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Abstract— In this paper we study the stability and L2-
gain properties of periodic event-triggered control (PETC)
systems including time-varying delays. We introduce a general
framework that captures these PETC systems and encompasses
a class of hybrid systems that exhibit linear flow, aperiodic
time-triggered jumps (possibly with different deadlines) and
arbitrary nonlinear time-varying jump maps. New notions on
the stability and contractivity (L2-gain strictly smaller than 1)
from the beginning of the flow and from the end of the flow are
introduced and formal relationships are deduced between these
notions, revealing that some are stronger than others. Inspired
by ideas from lifting, it is shown that the internal stability and
contractivity in L2-sense of a continuous-time hybrid system in
the framework is equivalent to the stability and contractivity in
�2-sense of an appropriate time-varying discrete-time nonlinear
system. These results recover existing works in the literature
as special cases and indicate that analysing different discrete-
time nonlinear systems (of the same level of complexity) than
in existing works yield stronger conclusions on the L2-gain.
At the end of the paper we indicate several extensions of the
framework, which even include the possibility of the inter-
jump times depending on the state, such that, for instance,
self-triggered control systems can also be included allowing
their stability and contractivity analysis. A numerical example
is presented showing how stability and contractivity analyses
are carried out for PETC systems with delays.

I. INTRODUCTION

In this paper, we consider hybrid systems that can be

written in the framework

d

dt

⎡
⎣ξτ
k

⎤
⎦ =

⎡
⎣Aξ +Bw

1
0

⎤
⎦ , when τ ∈ [0, hk] (1a)

⎡
⎣ξ+τ+
k+

⎤
⎦ ∈ φk(ξ)× {0} × {k + 1}, when τ = hk (1b)

z = Cξ +Dw, (1c)
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The states of this hybrid system consist of ξ ∈ R
nξ , a

timer variable τ ∈ R≥0, and a counter variable k ∈ N. The

variable w ∈ R
nw denotes the disturbance input and z ∈ R

nz

the performance output. Moreover, A, B, C, D are constant

real matrices of appropriate dimensions and {hk}k∈N with

hk ∈ R>0 are given inter-jump times. When τ reaches hk the

state of the system undergoes a jump. The timer deadlines

hk ∈ R>0, for all k ∈ N, and the set-valued jump map

φk : R
nξ ⇒ R

nξ , for all k ∈ N are time-varying. Here

φk, k ∈ N, is an arbitrary nonlinear set-valued and possibly

discontinuous map with φk(0) = {0}, k ∈ N.

Interestingly, the class of hybrid systems captured by (1)

is a generalization and unification of those found in [1], [2],

[3]. In [1], [2] a class of hybrid systems is discussed with

periodic jumps and time-invariant possibly nonlinear jump

maps. This class of hybrid systems is included in (1), for

hk = h̄ and φk = φ, k ∈ N. The class of hybrid systems

discussed in [3] uses linear jump maps, i.e., φk are all linear,

although the jumps are aperiodic, as in (1).

The hybrid systems as in [1] are relevant for the closed-

loop systems arising from PETC [4], networked control

systems with constant transmission intervals and shared

communication networks requiring medium access protocols

[5], reset control systems [6], [7], [8] with periodically

verified reset conditions, and sampled-data saturated controls

[9], see also [1]. The time-varying jump maps φk and time-

varying deadlines hk in (1) allow to model all the mentioned

applications including also communication delays, which

were not considered before. Note that towards the end of

the paper we consider an even more general setup than (1),

which allows for the inclusion of k-dependent matrices Ak,

Bk, Ck, Dk, and deadlines hk depending on the state ξ or

certain discrete dynamics. This opens up the inclusion of

new applications such as self-triggered control [10], [11], and

the aforementioned applications with varying transmission

delays.

Initially for systems as in (1), and later for the extended

framework, we analyse the stability and contractivity (L2-

gain strictly smaller than 1) exploiting ideas from lifting [3],

[12], [13], [14], [15]. This will lead to novel necessary and

sufficient conditions of stability and contractivity of (1) (and

its extensions) in terms of the stability and contractivity in �2-

sense of an appropriate time-varying discrete-time nonlinear

system. To arrive at the time-varying discrete-time nonlinear

system some restrictions on the initial conditions of (1) are

required related to taking, e.g., τ(0) = 0 or τ(0) = h0. In

fact, such restrictions will lead to three different notions of

stability and contractivity, which will be introduced formally
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in this paper. We study the relationships between these

notions, which reveals that so-called contractivity from the

beginning of the flow (corresponding to τ(0) = 0) is stronger

than stability and contractivity from the end of the flow

(τ(0) = h0). This also leads to different discrete-time nonlin-

ear systems after including lifting as the ones used in [1], [2],

[3]. Interestingly, these new results not only lead to stronger

conclusions but also apply to a significantly larger classes of

systems than in [1], [2], [3] encompassing new applications

in areas such as PETC systems with (varying) delays and

self-triggered control for which no necessary and sufficient

conditions on stability and contractivity were available in the

literature before. Through a numerical example of a PETC

system with delays, we will show how the results can be

used to perform the stability and contractivity analyses.

The remainder of this paper is organized as follows. In

Section II we show how PETC systems with a delay can be

captured in (1). In Section III we introduce the preliminaries.

In Section IV we introduce new notions of stability and con-

tractivity and derive formal relationships between them. In

the main result (Theorem V.3) we connect the corresponding

internal stability and contractivity properties of (1) to the

internal stability and contractivity of an appropriate discrete-

time system. In Section VI we introduce an extension of

the framework (1) allowing to include systems with varying

delays and self-triggered control applications. In Section VII

we show how these results can be used to analyse the stability

and contractivity for PETC systems with varying delays. In

Section VIII we present a numerical example. Conclusions

are given in Section IX.

II. PERIODIC EVENT-TRIGGERED CONTROL SYSTEMS

WITH DELAYS

In this paper, we consider the PETC setup of Fig. 1, in

which the plant P is given by

P :

⎧⎪⎪⎨
⎪⎪⎩

d

dt
xp(t) = Apxp(t) +Bpuu(t) +Bpww(t)

y(t) = Cyxp(t) +Dyu(t)

z(t) = Czxp(t) +Dzu(t) +Dzww(t),

(2)

where xp(t) ∈ R
nxp denotes the state of the plant P , u(t) ∈

R
nu the control input, w(t) ∈ R

nw the disturbance, y(t) ∈
R

ny the measured output, and z(t) ∈ R
nz the performance

output at time t ∈ R≥0. This plant is controlled in an event-

triggered feedback fashion using

C :

⎧⎨
⎩

d

dt
xc(t) = Acxc(t) +Bcŷ(t)

u(t) = Cuxc(t) +Duŷ(t),
(3)

where xc(t) ∈ R
nxc denotes the state of the controller

C, and ŷ(t) ∈ R
ny represents the most recently received

measurement of the output y available at the controller at

time t ∈ R≥0. In particular, ŷ(t) is given for t ∈ (t̄m +
τd, t̄m+1 + τd], m ∈ N, by

ŷ(t) =

{
y(t̄m), when ζ(t̄m)�Q̂ζ(t̄m) > 0,

ŷ(t̄m), when ζ(t̄m)�Q̂ζ(t̄m) ≤ 0,
(4)

C P

ETM

ZOH

ŷ

u
w

z

yD

Fig. 1. Schematic representation of an event-triggered control setup with
communication delay (block D).

where ζ :=
[
y� ŷ�

]� ∈ R
ny is the information available

at the event-triggering mechanism (ETM) and t̄m, m ∈ N,

are the sampling times, which are periodic in the sense

that t̄m = mh̄, m ∈ N, with h̄ the sampling period. The

communication delay is denoted by τd and satisfies the small

delay assumption, τd < h̄. Note that (4) expresses that based

on ζ(t̄m) the ETM decides at each time t̄m, m ∈ N, using

the quadratic relation in (4), whether the measured output

is transmitted to the controller or not. An example of a

triggering condition is |ŷ(t̄m)−y(t̄m)| > σ|y(t̄m)| for some

σ ∈ (0, 1) which translates in terms of (4) to

Q̂ =

[
(1− σ2)I −I

−I I

]
.

Although the system has a constant sampling period h̄,

the delay causes unequal inter-jump times (related to a

transmission on t̄m and an update on t̄m + τd). In terms

of (1), the inter-jump times are defined as

hk =

{
τd when k is odd

h̄− τd when k is even,
(5)

and map

φk =

{
φu when k is odd

φt when k is even,
(6)

where φu models the jumps at update times t̄m + τd, m ∈
N (when transmitted data arrives at the controller), and φt

models the jumps at transmission times t̄m, m ∈ N. For this

sequence of inter-times the initial conditions are τ(0) = 0.

The maps φu and φt will be defined below after introducing

a few auxiliary variables.

In order to write the PETC system in the form (1) we

first introduce the memory variable s ∈ R
ny to store, at time

t̄m the value of transmitted data y(t̄m) to be used during an

update at time t̄m+τd, m ∈ N, this leads to the overall state

ξ :=
[
x�
p x�

c ŷ� s�
]� ∈ R

nξ with nξ = nxp
+ nxc

+
2ny . We also, define the matrix Y ∈ R

2ny×nξ as

Y :=
[
Cy DyCu DyDu O
O O I O

]
(7)

such that ζ = Y ξ.

Combining (2), (3), and (4) we can write the system in
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the form of (1) with

A =

⎡
⎣Ap BpuCu BpuDu O

O Ac Bc O
O O O O
O O O O

⎤
⎦ , B =

⎡
⎣Bpw

O
O
O

⎤
⎦ ,

C = [Cz DzCu DzDu O] , D = Dzw.

(8)

The update map φu is a linear map given for ξ ∈ R
nξ by

φu(ξ) = {J0ξ}, with J0 =

⎡
⎣Inxp

O O O

O Inxc
O O

O O O Iny

O O O Iny

⎤
⎦ (9)

and the transmission map φt is a piecewise linear (PWL)

map given for ξ ∈ R
nξ by

φt(ξ) =

{
{J1ξ}, when ξ�Qξ > 0

{J2ξ}, when ξ�Qξ ≤ 0
(10)

with Q = Y �Q̂Y ,

J1 =

⎡
⎣Inxp

O O O

O Inxc
O O

O O Iny O
Cy DyCu DyDu O

⎤
⎦ and J2 = Inξ

.

Hence, the PETC system with delay is now written in the

form (1) with data given by (5), (6), (8), (9), (10). Note

that the addition of both the time-varying inter-jump times

and jump map in (1) compared to [1] enables to model the

transmission delay. The applications mentioned in [1], [2]

can also be put in this framework with the inclusion of delays

in a similar fashion.

III. PRELIMINARIES

We recall a few necessary preliminaries, mostly taken from

[1]. As usual, we denote by R
n the standard n-dimensional

Euclidean space with inner product 〈x, y〉 = x�y and

norm |x| =
√

x�y for x, y ∈ R
n. Ln

2 [0,∞) denotes

the set of square-integrable functions defined on R>0 :=
[0,∞) and taking values in R

n with L2-norm ‖x‖L2
=√∫∞

0
|x(t)|2 dt and inner product 〈x, y〉L2

=
∫∞
0

x�y dt
for x, y ∈ L2[0,∞). If n is clear from the context we

also write L2. We also use square-integrable functions on

subsets [a, b] of R≥0 and then we write Ln
2 [a, b] (or L2[a, b]

if n is clear form the context) with inner product and norm

defined analogously. The set L2,e[0,∞) consists of all locally

square-integrable functions, i.e., all functions x defined on

R≥0, such that for each bounded domain [a, b] ⊂ R≥0 the

restriction x|[a,b] is contained in Ln
2 [a, b]. We also will use

the set of essentially bounded functions defined on R≥0

or [a, b] ⊂ R≥0, which are denoted by L2
∞([0,∞)) or

L2
∞([a, b]), respectively, with the norm given by the essential

supremum denoted by ‖x‖L∞ for an essentially bounded

function x. A function β : R≥0 → R≥0 is called a K-

function if it is continuous, strictly increasing and β(0) = 0.

For X,Y Hilbert spaces with inner products 〈·, ·〉X and

〈·, ·〉Y , respectively, a linear operator U : X → Y is called

isometric if 〈Ux1, Ux2〉Y = 〈x1, x2〉X for all x1, x2 ∈ X .

The (Hilbert) adjoint operator is denoted by U∗ : X → Y

and satisfies 〈Ux, y〉Y = 〈x, U∗y〉X for all x ∈ X and y ∈
Y . Note that U being isometric is equivalent to U∗U = I
(or U∗U = I). The operator U is called an isomorphism if it

is an invertible mapping, i.e., if it is one-to-one. The induced

norm of U (provided it is finite) is denoted by ‖U‖X,Y =

supx∈X\{0}
‖Ux‖Y

‖x‖X
. If the induced norm is finite we say U

is a bounded linear operator. If X = Y we write ‖U‖X and

if X,Y are clear form the context we use the notation ‖U‖.

To an infinite sequence of Hilbert spaces {Xk}k∈N, we

can associate a Hilbert space �2({Xk}k∈N) consisting of

infinite sequences x̃ = (x̃0, x̃1, x̃2, ...), with x̃k ∈ Xk, k ∈
N, satisfying

∑∞
i=0 ‖x̃i‖2Xi

< ∞, and the inner product

〈x̃, ỹ〉�2({Xk}k∈N) =
∑∞

i=0〈x̃i, ỹi〉Xi
. In case Xk = V for

all k ∈ N, we also write �2(V ) for short. We denote �2(R
n)

by �2 when n ∈ N≥1 is clear from the context. We also

use the notation �({Xk}k∈N) to denote the set of all infinite

sequences x̃ = (x̃0, x̃1, x̃2, ...) with xk ∈ Xk, k ∈ N.

Consider the discrete-time system of the form[
ξk+1

rk

]
∈ ψ(ξk, vk) (11)

with vk ∈ V , rk ∈ R, ξk ∈ R
nξ , k ∈ N, with V and R

Hilbert spaces and ψ : Rnξ × V ⇒ R
nξ ×R.

Definition III.1 The discrete-time system (11) is said to

have an �2-gain from v to r smaller than γ if there exist a

γ0 ∈ [0, γ) and a K-function β such that, for any v ∈ �2(V )
and any intial state ξ0 ∈ R

nξ , the corresponding solutions

to (11) satisfy ‖r‖l2(R) ≤ β(‖ξ0‖) + γ0‖v‖l2(V ). The

terminology γ-contractivity is used if this property holds.

Moreover, 1-contractivity is also called contractivity (in �2-

sense).

Definition III.2 The discrete-time system (11) is said to be

internally stable if there is a K-function β such that, for any

v ∈ �2(V ) and any initial state ξ0 ∈ R
nξ , the corresponding

solutions ξ to (11) satisfy ‖ξ‖�2 ≤ β(max(|ξ0|, ‖v‖�2(V ))).

IV. STABILITY AND CONTRACTIVITY NOTIONS

In this paper, we will focus on both internal stability and

the question if the L2-gain of (1) is smaller than 1, called

contractivity. Note that by proper scaling of C and D in

(1), it can be determined from contractivity properties if the

L2-gain is smaller than any other value of γ ∈ R>0 as well.

In fact, we define three notions of internal stability and

contractivity, depending on restrictions regarding the set of

initial states, especially on the initial condition of τ . We

will use (τ0, ξ0) for the initial value of (τ, ξ) and write

S(τ0, ξ0, w) for the set of maximal solutions starting at

k(0) = 0 with τ(0) = τ0 and ξ(0) = ξ0 driven by w ∈ L2,

where we assume all signals are left-continuous. See [16] for

the definition of maximal solutions.

Definition IV.1 The hybrid system (1) is said to be con-

tractive, if there exist a γ0 ∈ [0, 1) and a K-function β
such that, for any w ∈ L2, ξ0 ∈ R

nξ , τ0 ∈ [0, h0] any

(ξ, z) ∈ S(τ0, ξ0, w) satisfies

‖z‖L2
≤ β(|ξ0|) + γ0‖w‖L2

. (12)
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If this property holds for τ0 ∈ {0}, or τ0 ∈ {h0} the system

is said to be contractive from the beginning of the flow

(b-contractive) or contractive from the end of the flow (e-

contractive), respectively.

Definition IV.2 The hybrid system (1) is said to be intern-

ally stable if there exist a K-function β such that for any

w ∈ L2, ξ0 ∈ R
nξ , τ0 ∈ [0, h0] any (ξ, z) ∈ S(τ0, ξ0, w)

satisfies

‖ξ‖L2
≤ β(max(|ξ0|, ‖w‖L2

)). (13)

If this property holds for τ0 ∈ {0}, or τ0 ∈ {h0} the system

is said to be internally stable from the beginning of the flow

(b-internally stable) or internally stable from the end of the

flow (e-internally stable), respectively.

In the context of lifting (see Section V below) it is import-

ant to work with a fixed initial time τ(0), which suggests the

consideration of b-contractivity or e-contractivity, although

from a system theoretic point of view one would be interested

in contractivity as this gives the strongest guarantees on the

system properties (as τ(0) ∈ [0, h0] is arbitrary). Therefore,

we study the relationships between these notions.

Proposition IV.3 The following statements are equivalent:
• The hybrid system (1) is internally stable.
• The hybrid system (1) is b-internally stable
• The hybrid system (1) is e-internally stable

Proposition IV.4 Consider the following statements:
(i) The hybrid system (1) is contractive.

(ii) The hybrid system (1) is b-contractive.
(iii) The hybrid system (1) is e-contractive.
Then it holds that

(i) ⇔ (ii) ⇒ (iii).

Moreover, it holds that (iii) implies (i), if the following two
conditions hold:
(1) There is a constant mapping φ and h̄ > 0 such that for

all k ∈ N, φk = φ and hk = h̄,
(2) there is a K-function α such that for all ξ0 ∈ R

nξ there
is a ξ′0 ∈ R

nξ with φ(ξ′0) = ξ0 and |ξ′0| ≤ α(|ξ0|).
Using example V.2 we illustrates a situation for which a

system is e-contractive but not b-contractive (showing (iii)
does not imply (i) in general).

Remark IV.5 When condition (1) is satisfied system (1)

is equal to the class of systems as discussed in [1], [2].

The authors of [1], [2] assume τ(0) = h, and hence solely

consider e-internal stability and e-contractivity, the weakest

of the three notions.

V. INTERNAL STABILITY AND L2-GAIN ANALYSIS

In this section we will analyse the L2-gain and the internal

stability of (1) using ideas from lifting [3], [12], [13], [14],

[15]. As already indicated, in lifting we have to set τ(0) to

a fixed value and natural candidates are τ(0) = 0 or τ(0) =
h0. Interestingly in the earlier works [1], [2], [3] always

τ(0) = h0 was chosen (corresponding to e-contractivity and

e-internal stability). The results in Proposition IV.4 hint upon

the fact that it is better to use τ(0) = 0 corresponding

to b-contractivity and b-internal stability, as we know that

these imply contractivity and internal stability (i.e., for all

τ(0) ∈ [0, h0]) and the fact that the analysis is essentially

not different for the b-versions compared to the e-versions.

For completeness, we provide below necessary and sufficient

conditions for all three notions of internal stability and

contractivity.

A. Lifting

To study e-contractivity, we introduce the lifting operator

We : L2,e[0,∞) → �({L2([0, hk+1])}k∈N) given for w ∈
L2,e[0,∞) by We(w) = w̃ = (w̃0, w̃1, w̃2, ...) with

w̃k(s) = w(tk + s) for s ∈ [0, hk+1] (14)

for k ∈ N, t0 = 0 and tk =
∑k

i=1 hi, k ∈ N≥1. Using

the lifting operator and assuming τ(0) = h0, in line with

e-internal stability and e-contractivity, we can rewrite the

model in (1) as

ξk+1 = Âk+1ξ
+
k + B̂k+1w̃k (15a)

ξ+k ∈ φk(ξk) (15b)

z̃k = Ĉk+1ξ
+
k + D̂k+1w̃k (15c)

in which ξ0 is given and ξk = ξ(t−k ) = lims↑tk ξ(s), k ∈
N≥1 = ξ(tk), (assuming ξ is continuous from the left) for

k ∈ N≥1 and ξ+k = ξ(t+k ) = lims↓tk ξ(s) for k ∈ N, and

w̃ = (w̃0, w̃1, w̃2, ...) = We(w) and z̃ = (z̃0, z̃1, z̃2, ...) =
We(z). Moreover,

Âk : Rnξ → R
nξ B̂k : L2[0, hk] → R

nξ

Ĉk : L2[0, hk] → R
nξ D̂k : L2[0, hk] → L2[0, hk],

are given for x ∈ R
nξ and ω ∈ L2[0, hk] by

Âkx = eAhkx, B̂kω =

∫ hk

0

eA(hk−s)Bω(s)ds (16a)

(Ĉkx)(θk) = CeAθkx (16b)

(D̂kω)(θk) =

∫ θk

0

CeA(θk−s)Bω(s)ds+Dw(θk), (16c)

where θk ∈ [0, hk], k ∈ N.

In the same manner as for e-contractivity, we introduce

the lifting operator Wb : L2,e[0,∞) → �({L2([0, hk])}k∈N)
to study b-contractivity. This lifting operator is given for w ∈
L2,e[0,∞) by Wb(w) = w̃′ = (w̃′

0, w̃
′
1, w̃

′
2, ...) with

w̃′
k(s) = w(t′k + s) for s ∈ [0, hk] (17)

for k ∈ N, and t′k =
∑k−1

i=0 hi, k ∈ N. Using Wb and now

assuming τ(0) = 0, in line with b-internal stability and b-
contractivity, the model in (1) can be rewritten as

ξ′k+1 ∈ φk(Âkξ
′
k + B̂kw̃

′
k) (18a)

z̃′k = Ĉkξ
′
k + D̂kw̃

′
k (18b)

in which ξ′0 is given, ξ′k = ξ(t′+k ) = lims↓tk ξ(s) for

k ∈ N≥1, and w̃′ = (w̃′
0, w̃

′
1, w̃

′
2, ...) = Wb(w) and z̃′ =

(z̃′0, z̃
′
1, z̃

′
2, ...) = We(z).
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By writing the solutions of (1) explicitly, and then com-

paring to the formulas (16) and using that We and Wb are

isometric isomorphisms, it follows that (15) is contractive if

and only if (1) is e-contractive and (18) is contractive if and

only if (1) is b-contractive. Moreover, by extending a result

in [1], we can establish the following proposition:

Proposition V.1 The following statements hold:
• The hybrid system (1) is e-internally stable and e-

contractive if and only if (15) is internally stable and
contractive.

• The hybrid system (1) is (b-)internally stable and
(b-)contractive if and only if (18) is internally stable
and contractive.

• Moreover, in case (1) is internally stable, it also
holds that limt→∞ ξ(t) = 0 and ‖ξ‖L∞ ≤
β(max(|ξ0|, ‖w‖L∞)) for all w ∈ L2, ξ(0) = ξ0 and
τ(0) ∈ [0, h0].

B. Main Result

The following result is an extension of the main result of

[1]. Note that a necessary condition for (1) to be e-contractive

is that the induced gains ‖D̂k‖L2[0,hk] < 1 for all k ∈ N≥1,

and a necessary condition for b-contractivity of (1) is that

the induced gains ‖D̂k‖L2[0,hk] < 1 for all k ∈ N. Note

that for e-contractivity there is no bound ‖D̂0‖L2[0,hk] < 1,

as the section [0, h0] does not play any role. From this it is

easy to come up with an example of an system for which is

e-contractive, but is not b-contractive

Example V.2 Consider the sequence of inter-jump times

{hk}k∈N such that ‖D̂k‖L2[0,hk] < 1, k ∈ N≥1, and

‖D̂0‖L2[0,hk] ≥ 1 holds. From the necessary conditions

mentioned above, it is clear that this system can be e-

contractive, but not b-contractive.

Theorem V.3 Consider system (1) and its e-lifted version
(15) with ‖D̂k‖L2[0,hk] < 1 for all k ∈ N≥1 and b-lifted
version (18) with ‖D̂k‖L2[0,hk] < 1 for all k ∈ N. Define
the discrete-time nonlinear systems[

ξ̄k+1

rk

]
∈
[
Āk+1

C̄k+1

]
φk(ξ̄k) +

[
B̄k+1

0

]
vk (19)

[
ξ̄′k+1

r′k

]
∈
[
φk(Āk ξ̄

′
k + B̄kv

′
k)

C̄k ξ̄
′
k

]
(20)

with
Āk = Âk + B̂kD̂

∗
k(I − D̂kD̂

∗
k)

−1Ĉk (21a)

and Bk ∈ R
nξ×nv and Ck ∈ R

nr×nξ are chosen such that

B̄kB̄
�
k = B̂k(I − D̂∗

kD̂k)
−1B̂∗

k and

C̄�
k C̄k = Ĉ∗

k(I − D̂kD̂
∗
k)

−1Ĉk

(21b)

• The system (1) is e-internally stable and e-contractive
if and only if (19) is internally stable and contractive.

• The system (1) is (b-)internally stable and
(b-)contractive if and only if (20) is internally
stable and contractive.

Remark V.4 The operators B̂kD̂
∗
k(I−D̂kD̂

∗
k)

−1Ĉk, B̂k(I−
D̂∗

kD̂k)
−1B̂∗

k , and Ĉk(I − D̂kD̂
∗
k)

−1Ĉk need to be de-

termined in order to explicitly compute the discrete-time

systems (19) and (20). Assuming that ‖D̂k‖L2[0,hk] < 1 is

satisfied for all k ∈ N the procedures in [17] can be used

to compute the matrices (Āk, B̄k, C̄k) explicitly. To verify

‖D̂‖L2[0,hk] < 1 one can use Lemma 3.2 in [17] or Theorem

13.5.1 in [12].

VI. EXTENDED FRAMEWORK

In this section, we propose an extension to the framework

(1). Using this extension it is possible to model, among

others, the PETC system as discussed in Section II with

varying delays. Moreover, the stability and contractivity

analysis provided for (1) in the sections as above can be

used for the extended framework mutatis mutandis thereby

opening up many new applications for which an exact L2-

gain analysis can be carried out. We envision self-triggered

control [10], [11] to be one of these new applications.

A. Formulation of extended framework

The extended framework is formulated as

d

dt

⎡
⎢⎢⎣
ξ
τ
k
�

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Akξ +Bkw

1
0
0

⎤
⎥⎥⎦ , when τ ∈ [0, �] (22a)

⎡
⎢⎢⎣
ξ+

τ+

k+

�+

⎤
⎥⎥⎦ ∈ φk(ξ)× {0} × {k + 1} × L(k, �, ξ),

when τ = �
(22b)

z = Ckξ +Dkw. (22c)

As an extension to (1), the inter-jump time � is added to the

state of the hybrid system. This variable is constant during

the flow, and changes value at the jumps, according to the

set-valued mapping L : N×F×R
nξ ⇒ F, with F a countable

subset of R>0. Moreover, the matrices Ak, Bk, Ck, and Dk

are dependent on k, instead of constant matrices as in (1).

B. PETC with varying delays and transmission intervals

Using the framework (22) the PETC systems of Sec-

tion II can be extended to PETC systems that have

varying transmission intervals such that h̄m ∈ H :=
{h̃1, h̃2, ..., h̃nh

}, m ∈ N, and varying delays such that

τm ∈ D := {d1, d2, ..., dnd
}, m ∈ N. The set H contains

the nh ∈ N possible transmission intervals, h̃i ∈ R≥0, i ∈
{1, 2, ..., nh}. The set D contains the nd ∈ N possible delays,

dj ∈ R≥0, j ∈ {1, 2, ..., nd}, and satisfies the small delay

assumption dj ≤ h̃i, i ∈ {1, 2, ..., nh}, j ∈ {1, 2, ..., nd}
We can now define the map L : N × F ⇒ F, which is

dependent only on k and � as

L(k, �) =

{
{d1, d2, ..., dnd

} when k is odd

{h̃1 − �, ..., h̃nh
− �} when k is even

(23)

with F := {d1, ..., dnd
, h̃1 − d1, ..., h̃nh

− d1, ..., h̃1 −
dnd

, ..., h̃nh
− dnd

, }. Interpreting L reveals that when k is
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odd the inter-jump time is selected out all the possible delays,

and when k is even the inter-jump time is defined as one of

the possible transmission intervals minus the delay chosen

at the previous jump. Moreover, the matrices Ak, Bk, Ck,

Dk are constant, i.e. Ak = A, Bk = B, Ck = C, Dk = D,

k ∈ N, and φu and φt, are the same as in Section II.

For all of these systems fitting (24) we can carry out a

stability and L2-gain analysis along the lines of the previous

Sections IV and V. We will illustrate this in the next section

for a PETC system with variable delays as in Section VI-B.

VII. MAIN RESULTS EXPLOITED FOR PETC SYSTEMS

WITH VARYING DELAYS

For several important applications, including the PETC

systems with delays mentioned in Section VI-B, the sequence

of inter-jump times is defined by (23), with a corresponding

linear mapping φu as in (9) and a PWL mapping φt as

specified in (10). We will show that e-internal stability and

e-contractivity analyses can be performed using an arbitrarily

switching PWL discrete-time system in line with (19). Where

in Section II the delay is constant, we now use the results

from Section VI and consider varying delays, and constant

transmission intervals, i.e., D := {d1, d2, ..., dnd
} and H :=

{h̄}.
First we define the state χm := ξ̄2m(= ξ(mh̄)) ∈ R

nχ ,

with nχ = nξ, input wm :=
[
v�2m v�2m+1

]�
, and output

zm :=
[
r�2m r�2m+1

]�
. Using this and applying the ideas

from Section IV and V for the extended framework show
that the e-internal stability and e-contractivity of (22) is equi-
valent to the internal stability and contractivity of (after an
additional discrete-time lifting of the corresponding extended
system (19)), leads to the switched PWL system

χm+1 =

{
A1lmχm +Blmwm when χ�

mQχm > 0

A2lmχm +Blmwm when χ�
mQχm ≤ 0

(24a)

zm =

{
C1lmχm +Dlmwm when χ�

mQχm > 0

C2lmχm +Dlmwm when χ�
mQχm ≤ 0,

(24b)

lm ∈ {1, 2, ..., nd}, m ∈ N, (note that lm switches

arbitrarily) with Ail = Ah
l J0A

τ
l Ji, Bl =

[
Ah

l J0B
τ
l Bh

l

]
,

Cil =

[
Cτ

l Ji
Ch

l J0A
τ
l Ji

]
, Dl =

[
O O

Ch
l J0B

τ
l O

]
, i = 1, 2, l ∈

{1, 2, ..., nd}. Note that here we denoted the operators corres-

ponding to � = dl, l ∈ {1, 2, ..., dnd
} with (Aτ

l , B
τ
l , C

τ
l ), l ∈

{1, 2, ..., nd}, and the operators corresponding to � = h̄ −
dl, l ∈ {1, 2, ..., nd} with (Ah

l , B
h
l , C

h
l ), l ∈ {1, 2, ..., nd}.

To guarantee the internal stability and contractivity of (24),

an effective approach is to use versatile piecewise quadratic

Lyapunov/storage functions [18] of the form

V (χ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
χ�P pl

1 χ with p = min{q ∈ {1, ..., N}|χ ∈ Ωq}
l ∈ {1, 2, ..., nd} when χ�Qχ > 0

χ�P pl
2 χ with p = min{q ∈ {1, ..., N}|χ ∈ Ωq}

l ∈ {1, 2, ..., nd} when χ�Qχ ≤ 0
(25)

based on the regions

Ωp := {χ ∈ R
nχ |Xpχ ≥ 0}, p ∈ {1, ..., N} (26)

in which the matrices Xp, p ∈ {1, ..., N}, are such that

{Ω1,Ω2, ...,ΩN} forms a partition of Rnχ , i.e.,
⋃N

p=1 Ωp =
R

nχ and the intersection of Ωp

⋂
Ωq is of zero measure for

all p, q ∈ {1, ..., N} with p 
= q.

To establish contractivity of (24) we will use the dissipa-

tion inequality [19]

V (χm+1)− V (χm) ≤ −r�mrm + v�mvm, m ∈ N (27)

and require that it holds along the trajectories of the system

(24). This condition can be translated into sufficient LMI-

based conditions using three S-procedure relaxations [20]:

Theorem VII.1 If there exist symmetric matrices P pl
i ∈

R
nχ×nχ , scalars apli , cpqlκij , dpqlκij ∈ R>0, and symmetric

matrices Epl
i , Upqlκ

ij , W pqlκ
ij ∈ R

nχ×nχ

≥0 , i, j ∈ {1, 2}, p, q ∈
{1, 2, ..., N}, l, κ ∈ {1, 2, ..., nd} such that[

P pl
i + (−1)iapli Q−XpE

pl
i Xp

]
� 0, and (28a)

[
P pl
i − C�

il Cil −A�
ilP

qκ
j Ail −C�

il Dl −A�
ilP

qκ
j Bl

−D�
l Cil −B�

l P qκ
j Ail I −D�

l Dl −B�
l P qκ

j Bl

]

+

[
(−1)icpqlκij Q+ (−1)jdpqlκij A�

ilQAil (−1)jdpqlκij A�
ilQBl

(−1)jdpqlκij B�
l QAil (−1)jdpqlκij B�

l QBl

]

−
[
X�

p Upqlκ
ij Xp +A�

ilX
�
q W pqlκ

ij XqAil A�
ilX

�
q W pqlκ

ij XqBl

B�
l X�

q W pqlκ
ij XqAim B�

l X�
q W pqlκ

ij XqBl

]
� 0

(28b)

hold for all i, j ∈ {1, 2}, p, q ∈ {1, 2, ..., N} and l, κ ∈
{1, ..., nd}, then the switched discrete-time PWL system (24)

is internally stable and contractive.

Due to our main results we have that the LMIs (28) also

guarantee the internal stability and e-contractivity of the

PETC systems as discussed in Section II with time-varying

delays (assuming that ‖D̂k‖L2[0,hk] < 1 for all k ∈ N≥1).

In order to study internal-stability and b-contractivity similar

LMIs to (28) can be proposed.

VIII. NUMERICAL EXAMPLE

In this example the plant⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

d

dt
xp(t) =

[
1 2

−2 1

]
xp(t) +

[
0

1

]
u(t) +

[
1

1

]
w(t)

y(t) = xp(t)

z(t) =
[
0 1

]
xp(t)

(29)

will be controlled using a PETC strategy with controller

u(t) = Kŷ(t) (30)

and ŷ specified by (4), in which K =
[−0.45 −3.25

]
.

At sampling times tm = mh̄, m ∈ N (τ(0) = h0), with

h̄ = 0.40, the output y will be transmitted when ‖Kŷ(tm)−
Ky(tm)‖ > ρ‖Kŷ(tm)‖ with ρ ≥ 0. This corresponds to

Q = Y �
[
(1− ρ2)K�K −K�K
−KTK K�K

]
Y (31)

in the function φt given in (10).
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To study the internal stability and the L2-gain (γ-

contractivity) of the PETC system in the form (22) we de-

termine the internal stability and contractivity of the discrete-

time PWL system (24) for various scaled valued of C and

D. To perform this analyis we follow the procedure based

on the method discussed in Section VII and the piecewise

quadratic Lyapunov/storage function (25). This results in Fig.

2 for different sets of (varying) delays, and no delay.

Fig. 2. Upper bound of the L2-gain as a function of the triggering
parameter ρ for various sets D.

IX. CONCLUSIONS

In this paper, we studied the internal stability and L2-gain

of a hybrid system with linear flow dynamics, aperiodic flow

times, and time-varying nonlinear set-valued jump maps.

This class of hybrid systems is relevant for various applic-

ations that include communication delays. We introduced

new notions of internal stability and contractivity depending

on the initial conditions. It is concluded that all three

internal stability notions are equivalent. However, the notion

of contractivity from the end of the flow (e-contractivity)

as adopted in [1], [2], [3] appears to be a weaker notion

than the other two notions (b-contractivity and contractivity).

In addition, we proposed an extension to the framework

(1), which encompasses new applications in areas such as

PETC systems with varying delays and self-triggered control.

We established that the internal stability and contractivity

properties of these hybrid systems (and their extensions)

are equivalent to the internal stability and contractivity of

an appropriate time-varying discrete-time nonlinear system.

Through a numerical example, it was shown how stability

and contractivity analyses can be carried out for PETC

systems with varying delays.
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