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Periodic event-triggered output feedback control of nonlinear systems

W. Wang, R. Postoyan, D. Ne§i¢ and W.P.M.H. Heemels

Abstract— We investigate the stabilization of perturbed non-
linear systems using output-based periodic event-triggered con-
trollers. Thus, the communication between the plant and the
controller is triggered by a mechanism, which evaluates an
output- and input-dependent rule at given sampling instants.
We address the problem by emulation. Hence, we assume the
knowledge of a continuous-time output feedback controller,
which robustly stabilizes the system in the absence of network.
We then implement the controller over the network and model
the overall system as a hybrid system. We design the event-
triggered mechanism to ensure an input-to-state stability prop-
erty. An explicit bound on the maximum allowable sampling
period at which the triggering rule is evaluated is provided. The
analysis relies on the construction of a novel hybrid Lyapunov
function. The results are applied to a class of Lipschitz non-
linear systems, for which we formulate the required conditions
as linear matrix inequalities. The effectiveness of the scheme is
illustrated via simulations of a nonlinear example.

I. INTRODUCTION

Networked control systems (NCSs) refer to systems for
which the control loop is closed through a communication
network. Typically, sensors and/or actuators transmit their
data at instants defined by a clock, we talk of time-triggered
transmissions. While this paradigm is easy to implement and
convenient for the analysis, it may unnecessarily overload the
network. In contrast, event-triggered control (ETC) adapts
the transmission instants to the current state of the plant.
The underlying idea is to use the channel only when this is
needed, thus limiting transmission delays and the occurrence
packet losses, which may destroy the desired closed-loop
system properties. Various ETC strategies are available in
the literature and most of them focus on continuous event-
triggered control (CETC), in the sense that the triggering
condition has to be evaluated at all times, see for instance
[1]-[5]. The continuous evaluation of the triggering condition
is not realistic when we implement the CETC on a digital
platform. In this case, it is more natural, and in fact,
necessary, to evaluate the triggering rule at discrete sampling
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instants, leading to so-called periodic event-triggered control
(PETC), see [6], [7].

When CETC controllers are directly sampled without
further adjustments or re-design, the stability properties
guaranteed by CETC are preserved only in a semiglobal
and practical manner provided the sampling period of the
triggering rule is sufficiently small. Therefore, research on
PETC has concentrated on overcoming two limitations of the
results in [8] by: (i) preserving global asymptotic properties;
(ii) providing explicit bounds on the sampling period at
which the triggering condition is evaluated. Most works
along these lines are dedicated to linear systems, see for
instance [6], [9]-[11]. PETC results on nonlinear systems are
more rare, with some exceptions given in [7, Chapter 6.5],
[12]-[14]. In [7, Chapter 6.5] and [12], it is explained how
to convert general continuous state-feedback event-triggered
controllers to periodic event-triggered ones, while (approxi-
mately) preserving the properties of the former. The work in
[13] develops observer-based output-feedback controllers for
a class of nonlinear Lipschitz systems and a practical stability
property is ensured at the end. In [14], output-feedback PETC
is designed for a class of polynomial nonlinear systems to
ensure a global asymptotic stability. Obviously, PETC for
nonlinear systems is at its early stage and a lot remains to
be done. In particular, there is a need for systematic design
frameworks, which are flexible enough to cope with output
feedbacks as well as exogenous disturbances. The primary
aim of this paper is to address this challenge.

In this paper, we aim at designing periodic event-triggered
controllers for nonlinear systems, which are applicable in the
context of output feedback control and which are robust to
exogenous disturbances. The emulation approach is pursued
for this purpose. We thus assume that an output feedback
control law is given and ensures an input-to-state stability
property for the closed-loop system in the absence of net-
work. At this stage, any continuous-time design techniques
can be applied. We next implement the controller over the
network. Based on assumptions we make on the original
closed-loop system, we design the event-triggered rule and
we provide an explicit bound on the maximum allowable
sampling period (MASP) at which the former is evaluated.
We model the overall system as a hybrid system using the
formalism of [15], [16] and study its input-to-state stability.
Afterwards, we show how to apply the results to a class of
nonlinear Lipschitz systems and in which case the required
conditions are formulated as a linear matrix inequality (LMI).

This work extends our previous study in [17], where PETC
with state-feedbacks for unperturbed systems was addressed,
to output feedback control and we deal with exogenous



disturbances here. Compared to [7, Chapter 6.5] and [12], we
address output feedback control and consider disturbances,
in addition, our results explicitly reveal a link between the
triggering condition and the sampling instants. Compared to
[13], we consider exogenous disturbances, we do not restrict
our attention to nonlinear systems with a specific structure,
and we ensure global asymptotic stability in the absence of
perturbations. Our results are consistent with time-triggered
output-based results for NCS [18], as we recover [18] as a
special case.

In the journal version of this work [19], we investigate a
decentralized scenario in which several networks, with their
own triggering mechanisms, are used to connect the plant
and the controller. The two main contributions with respect
to [19] are that: (i) we provide tailored results when there is a
single network and (ii) we present case studies on Lipschitz
nonlinear systems for which the results can be applied when
a LMI holds.

The paper is organized as follows. The notation and
preliminaries are given in Section II. We state the problem
and present the hybrid model in Section III. The main results
are provided in Section IV and the case study is given in
Section V. Simulation results for a nonlinear system are
given in Section VI and conclusions are summarized in
Section VII. The proofs are omitted due to space limitations.

II. PRELIMINARIES

Let Zso = {1,2,...}, Z>o = {0,1,2,...}, R :
(—00,00) and R>( := [0, 00). Let || denote the Euclidean
norm of the vector x € R™. The notation I, stands
for the identity matrix of dimension n. Let Apin(P) and
Amax(P) denote the minimum and maximum eigenvalues
of real symmetric positive definite matrix P, respectively.
For z € R™ and y € R™, (z,y) stands for [z”, y”]7.
Given a set A C R™ and z € R", we define the distance
of z to A as |z|a leelg‘l‘ — y|. For z,v € R" and

locally Lipschitz U : R®™ — R, U°(z;v) is the Clarke

derivative of the fun&tion l{\ at inn the direction v, i.e.

U°(z;v) := limsup (y +Av) — Uy)
y—x,Al0 A

useful as we will be working with locally Lipschitz Lyapunov
functions, which are not differentiable everywhere.
Consider the following hybrid system [15], [16]

q= ]:(qaw)
gt €G(q)

where ¢ € R" is the state, w € R™ is the input, C, D C R"
are respectively the flow and the jump sets. We assume that
the sets C and D are closed, F : R" x R™ — R" is a
continuous function, G : R™ = R" is outer semi-continuous
and locally bounded, and G(q) is nonempty for each g € D.
Solutions to (1) are defined in [15], [16].

We study input-to-state stability (ISS) for system (1), as
defined next.

Definition 1: Set S C X is input-to-state stable (ISS) for
system (1) if there exist 5 € KL and ¢ € K, such that any

. This notion will be

qgeC

g€ D, (D
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solution pair (¢, w) satisfies' |o(t, j)[s < B(|¢(0,0)|s,t +
7) + ¥(||w||so) for all (t,j) € dom . We say that S
is exponentially ISS with a linear gain when ((s1,s2) =
ksy exp(—cs2) and 9 (s) = s for some k,c,v > 0 and any

51,82,S Z 0 I:l
III. PETC SETUP
We consider the plant model
&y = fp(zp, u,w) 2

y = gp(2p),
where x, € R"? is the state, w € R™ is the exogenous
disturbance, y € R™¥ is the plant output, and u € R™ is the
control input which is generated by the controller
fi;c = fc(xcv y)
U= Jc (xc)a
with z. € R"¢ being the state of the controller. We assume

that functions f, and f. are continuous, and g, and g. are
continuously differentiable and zero at zero.

d

3)

u y
Plant
u Controller yj
E Triggering
mechanism

Fig. 1: Block diagram of the setup

We consider the scenario where plant (2) and controller
(3) communicate with each other via a network, as illustrated
in Figure 1. We assume that the triggering mechanism has
access to both u and y at each sampling instant. This can be
difficult to achieve in practice. Nevertheless, this formulation
allows covering in a unified way the cases where only y or
u 1s transmitted over the network, which is more realistic,
as explained in Section 3.1 in [20]. We address the more
general case, where y and u are sent separately via multiple
networks with their own triggering mechanism in [19].

Define a sequence of sampling instants s;, j € Zx>q, which
satisfy

ESSJ‘_H—S]'ST

4)

with T" > 0 being the upper bound on the sampling period
and ¢ € (0,7] being the minimum time between two
successive evaluations of the triggering condition. Parameter
¢ reflects the minimum achievable transmission interval given
by the hardware constraints. At each sampling instant s;, the
triggering mechanism (i) collects the current value of the

ISee Section 2.1 in [15] for the definition of ||w||co.



control signal u and the output measurement y, (ii) compares
these with their respective values at the last transmission
instant, and (iii) decides whether a transmission over the
network is needed. The design of the triggering condition
and of the sampling instants is addressed in Section IV-
B. Consequently, the sequence of transmission instants, t;,
1 € T C Z>o, is a subsequence of s;, j € Z>o, and two
successive transmissions are spaced by at least £ units of
time in view of (4), thereby avoiding Zeno phenomena.

In this context, plant (2) no longer has access to u, but
to its networked version 4. Similarly, controller (3) has
access to ¢, the networked version of y. We let v
(y,u) € R™*™ and © := (§,4). Zero-order-hold devices
are used for implementation. Hence, b= 0, for almost all
te (Sjasj—i-l) and j S Zzo.

We now introduce the network-induced error e := 9 —v €
R™, where n. := n, + n,. At each sampling instant s;,
J € Z>o, a triggering criterion defined through the function
T, which depends on v and e, is evaluated. The expression
of T is given in Section IV-B. A transmission is triggered
depending on the sign of Y, which leads to the update law
for v given by

v(sj) when Y(e(s;),v(s;)) >0
o(s;T) € ¢ B(sy) when Y(e(s;),v(s;)) <0
{0(s;),v(s;)} when Y(e(s;), v(s;)) =0,

®)

where = = (zp,z.) € R™ and n, := n, + n.. We can

see from (5) that no transmission occurs when T is strictly
negative and a transmission is triggered when it is strictly
positive. When Y is equal to 0, both situations can arise as
a transmission may occur or not. This construction ensures
that the jump map given above is outer semi-continuous,
which is essential for the hybrid model presented below to
be (nominally) well-posed, see Chapter 6 in [16] for more
details. We deduce from (5) that the variable e satisfies

e(s;") € h(x(s;),e(s5)) (6)

where h(z,e) := (1 —I'(e,v))e. The function T' : R*"c =
{0,1} indicates whether a transmission occurs. Based on the
discussion above, I'(e,v) = {1} when Y(e,v) > 0, which
corresponds to a transmission and h(z,e) = 0 in this case.
When Y(e,v) < 0, I'(e,v) = {0} and this corresponds to no
transmission and h(z,e) = e. When Y(e,v) =0, I'(e,v) =
{0,1} covers the above two possibilities. In agreement with
[21], we call (6) the protocol map.

We now write the impulsive model given above as a hybrid
system using the formalism of [15], [16]. We introduce for
this purpose a clock variable 7 € R>( to keep track of
the time elapsed since the last evaluation of the triggering
criterion. We model the overall closed-loop system as hybrid
system (1) with letting ¢ := (z,e,7),

C:=R" xR" x [0, 7]
D :=R" x R" x [, T].

The mapping F' in (1) is defined as, for ¢ € C,
F(q,UJ) = (f(a:,e,w),g(x,e,w),l), where f(.’l?,e,'IU) :

(7
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fo(@p, ge(@e) + €u, w) _ O3

( fe(@e, gp(Tp) + €y) >, gz, e;w) = —%f(x,e,w),
and g(z) := (gp(xp), gc(zc)) with g, and g. coming from
(2) and (3), respectively.

The set-valued mapping G is defined, for ¢ € R™= x R™ x
R>o, as G(q) := (z, h(x,e),7) with h(z,e) from (6). The
map G describes how e jumps when a transmission occurs. In
particular, e is reset to O when an event is triggered, otherwise
it keeps the same value. The timer 7 is always reset to 0.

Our objective is to design triggering function Y and to
provide an explicit bound on the sampling period 7" to ensure
an input-to-state stability property for the system defined by
(1) and (7).

IV. MAIN RESULTS

In this section, we first state the assumption we make on
the system defined by (1) and (7), based on which we then
construct the triggering function Y and the bound on 7.
Finally, we present the stability guarantees.

A. Assumptions

We assume that the system defined by (1) and (7) satisfies
the following.

Assumption 1: There exist a locally Lipschitz function
W : R™ — R>, a continuous function H : R"* x R —
R>o, ay,aw, ow € Koo and Ly > 0 such that:

(i) For all e € R", oy (le]) < W(e) <aw(|e]).

(ii) For almost all e € R™ and all (z,w) € R"* x R">,
(YW (), g, e,w)) < LW (€) + H(z, )+ ow (Jw]).
]

Function W in Assumption 1 can be interpreted as a
Lyapunov function for the e-system. In particular, item (ii)
of Assumption 1 is an exponential growth condition of W
on flows, which is commonly used in the related literature,
see for instance [4], [21], [22].

We assume that controller (3) has been designed to ro-
bustly stabilize system (2) in the following sense.

Assumption 2: There exist a locally Lipschitz function V' :
R™ — R0, oy, av, ay, aw, ov € Ko, locally Lipschitz
functions ¢ : R™ — Rx( satisfying 6(0) = 0, and J :
R™ x R" x R"™ — R>g, v > 0 and Ls € R such that the
following holds.

(i) For all x € R"™, ay (|z]) < V(z) < @y (|z|).

(i) For almost all z € R" and all (e,w) € R™ x
R™, (VV(2), f(z,e,w)) < —av(|z]) — aw(le]) +
W2 (e) — H () — J(x,e,w) — 6(v) + ov (|,
where W and H come from Assumption 1.

(iii) For almost all z € R™* and all (e, w) € R x R"v,
(Vé(v), —g(z,e,w)) < Lsd(v)+H?(z,e)+J(z,e,w),
where ¢ is defined below (7). O

Function V is a Lyapunov function used to prove the
stability of the closed-loop system (2)-(3) in the absence of
the network. In particular, items (i) and (ii) of Assumption 2
imply that controller (3) robustly stabilizes system (2) with
respect to the network-induced error e and the perturbation
w. Indeed, when there is no network (e = 0), we derive from
item (ii) of Assumption 2 and item (i) of Assumption 1 that



(VV(x), f(z,0,w)) < —ay(|z]) + ov(Jw|), which means
that the closed-loop system defined by (2) and (3) is ISS
since V is positive definite and radially unbounded according
to item (i) of Assumption 2. Function § in Assumption 2 will
be used in the event-triggering condition design and item
(iii) is an exponential growth condition on 4. In Section V,
we formulate these conditions as LMIs for two classes of
nonlinear systems.

B. Triggering mechanism
We define T in (5), for v,e € R"e, as

T(e,v) =YW (e) = p(N)d(v), (8)

where W and 9 comezfrom Assumptions 1 and 2, respec-
YA

tively, p(\) := with Ls € R, v > 0 coming
from Assumption 2, an(zi A > 0 is a design parameter. The
denominator in the definition of p()\) is guaranteed to be
strictly positive in the following by suitably selecting A. The
triggering condition (8) is similar to those proposed in [1], [2]
for continuous event-triggering control in different contexts.

We select A such that A € [0, \*) where A" is defined as

1 when Ls < —v

A= 1
minq 1, ——— when Ls > —~.
{ Ls +’V} o

Given A € [0,\"), we select T in (7) such that T <
Tamasp(A), where Tyiasp (M) is defined as

9)

1
arctan(?), when vy > Ly
r

11 - 500
TMASP(}\) = RT%)\)’ when Y= LW
1
arctanh(¢), when v < Ly
T
" (10)
A
where p(A) := 1_77115)\, ro= =
0 ri = p(Y) , Lw > 0 and v > 0
2150 (ﬁ - 1) +1+5())

come from Assumptions 1 and 2, respectively. Note that
Tnasp(A) > 0 for all A € [0,1%) as p(A) € [0,1), which

A
holds since 0 < p(\) = 1jL5A < 117>\ < 1 when
Ly < —v,and 0 < AA < 1—Lshas A < when
sT

Ls > —~ according to (9).

The bound in (10) is decreasing in A. In other words, the
larger the A, the smaller Tyasp and vice versa.

Remark 1: The expression of Tyasp in (10) agrees with
[18] if we replace p(A) by a parameter p € (0,1). In
[18], multiple nodes are scheduled by a protocol to transmit
their data and p characterizes the stability properties of the
protocol and it typically depends on the number of nodes
in the network. Here, 5(\) is introduced to incorporate the
influence of the event-triggering parameter \. Indeed, when
A = 0, the triggering function Y is always non-negative.

960

Consequently, transmissions occur at every sampling instant
according to (5). We then recover the time-triggered results
as a special case, and the bound on the maximal allowable
transmission interval (MATI) is the same as in [18] when
p = 0 (which corresponds to the case that there is only one
node) and there are no disturbances, i.e. w = 0. O

C. Input-to-state stability

We are ready to state the main result about the input-to-
state stability.

Theorem 1: Consider the system defined by (1) and (7).
Suppose that Assumptions 1 and 2 hold. Let A € [0, A*) and
T < Tvasp(A), where A* and Tyiasp(A) are defined in (9)
and (10), respectively. Then, set 4 := {{ € CUD : z =
0,e=0,7 €[0,T]} is ISS. |

Theorem 1 states that set A is ISS, hence, (i) = and e
globally converge to a neighborhood of the origin whose
“size” depends on the L., norm of w; (ii) the set A is
uniformly globally asymptotically stable [16, Definition 3.6]
when w = 0.

The next statement ensure an exponential ISS property by
strengthening the conditions of Theorem 1.

Corollary 1: Consider the system defined by (1) and (7).
Suppose that Assumptions 1 and 2 hold with ayy(s)
aws, aw(s) = aws, ay(s) = ays?, ay(s) = ays’
and ay(s) = ays® and aw(s) = aws® for s > 0. Let
A€ [0,A") and T < Tyasp(A), where A* and Tyiasp(X)
are defined in (9) and (10), respectively. Then, set A defined

in Theorem 1 is exponentially ISS with a linear gain. ]
V. CASE STUDY
A. Globally Lipschitz nonlinear systems
Consider the nonlinear plant
&p = Apxp + Bpu+ Dptp(zp) + Epw (11

y = Cpp,

where x, € R" is the state, v € R"™ is the control
input, w € R"™ is the external disturbance, y € R"¥ is
the measured output, A,, By, Cp,, D, and E, are matrices
of appropriate dimensions, (A,, B,) and (A,, C)) are stabi-
lizable and detectable, respectively. Function 1) : R"» — R",
satisfies ¢(0) = 0 and

[t(z1) — ¥(x2)| < Llxy — x5 for all 21,22 € R™ (12)

and for some constant L > 0.
We focus on observer-based controllers of the form

fo = Apre + Bpu + Dptp(z.) — M(Cpre — )

u= Kz, (13)

where xz. € R" is the state estimate, M and K
are matrices of appropriate dimensions such that A
A, ByK
MC A,+ B,K—-MC
possible since (A,,B,) and (A4,,C,) are stabilizable and
detectable, respectively.

is Hurwitz, which is always



We now implement the controller (13) over the network,
as explained in Section III. We obtain v = D,x with D, :=

[ Cop IO( ] and we derive hybrid system (1) with
f(z,e,w) := Az + Be + D(z) + Ew (14)
g(m,e,w) = —va(:c,e,w),

— | 0 Bp — | Dp 0 _
whereB.—[MO},D.—[O Dp},é'—

o7 | a0 ) = 0y vt

The next proposition provides a LMI, which if satisfied,
ensures that the conditions of Corollary 1 hold.

Proposition 1: Suppose that there exist a positive definite
symmetric matrix P, ay,aw,0, aw,e > 0 and n > aw
such that the following LMI holds

211 * *
Yo1 X * <0, (15)
Y31 0 —0I,, +ayE'DIDE

where ¥, := ATP + PA + 2LIDIP + (ayv +

ay L’ D, DI, + & (A"DID,A + 2L|D,D|A) +
¢ ((2L|D| + 1)D! D, + A"DI'D,A), 5 BTpP +
2BT'DID,, S9y := —(n — aw)l,, and B3, = ETP +
62€TD;1;DU. Then,

o Assumption 1 holds with ay (s) = aw(s) = aws,
Lw = |D,B|, H(z,e) = aw(|DyAz| + L|D,D||z|)
for all z € R™* and e € R™, and ow (s) = aw|D,E|s
for all s > 0.

Assumption 2 holds with V(2) = z” Pz and §(v)
v|? for all z € R™ and v € R, ay(s)
Amin (P)s?, @y (s) = /\maX(P)s2 for all s > 0,
v =n—aw, ay(s) = ays?, aw(s) = aws® and
ov(s) = 0s® forall s > 0, Ly = 1, J(z,e,w) =
2¢2(l2" DI D,Be + 2" DI D, Ew| + (L|IDID,||D| +
AT DI D, A ). 0

A girect consequence of Proposition 1 is that, when (15)
holds, set A:={{ € CUD :z=0,e=0,7 € [0,T]} is
exponentially ISS with a linear gain for the system defined
in (1) and (14) according to Corollary 1.

B. Systems with globally Lipschitz output injection terms

We consider system (11) in the case where D, = B,
and 1 is a function of the output signal. We will show that
the conditions in Corollary 1 are verified as the obtained
corresponding LMI is always feasible in this case. In this
case, we consider the next controller instead of (13)

be = Apae+ Byu+ Bybly) — M(Cyae — y)
u=Kz.—9(y).

We follow similar lines to derive the hybrid system defined

with (1) and (14) by letting D := { By 0 } and ¢ (y, e) 1=

0 0
V(y) — Yy +ey)
0

(16)

} . We have the next result.
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Proposition 2: There exist a positive definite symmetric
matrix P, ay,aw,0, aw,e > 0 and n > aw — (26%[, +
¢)L?|D,D|? — L?|D|?|P|? /ay such that the following LMI
holds

211 * *

o1 oo * <0, @17

Y31 0 —0I,, +aETDID,E
where X3 = ATP + PA + 2av 1, +
2aiy ATD'D, A+ 2¢D'D, + EATDID,A,
221 = BTP + €2BTDU and 222 =

— (n—aw — I*|D,DP(2a%, + &) — L*[D]*|P]*ay) I,
and ¥31 := ETP + 2T DI D,. Then,

o Assumption 1 holds with ay, (s) = aw(s) = aws,
Lw = |D,B|, H(xz,e) = aw(|D,Az| + L|D,D|le|)
for all x € R™* and e € R™, ow(s) = aw|D,E|s for
all s > 0.

Assumption 2 holds with V(z) = 2”7 Pz and §(v)
lv]? for all + € R™ and v € R™, ay(s)
Amin(P)s%, @y (8) = Amax(P)s? for all s > 0, 4* =
(n—aw—(2a%+¢) L*|D, D ~L*[DP| P fay ) /%y,
ay(s) ays?, aw(s) aws” and py(s)
0s®> for all s > 0, L 1 and J(z,e,w)
2¢%|2T DT D, Be 4 2T DT D, Ew| + €*(L?|D,D|*|e|* +
(1Dg Dy| + AT Dy Dy AJ)[a]?). 0

Conditioon (17) is indeed always feasible since A is
Hurwitz, which ensures ¥1; < 0 and (17) follows by taking
sufficiently large 6,7 and small enough ay ,e > 0. Then,
we can conclude exponential ISS of the overall system using
Corollary 1.

VI. ILLUSTRATIVE EXAMPLE

We consider a single-link robot arm as in [20] for which
only the angle is measured. The model agrees with the one
proposed in Section V-B, where z,, € R? is the state, with
its two components denoting the angle and the rotational
velocity, respectively, and w is the external disturbance,

0 1 0 .
a=10 o] B= ] =1 0w =sine,
E, = (1) . The output feedback controller u comes from
(16) with M = [11 30] and K = [-2 — 3], as given in
[20].

We solve LMI (17) by selecting ayy = 0.1, e = 0.1, v =
5.08, ay = aw =1, 8 = 20. It follows from Proposition 2
that Assumptions 1 and 2 hold with W (e) = 0.1|e|, V(z) =

411 -11 396 —-0.37
T _ -11 766 —-154 235
v Pr,owhere Pr=11 596 154 4 067 |’
—-0.37 235 —0.67 4.12
Ly = 32, Ls = 1 and v = 127.1. We then apply (9)

to obtain \* = 0.0078 and we derive Tyasp(A) for each
A € (0,\*) using (10). Figure 2 illustrates the dependency
of Tyviasp as a function of \. We consider different values
of A and T such that ' < Tyyasp () to illustrate the impact
of A and T on the number of transmissions. We have run 50
simulations over 10 seconds with initial conditions randomly
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Fig. 2: Triggering parameter \ v.s. Tyasp

TABLE I: Average inter-transmission time

Average inter-transmission time
A=0.001 | A=0.003 | A =0.005
T = 0.0033 0.0067 0.0093 0.0122
T = 0.0065 0.0118 0.0127 X
T = 0.0102 0.0167 X X

selected in [—15, 15], w = sin(nt) and picked e = T so that
the triggering rule is periodically evaluated, and the obtained
average inter-transmission times are reported in Table 1.

Empty boxes in Table I mean that the condition T <
Tavasp(A) is violated. We see from Table I that the average
inter-transmission times increase when A\ grows for the same
sampling period 7', and the same occurs when 71" grows
for the same triggering parameter A. This implies that, for
this example and this set of simulations, setting sampling
periods close to Tyasp(A) uses less network bandwidth
while ensuring stability.

It is important to point out that the setup we consider
here is different from [20], where a triggering condition is
continuously verified after waiting a fixed amount of time
since the last transmission instant. In that case, a transmission
is allowed to occur whenever the condition is violated. In
contrast, we consider a more difficult circumstance as the
triggering conditions are only checked at sampling instants
and this might induce more transmission requests than [20].

VII. CONCLUSIONS

We considered periodic event-triggered control for net-
worked nonlinear control systems subject to exogenous dis-
turbances. An emulation-based design procedure was pro-
posed. We started with a continuous-time controller which
robustly stabilizes a continuous-time plant in the absence of
communication constraints. In the next step, the controller
was implemented over a communication network and trans-
missions were triggered when a criterion is satisfied at given
discrete sampling instants. We derived a hybrid system model
to describe the overall system and proposed a novel Lya-
punov function to study its stability properties. We provided
conditions on the controller, the event-triggering criterion
and the explicit bound on the maximum allowable sampling
periods, to ensure an input-to-state stability property. The
effectiveness of the scheme was illustrated on simulations
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for a nonlinear example.
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