d; +0.5)z7 +
e +w?, i€ {l1,2}. We then subtract and add a(z,e,
w) = va? +ve?, §;(v;) = 0.522, H2(z, e, w), and J; (z, e, w)
to get

(VV (@), f(z,e,w)) < —ay(z) — aw (e) + a’p(x)
+ Z Lot (Jw]) = i (vi) — HE (z, e,w)]
+ Z [— Ji(z,e,w) + a®(0* + & +a>(1+v))e] ]
where p(z) := Y7 #2[(=2b+ 1.5+ a 2(21 4 2d; + 1)) +
di(b—16a"2)z; + (— b 2c+21a?)z? + di(c—8a?)x}
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TABLE Il
AVERAGE INTERTRANSMISSION TIME FOR N7 AND A5 NETWORKS

Average inter-transmission time
A1 =0.06 A2 =0.02 | A\y =0.1 X2 =0.09 | A\y =0.15 Xy =0.12
N1 N> N1 N> N1 N>
T1 =0.01 7> =0.02 | 0.068 0.0403 0.0793 0.0781 0.0952 0.08
Ty =0.04 T =0.05 | 0.0971 0.0556 0.101 0.098 X X
T =0.08 T =0.1 0.1103 0.101 X X X X

+ (—c+ 1.5+ 4a2)x}] + 2bxy 29 + caize + 173, OV (S)
= (0.5t + ) +3a2)s? for all s>0. This implies
that item (ii) of Assumption 2 holds with 74 =y =a
Vb2 +c2+a2(1+v) provided parameters a,b,c,v are
such that p(z) <0 for all z € R?>. We take (a,b,c,v)
=(1.7,3.93,2.9,0.01) to ensure p(z) <0 for all x € R?,
which yields 7; = 8.36 and determines the expression of V' (z);
hence, item (i) of Assumption 2 holds.

Note that H;(x,e,w) = H;(x, e) + ow, (|w]) with H;(z,e)
= | —dia? +x} — 23 + 22| and ow, (|w|) := |w| for i €
{1,2},and ay (z, e, w) = ay (|z]|) + aw (Je]) with ay (|z]) :=
v|z|?, aw (|e]) := v|e|*. Items 1) and 2) of Theorem 1 are,
therefore, verified. We have that 1} = 0.2289 according to (14),
from which we derive Thiasp,i (4;) forany A; € [0,17). Indeed,
Tyviasp.1 can be taken as a function of A;, which tends to zero
as A; tends to its maximal value A}, and the maximal value for
Thiasp.1 1s 0.1634, which arises when A; — 0. As a result, the
set A is ISS according to Theorem 1.

To illustrate the impact of A; and sampling period T;,
i € {1,2}, on the number of transmissions over the networks,
we have considered different values of A; and T; with T; <
Thiasp.i(Ai) being satisfied, where Tyrasp.i(4;) is the MASP
determined by the given 4; € (0,A]). We have set ¢; = T; for
all i € {1, 2}, and run 50 simulations over 10 s with parame-
ters d; = d» = 0.8 and initial conditions randomly selected in
[—20, 20] for both systems. Parameter ¢; was selected as 77, so
that the triggering generators periodically evaluate their trigger-
ing condition. We have taken w(t) = 2sin(207t). The obtained
average intertransmission times over the 50 simulations are re-
ported in Table II.

Empty boxes in Table II mean that the condition T; <
Taiasp,i(Ai) is violated. In view of the lines of Table II, we
see that the average intertransmission times increase when A;
grows for the same sampling period 7;. Also, when we keep
the same triggering parameter A; and vary the sampling period
T;, the average intertransmission times increase with 7;. This
suggests that, for this example and this set of simulations, set-
ting sampling periods close to Tyrasp.i(A;) uses less network
bandwidth and ensures system stability. Interestingly, selecting
T; large and A; small, or 7; small and A; large, lead to similar
average intertransmission times in view of Table II.

VIl. CONCLUSION

We considered PETC of nonlinear systems subject to ex-
ogenous disturbances, where the controller communicates with
the plant via multiple asynchronously operating networks. An
emulation-based systematic design procedure was proposed,

which is applicable for output-feedback control. The starting
point of the design is the availability of a controller, which ro-
bustly stabilizes the system in the absence of communication
constraints. In the next step, the implementation of the con-
troller over the networks was considered. Each network consists
of multiple nodes, in which case a protocol is used to sched-
ule transmissions. Moreover, a transmission over each network
is triggered when a criterion, which only depends on the local
measurements and the local control signals, is violated at given
discrete sampling instants. We derived a hybrid system model
to describe the resulting dynamics of the NCS and constructed a
novel hybrid Lyapunov function for stability analysis. We pro-
vided conditions on the controller and scheduling protocols in
order to design the local event-triggering criteria and explicit
bounds on the MASPs, to ensure input-to-state stability and £,
stability of the NCS. We showed that our design framework is
applicable to a class of globally Lipschitz nonlinear systems and
formulated the required conditions as LMIs. We also showed
explicitly that our results are applicable to any stabilizable and
detectable linear time-invariant system. The effectiveness of the
scheme was illustrated via simulations for a nonlinear example,
which is not globally Lipschitz and suffered from parametric
uncertainties.

Several extensions can be envisioned based on the framework
laid down in this paper. Refined results could be developed
for more specific classes of nonlinear systems. The results on
LTI systems in Section V may also serve as a basis to derive
codesign techniques, where both the triggering generator and
the controller are designed simultaneously, similarly to [30],
where CETC is studied.

APPENDIX A
PROOFS

A. Proof of Theorem 1

We define, for any ¢ € C' U D, the Lyapunov function as

N
WQ:V@+§)M® o

Si(q) = max {~;¢: (1)) W} (e, i), ki (v;) }

where W;, 6;, and V' come from Assumptions 1 and 2, and
¢ [0, T3] — [p;, 7;] with 7z; > p, > O1is defined as in Lemma
3 in Appendix B.
We first show that the following properties hold for system
(9). There exist @y, a7, o, 0p € Ko such that:
a) U is locally Lipschitz in x, e, and 7, and, for all ¢ €
CUD, ay(lgla) < Ulg) <au(lgla):
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b) for all ¢ € C' and w € R", U°(q; F(q,
(U(q)) + Op (Jw]):
c) forallg € D,w € R™ and g € G(q), U(g) < U(q).

Proof of item a): It follows from Assumptions 1 and 2,
the definition of ¢; in Lemma 3, that the Lipschitz property
of U in item a) is satisfied. Since ¢§; is continuous and pos-
itive semidefinite, v; = g,, (x) with g,, in (8) is continuous
and g, (0) =0, as g = (g, 9.) and g,(0) = g.(0) = 0 with
gp and g. in (1) and (2); there exists a5, € K such that
8;(v;) < as, (|x]) (see [31, Lemma 4.3]). In view of Lemma
3, ¢i(mi) € [p;, ;] for all 7; €[0,T;] with 0 < p7 <p. <
7i; < fif, i € N. Consequently, in view of items (i) of As-
sumptions 1 and 2 and (27), ay (|z]) + S0, Vi aiy, (Je]) <
Ulq) <ay (|z]) + 37, (vimaiy, (lel) + rias, (). By ap-
plying Lemma 4 in Appendix B, we derive that there exist o,
ay € Ky suchthatay (|ql4) < U(q) < @y (|q]4); hence, item
a) holds.

Proof of item b): Let g € C,w € R"»,andi € N. We distin-
guish three cases according to Lemma 2 in Appendix B: Case I:
Vii (T )W7 (€4, ki) < hidi(vi); Case L iy (i) W7 (ei, i) >
1:0;(v;); and Case III: ~;¢; (7, )W?2 (ei, ki) = *i0; (v;). Suppose
that Cases I-III, respectively, hold for i« € Ny, ¢ € Ny, and
i € Ny, where Ny, Ny, Ny C N and NyU Ny U Ny = N.
Then, in view of item (ii) of Assumption 2, and items 1) and 2)
of Theorem 1, we have

w)) < —ay

U(q; F(g,w)) < —av (|z]) — cw (le])
+ Y (Zilgw) + 5} Flg.w) @Y
ieN
where  Z;(q,w) = 2 W2(e;) — P~IZQ (x,e,w) — Ji(z,e,w) —

9i (vi) + ov.i(Jw|). We next consider S? (¢; F'(q,
1 € Ny, and ¢ € Ny, respectively.

Case I. i € N;: We have that S;(q) = %;9;(v;) in (27) in this
case. It then follows from item (iii) of Assumption 2 and [32]
that

87 (q; F(q,w)) <

Since ¢;(7;) > p, > p; =7 > 1

w)) fori € Ny,

i (Ls, 6 (v, )+ H (z,e,w) + Ji(z, e w)).

Yihi :
i ln according to Lemma

3,1—X; L§ > 0 as ensured by A; < A} with A} defined in (14);
Yii (11 )WE (i, ki) < Aidi(v;) 1mphes that VW7 (e;, ki) <
1 ] 6 lI (S
G < AR < B = (1 2116, (v), and
Zi(q,w) + 87 (q; Flg,w)) <7 W7 (e:) — HY (w, e,w)
— Ji(z,e,w) — 0;(vi) + ov,i(Jw])
+ 2 (Ls, 6; (v )+ H? (2, e,w) + Ji(z,e ,w))
< —(1-2x) (fll2 (z,e,w) + Ji(z,e, w)) + ov.i(Jwl|)
< ov.i(Jwl) (29)
since A; < A; < 1in view of (14).
Case II. i € Ny: We have that S;(q) = v (1:)W? (ei, ki)

in this case. We omit below the dependence of ¢; on
7; for the sake of convenience. In view of item (ii) in

Assumption 1 and the facts that ¢;(r;) <, according to
Lemma 3, H;(z,e,w) = H;(z,e) + ow, (Jw]) according to
item 1) of Theorem 1, \/s} + s3 < s; + sy and 25384 <
vs3 + Ls3, for s1, 50, 83,5 > 0and v > 0, we have

S2(q; F(g,w)) =7 (—=2(Lw, +;)pi — vi (67 + 1))WE (e, ki)

+ 270 Wilei, ki) (Lw, Wilei, ki) + Hi(z, ) + ow, (|w]))
< Yi(=Q2Lw, + 7)pi — vi(¢7 + 1))W7 (ei, ;)
+2’71LW oW, (617 )"’77 ¢2W (eufil) +H (1‘ 6)

1
+ ,YZ¢L ( Vi 2(6L7K‘t) + ;Q%V, (|w|)>

BiYi 2

QW,;(|w|)

2W (e, ki) +H2(:17 e)+

where 7; > 0 is given in Lemma 3. Then, since 1; < i} and
H?(z,e,w) > H?(x,e), we have
Zi(g,w) + 87 (¢; F (g, w)) < 7/ W7 (e;) —
— Ji(z,e,w) — 6 (vi) + ov.i(lwl)
Hi%i o

Ow, (w])

H(z,e,w)

2VV (e, ki) +H2(x e)+

)

< =6i(v;) — Ji(z, e, w) +

i
—=aly, (lw]) + ov.i(|w])

/’677! 2 ( (30)

Ow;,

)+ ovi(|w]).

Case Ill. i € Nyy: In view of *Lemma 2 and (30), in this case,
Zi(q,w) + 57 (q; F (g, w)) < B0y (Jw]) + ov,i(|w)).
In view of Cases I-III, we have

U°(4; F(g,w)) < —ay (l2]) — aw (le) + D (Zi(q, w)

ieEN

+ 57 (¢; Fgq,w))) < —av (|z]) — aw (|e])
L’YZ
# 3 (B2, () + vl ). G1)
ieEN
In view of item a), there exists apy € K, such that

item b) holds with p(s): =3, 5 0r (s), and Of (s) :=
”’ "oty (s) + ov.i(s) forall s > 0.

Proof ofitemc): Letq € D;,i € N.We distinguish two cases
whether a transmission occurs. When a transmission occurs,
Wi(xi(ei, ki), ki +1) < p; Wi (e, k; ) according to item (ii) of
Assumption 1. Note that ¢; (0) < 7ty = 1/p;, ¢i(T}) > p = p;,
and p; > p; in view of Lemma 3. Let g € G;(q), and

S (g) = nax {’Ytgbt (Xb(elvﬁt) Ki + 1))7)\'i6i(vi)}
< max {%;P?V[QQ(Bmlii),)»i(Sz(Uz)}

2 (e, ki), Mi6i(vi) }
(T)W7 (ei, k), 2i0i (v5) } < S

< max {'71 pz

< max {v;¢; (q)- (32)
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When no transmission occurs, it follows from (7), (13),
and item (ii) of Assumption 1 that W72 (x;(e;, ki), ki) =
viW2(ei, ki) < Aip;0;(v;). Since ¢;(0) < 11; = 1/p; accord-
ing to Lemma 3, we have that

S;(g) = max {’ylgbl W2(€7,I€Z) Lid; (w)}

Pi

As aresult, forall ¢ € D and g € G(q), we have

N N
Ulg) <V()+ Y Sig) <V(z)+ > Silg) =
i=1 i=1

and item c) holds.

Let (¢, w) be a solution to (9). Note that U is locally Lipschitz
in z, e, 7 from item a). In view of [32, p. 99], for any v € (0, 1),
all j € Z> such that there exists t € R with (¢, ) € dom ¢,
and almost all s € I/ := {t : (,j) € dom¢}, we have

2 J); F (s, 4),w(s, 7))

< —(1=v)ay (U(e(s, j))
—vay(U(e(s,4)) + 0r (Jw(s, 1)]).

By invoking standard ISS arguments, we derive that there exists
{3 € KL such that for all (¢, j) € dom ¢, we have

Uttt d)) < BUe( )t~ ) + agt (3 oe(lully)

where t; := inf I;. It follows from item c) that, for all j such
that (¢, j) € dom ¢, we have

Ulp(tivn, 3 +1)) <Ulp(tjr1,4))-

Let € := min, 5 &;, where ¢; > 0 is the minimum intersam-
pling time corresponding to network \V;. Let (¢, j) € domgp. The
integer j represents the total number of transmissions over the
N networks; we can, therefore, write it as j = j; + - - - + jn,
where j; is the number of transmissions that has occurred
so far on network A;. In view of the deﬁnition of the jump
set in (9) t > £(j; — 1). Consequently, + > £ (j; — 1) and
t=NEt>%(Gi++jv)—e= ‘]fESmcetZ(),we
have that t Z t/2 +¢/2max {£ — 1,0}. Consequently, for
any (t,7) € dom ¢, we have

Ulp(t.3) < BU10.0.0) + o (36wl )

)
wagt (Sor(ulles))-

Since «(s; + s9) < «(2s1) + a(2sy) for any « € K and
s1,82 > 0 (see [33, eq. (7)]), we deduce from item a) to have
that [o(t, 7). < B(|¢(0,0)]a,t + 5) +([[wllj)), for all
(t,j) € dom ¢, where B(s1,s2):= a;' (26(ay (s1),0.5min
[, 1 max{% —2,01)) and (s) = ap! (20" (L0 (||
Ilt.))))-

L 0((s,9)) < U°(o(s

ds

<pB (U(<p(0, 0)), 0.5 4 0.5¢ max {]]v

B. Sketched Proof of Theorem 2

For any ¢ € CUD, let U(q) := V(x) + max{yop(r)W?
(e,k),AV(x)}, with W and V' coming from Assumption 3.
The function ¢ : [0, T — [p, 7] is defined as in Lemma 5 in
Appendix B.

The proof Theorem 2 follows the same steps as the proof of
Theorem 1. We only explicitly prove the flow property corre-
sponding to item b) in Appendix VIII-A in the following. In
particular, we need to show that item b) holds under Assump-
tion 3. Let ¢ € C' and w € R"», and we distinguish three cases
according to Lemma 2.

Case 1. yp(T)W?(e, k) < AV (z): We have that U(q) =
(A+1)V(z) in this case. According to Lemma 3,
o(r)>p> “ . Hence, there exists v € (0,1) such that 5 >
%;T Thus VW2(e, k) < “V( L < (1-v)ayV(z) and
U*(g Flq.w)) < (1 + 1) (—ay V(@) — aar (Je]) + W2 (e,
#)+ py () < (& + 1) (—0V () - aw (Je]) + ov (fu])).

Case II. vp(T)W (e, k) > AV (x): In this case, we have that
U(q) = V(x) + v¢(1)W?(e, k). From item (i) of Assumption
3, the facts that ¢(7) < 7 in view of Lemma 5, and 2ab <
ca® +1/cb* forall a,b > 0 and ¢ > 0, we have

1

U(q; Fq,w)) = —ay V(x) — aw (le])

+ W2 (e, k) + py (Jw])
# (~enw + 00— (ZH8 +1) ) W2 (e

+ 27¢W (e, ) (Lw W (e, k) + Ly /V (x) + ow (|w]))
< —ay V(z) — oy (le]) + VW3 (e, k) + pyv (Jw])

2

—y(2Lw + D)pW?(e, k) —~* <aVL ~<Z) + 1) W2 (e, k)

2
+ 72L7V~¢>2W2(e, k) + (ay — )V (x)
ay —V

L e +36 (71 (e0) + S (o))

< -V (x) — aw(|e]) + %YQ%}V(WD + ov (Jwl)

where 7 > 0 comes from Lemma 5.

Case II. vo(T)W?(e,k) = AV (z): In view of Lemma
2, and cases I and II, U°(q; F(q,w)) < —min{v, v}V (z) —
aw (Jel) + ov (Jwl) + ZX g% (|uw])-

In view of cases I-III, Uo(q, F(q,w)) < —min{v, v}
V(a) — aw (Je]) + ov (|w]) + g2 (Jw]) for all g€ C and
w € R, Then, there exists oy € K, such that item b) holds
with 0p (s) 1= £ 0%, (|w]) + ov (Jw]) for all s > 0. The rest of
proof follows the same steps as the proof of Theorem 1 and is,
therefore, omitted.

C. Sketched Proof of Theorem 3

We define the storage function as (27) and prove the desired
result by ensuring the satisfaction of the next properties.
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and, for
A), where

a) U is locally Lipschitz in z, e, and T,
all g€ CUD, ay (lgl4) = Ulg) <au (
ay,apy € Kuos

b) for all g € C and w € R"~, w)) < (6P
ol — |2]P);

¢) forallg € D,w € R" and g € G(q), U(g) < U(q).

The proof of items a) and c) follows the same steps as
the proof of Theorem 1. We, therefore, prove the flow prop-
erty corresponding to item b) in Appendix VIII-A. Recall
that there are three cases to consider when q € C: Case I:
Yidi (T )W2 (ei, ki) < hid;(v;); Case IT: v; i () W2 (e, ki) >
A;0;(v;); and Case III: 'ylgbl(n) 2(ei, ki) = A6 (v, ) and they,
respectively, hold for ¢ € Ny, ¢ e Ny, and ¢ € Ny. We derive
that the following hold.

Casel. i € Ny: Inthis case, S?(q; F(q,

U°(q: F(q,

w)) < Ai(Ls, 0i(vi) +

ﬁ?(%e,w) + Ji(z,e,w)). Let Zi(q,w) =~}W2(e;) — ﬁf
(x,e,w) — J;(z,e,w) — 6;(v;). We have that Z;(q,w)+
57 (a3 Fg,w)) < 2Wg(eum) (1= 2iLs, )6i(vi)— (1 = 1)

(HQ(xew)—i—J(acew)) —(1—- A)HQ(acew) (1 —2)
Ji(z,e,w), i € N, since A;Ls, <1 from (14) and ~?W?
(ei,/@;) < (1 — A L(;[)(S ( )

Case II. © € Ny In Case I, So(q, (q, )) = ’7@'(_(2[417,:
+ i) i — Vi (¢2 + 1))W2 (e, ki) + 270 W, (67,/$,)(LW Wi
(ei, ki) + H;(z,e,w)) < —y2W2(es, ki) + H2 (z,e,w) and
Zi(q,w) + 57 (q; Fq,w ))S —0i(vi) = Ji(w,e,w), i € N.

Case III. i € Nyj: In view of Lemma 2, and Cases I and 1I,
Zi(q,w)+ S (q; Flq,w)) < max{—(1 — &) H2 (z, e,w) — (1
—ai)di(z e, w), —6;(v;) — Ji(x, e,w)}.

Consequently, U°(q; F(q,w)) < (67 [wfP — [2|P) + >,y
Zi(g,w) + 57(¢; Fg, w)) < (0 [wl” = |27) = e, (6
(v1)+Ji(x’ €, w))fzieNj (lfki)(HiZ(‘Ta €, w)+‘]i (I, €, ’LU))
— e, max{(1 — ) (HE (w,e,w) + Ji(w.e,w)) + 0,
(v;) + Ji(z,e,w)} < (0P |wlP — |z|P) since A; <Af <1 in
view of (14). The satisfaction of items a) and c) follows by
applying similar arguments as in the proof of Theorem 1.

Let (¢, w) be a solution to (9). In view of [32, p. 99], for all
J € Z>g such that there exists t € R>q with (¢, j) € dom ¢ and
almost all s € IV := {t: (£,j) € dome}, LU(p(s,j)) <U°
((p(S,j);F((p(S,j),U)(S,j))) < _|Z(87j)‘p + 0p|w(8aj)|p'
We then follow similar lines as the proof of Theorem 1
and [26, Th. IV.7], and we obtain that ||z|[c, < 7(|¢(0,0)
|4) + 0||w||c, , where 7 := @y

D. Proof of Proposition 1

Let matrix P, ay, ay ,9 € >0and v; > ay + @?|Ba,;|%,
i € N, be given such that (24) holds. Let i € N since
|M| < w; for almost all e; € R" and k; € Z> [as

de;
the protocol is UGES, see discussions above (21)], we have
that for all z € R"» and almost all e € R":, (W,

~Ci(Ayx + Bie + Diy(z) + & w)) < w;|CiAyx + CiBye
—|—C 'Dlw( )+C Slw\ < wt\C’ A1J)+BQL€+C Dl’(/)( )

+Ci&w| +|CiBi1Yel) and |C;Dy(x)| < L|C;Dy|z]
in view of the properties of 9. Note that B e is inde-
pendent of e;, and B;W;e depends only on e; according
to the definition of By; and W,. This implies that item

(iii) of Assumption 1 holds with Ly, = w;/ay, [CiB1 ¥,
Hi(x, e, w) = wi(|€i¢41x + Egjie + 6£1w\ + L|€,‘,D1 ||$D

Recall that §;(v;) = €?|v;|>, v; = C;z, and note that
27 (C; CiA, + ATC, Tzl = 2|(Cixr, TrAra)| < 2[Ca|
6L.A1.13‘ < ‘xTélTéll‘| + |$T.A{6T€L.A1$‘ HCHCC, <V(5L
(), Ci(Arz + Bie+ D) + Ew)) < [l (T T Ay +
ATT! Cha| +2¢(]27CT, Ti(Bie + &w)| + L|C; C;Dy
||z|?) < Ls, 8; + Ji(z,e,w), where Ls, = 1 and J; (x, e, w) =
E(|ATC! T Ay| + 2L[C! Ty |)|2|? +26227C, Ci(Bre +
E1w)l; hence, item (iii) of Assumption 2 holds.

Let V(z) = 27 Px. Ttem (i) of Assumption 2 holds with
ay (8) == Anin (P)s?, @y (8) := Amax (P)s? forall s > 0. Note
that, for all z € R" and almost all e € R, (VV (), Az +
Bie +Diy(x) + & w) = " (AT P+ PA))x + 227 PBie +
2L|Dy |z Px + 227 PEw. We now post- and premultiply
LMI in (24), respectively, by the state vector (z, e, w) and its
transpose, rearrange its terms, and derive from (24) and the
definitions of Ay, By, and &, defined after (22) that item (ii) of
Assumption 2 holds with functions Hj;, J;,d;, ov,;, and ; > 0
given in Proposition 1.

E. Proof of Lemma 1

The proof agrees with the one to Proposition 1 with
replacing (x) by (y,e), and the property |1 (y,e)l
< Lle| in view of properties of 1. Since 2L|Px||D;|le] <
ay|x|* + 1/ay (L|P||D1||e|)? for all x € R"+, e € R™ and
any ay > 0, and hence, (VV (2), A1z + Bie + D1v(y, e) +
Ew) =2l (AT P + PA))x + 227 PBye + 2L| Pz||Dye| + 2
2T P& w. We then follow similar lines as in the proof of
Proposition 1 to show that Assumptions 1 and 2 hold. On the
other hand, (24) always has a solution in this case since A; is
Hurwitz, which ensures ¥;; < 0 and (24) follows by taking
sufficiently large 0, v and small enough € > 0.

APPENDIX B
TECHNICAL LEMMAS

The next statements corresponds to [34, Lemma IL.1].

Lemma 2: Consider two functions U; : R — R and
U; : R" — R that have well-defined Clarke derivatives
for all z € R" and v € R". Introduce three sets A :=
{z:U(z) > Uy(x)}, B:={x:Ui(z) < Us(x)}, T :={z:
Uy (z) = Us(z)}. Then, for any v € R", the function U(z) :=
max{U; (z), Us(2)} satisfies U°(z;v) = Uy (x;v) for all x €
A, U°(z;v) =Us(x;v) for all € B, and U°(z;v) <
max{U; (z;v),Us (z;v)} forall z € T'. [ |

Lemma 3: Let 1 € N, A € [0,}\.:), and T; < T]\IASPJ()\,@)
with A7 and Tyrasp i (A;) defined in (14) and (15), respectively.
Let7z; :== 1/pi, p; = p;, with p p7 defined after (13). There ex-
istp; > w, >0, satlsfymgO < ,u <p, < < ni,and; > 0
such that the solution ¢; to ¢; = (2wa + ;)i — vi(PF +
1), ¢i(0) =@, verifies ¢;(t) € [p,, ;] for all t € [0,T;],
where Ly, > 0 comes from Assur?lption 1 and v; > 0 from
Assumption 2. ]
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Proof of Lemma 3: Let i € N, %; € [0,A}) , and T} <
Thiasp,i(Ai). We first show that the following fact holds.

Fact I: 0<1AL <1,i€N. |
Fact 1 holds, smce0<1ﬁm g% < 1 when Ls, <

—vi,and A; < Y + when Ls, > —;,in view of the definition

of A7 in (14).

Fact 1 leads to p; = max{p;, ;=5 L5 } €10,1), since p; €
[0,1). Hence, 0 < pi7 < 7i;. Denote by T(ul, 7;) the time it
takes for the solution ¢; to decrease from fi; to Iz for a given
v; > 0. In view of the dynamics of ¢;, the functlon 7; is con-
tinuous in all its arguments, increasing in 7;, decreasing in p.,
and decreasing in ;. By following similar lines as in [28, proof
of Lemma 2], we have that Ty;agp,; defined in (15) satisfies
Thasp,i(ri) = Ti(hi, 17, 17, 0). Since T; < Thiasp,i(Ai), by
continuity of 7; and in view of its increasing/decreasing prop-
erties, there exists a triplet (7z;, 1, ;) with t; < i, p, > i
and 7; > 0,suchthat T; = 7;(A;, i;, p;, ;) and ¢; (t) Ei[ul,ﬁl]
holds for all ¢ € [0, T;]. S on

Lemma 4: For any ay,...,ax € K, a(32N s) <N,
a;(s;) < 6(2?; s;) holds for all s; >0 and i€ N,

where o, @ :s— min{og(3),...,an(¥)} €K and @ :=

]\T
>im Q- [ |
Proof of Lemma 4: Let ay,...,ay € K and s1,...,Sy
> 0. Since aj,...,ay are increasing functions, Zf\il
ai(si) <OV L ai(si 4 ..., sn) = a(XY | si). Without loss
of generality, we assume that 5 —max{sl,.. ,sn} for
some j € N. It then follows that - Z —18 <s; and ZZ,

ai(si) 2 a;(s;) = aj(% Zf\:l SZ) > mm{al(N E?:l si),
can (% S°N | 5i)}, which completes the proof. [ |
The proof of Lemma 5 follows the proof to Lemma 3 and is,
therefore, omitted.
Lemma 5: Let A € [0,A%) and T' < Tyrasp (A) with A* and
Taasp (1) defined as (17) and (18), respectively. There exist
> p >0, satisfying 0 < p < p < < 1/p, andDe (O ay)

such that the solution ¢ to ¢ = —(2Ly + )¢ — 'y( ¢+
1), (0) = 7, verifies ¢(t) € [p, 1] forallt € [0, 77, Wherep =

max{p, uk} p€[0,1)Ly,Ly > 0anday,vy > 0 come from
Assumptlon 3. |
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