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Abstract— Hybrid integrator-gain systems (HIGS) are hybrid
control elements used to overcome fundamental performance
limitations of linear time-invariant feedback control, and have
enjoyed early engineering successes in mechatronic applications
such as control of high-precision motion systems. However, the
development of discretized versions of HIGS and their sampled-
data analysis have not been addressed in the literature so far.
This paper presents a discrete-time version of HIGS, which
preserves the main philosophy behind the operation of HIGS
in continuous time. Moreover, stability criteria are presented
that can be used to certify input-to-state stability of discrete-
time and sampled-data HIGS-controlled systems based on both
(i) (measured) frequency response data, and (ii) linear matrix
inequalities (LMIs). A numerical case study demonstrates the
use of the main results.

I. INTRODUCTION

Hybrid integrator-gain systems (HIGS) are hybrid control
elements that have been shown to be effective tools in
realizing performance beyond the limitations of linear time-
invariant (LTI) control [18], [21]. Extensive research has
led to several fruitful results for HIGS and HIGS-based
control design in terms of mathematical formalization, well-
posedness and stability analysis [3], [13], [14], [17], [19],
overcoming fundamental limitations of LTI control [18],
[21], and improving closed-loop performance of control
systems [2], [5], [16], [20]. Thus far the literature related
to HIGS, however, has not treated important aspects related
to the development of discrete time versions of HIGS and
analysis of sampled-data HIGS-based controllers, which we
aim to address in this paper. Given that nowadays almost all
controllers are implemented digitally, this forms an important
topic of research for HIGS and HIGS-based control design.

Generally speaking, there exist three main approaches
for the design of digital controllers for continuous-time
(CT) plants. These are [11]: (i) the continuous-time design
approach (abbreviated as CTD), in which CT controllers are
designed based on a CT model of the plant and subsequently
discretized and implemented (often at a high sampling rate);
(ii) the discrete-time approach (abbreviated as DTD), in
which a discrete-time (DT) controller is designed based on a
DT model of the plant (ignoring the inter-sample behavior);
and (iii) the sampled-data design approach (abbreviated as
SDD), in which a discrete-time controller is designed based
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on a CT model of the plant (thus directly including the inter-
sample behavior). All these approaches are of interest for
sampled-data HIGS-based control. In this work, we focus on
the DTD approach, which is typically easier to apply in prac-
tice compared to the SDD approach, and has the advantage
of providing direct guarantees on DT closed-loop behavior
(in contrast to the CTD approach) that, under appropriate
conditions, can also be used to provide guarantees when
taking the inter-sample behavior into account [12], as will
be shown in this paper.

Our contributions are fourfold. As a first contribution, we
present a DT version of HIGS, which preserves the essential
characteristics and the main philosophy behind the operation
of HIGS in continuous-time. We present two sets of stability
criteria that can be used to certify input-to-state stability
(ISS) of systems consisting of DT HIGS-based controllers
and a DT LTI plant. These two sets of ISS criteria are based
on (i) (measured) frequency response data, and (ii) linear
matrix inequalities (LMIs), forming the second and third
contributions of the paper, respectively. We also show that
the LMIs are guaranteed to provide less conservative results
compared to the frequency-domain criterion as satisfaction
of the latter implies feasibility of a special case of the
LMIs. As a fourth contribution, it is shown that DT ISS
guarantees imply also ISS of sampled-data HIGS-controlled
systems consisting of DT HIGS-based controllers and a CT
LTI plant (including the inter-sample behavior). A numerical
case study is also provided, to illustrate the results.

The remainder of the paper is organized as follows.
Section II contains a short introduction to CT HIGS and
its main motivation. Section III introduces DT HIGS. In
Section IV the closed-loop system under consideration is
described. Stability criteria in frequency and time-domain
are presented in Sections V and VI, respectively. Section
VII extends the DT stability analysis to sampled-data HIGS-
controlled systems. This is followed by a numerical example
and conclusions in Sections VIII and IX, respectively.

The following notation conventions will be used. We
denote a real, symmetric matrix A ∈ Rn×n by A ∈ Sn×n.
Given a symmetric matrix A ∈ Sn×n we say that it is positive
(negative)-definite, denoted by A ≻ (≺)0 , if x⊤Ax > (<) 0
for all x ∈ Rn \{0}. We write A ∈ Sn×n

≥0 , if A is symmetric
and all its elements are non-negative. The inequality symbols
>, ≥, <, ≤ for a vector are understood component-
wise. For a vector x ∈ Rn we denote its p norm in Rn by
∥x∥p. We write ∥x∥ for the standard Euclidean norm. For a
matrix A ∈ Rn×m we use ∥A∥∞ = max1≤i≤m

∑n
j=1|aij |,

where |aij | denotes the absolute value of the element in the
ith row and jth column of A. For a bounded function u :
R≥0 → Rn, we write ∥u∥∞ = supt∈R≥0

∥u(t)∥. Similarly
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for a bounded function w : N → Rn we use the notation
∥w∥∞ = supk∈N∥w(k)∥.

II. CONTINUOUS-TIME HIGS
A CT HIGS element [2], denoted by H , is described by

H :


ẋh(t) = ωhe(t) if (e(t), u(t), ė(t)) ∈ F1,

xh(t) = khe(t) if (e(t), u(t), ė(t)) ∈ F2,

u(t) = xh(t)

(1a)
(1b)
(1c)

with state xh(t) ∈ R, input e(t) ∈ R, time-derivative
ė(t) ∈ R of the input, and output u(t) ∈ R, at time
t ∈ R≥0. The parameters ωh ∈ [0,∞), kh ∈ (0,∞) denote
the integrator frequency and the gain parameter of the HIGS
element, respectively. Moreover, F1 and F2 denote the
regions in R3, where the different subsystems are active. A
HIGS element primarily operates in the so-called integrator
mode (1a). However, the integrator mode dynamics can only
be followed as long as the input-output pair (e, u) of H
remains inside the sector

S :=

{
(e, u) ∈ R2 | eu ≥ 1

kh
u2

}
. (2)

When the pair (e, u) tends to leave S, a switch is made to
the so-called gain mode (1b), keeping the trajectories on the
sector boundary, where u = khe, and thus in S. In particular,
the sets F1 and F2, are given by

F1 := {(e, u, ė) ∈ R3 | (e, u) ∈ S} \ F2, (3)

F2 :={(e, u, ė) ∈ R3 | (e, u) ∈ S ∧ u = khe

∧ ωhe
2 > khėe}.

(4)

As a result of this construction, the input and output of a
HIGS element have the same sign at all times, and, even
more, the input and output remain inside the set S as defined
in (2). This leads to favorable properties in terms of a reduced
phase lag of 38.15 degrees from a describing function
perspective [3], in contrast to the 90 degrees phase lag of
a standard linear integrator. In [18], [21], it was shown how
these features of sign equivalence can be used to overcome
fundamental overshoot performance limitations present in
LTI control, making HIGS a promising control element.
Additionally, HIGS has been shown to offer performance
enhancing properties, for applications such as high-precision
mechatronics [2], [16], [20], and active vibration isolation
systems [5].

III. DISCRETE-TIME HIGS
In this section we introduce a DT HIGS, which preserves

the main characteristics of CT HIGS, and is given by

H :


xh[k] = xh[k − 1] + ωhTse[k] if ξ̃[k] ∈ F̃1,

xh[k] = khe[k] if ξ̃[k] ∈ F̃2,

u[k] = xh[k]

(5a)

(5b)
(5c)

where e[k] ∈ R, xh[k] ∈ R, and u[k] ∈ R denote the
input, state and output of the system, respectively, at time
instant t = kTs, with k ∈ N the discrete time-step, and
Ts ∈ R>0 the sampling period. The decision of which
mode of operation is active is based on the decision variable

ξ̃[k] := (e[k], u−[k], e−[k]) := (e[k], u[k − 1], e[k − 1]),
while the regions where different subsystems are active, are
denoted by F̃1, F̃2 ⊆ R3, which will be specified below.

The DT integrator mode dynamics are given by (5a),
obtained by backward Euler discretization of (1a). Moreover,
the DT gain mode dynamics are given by (5b). Note that
since (1a) has integrator dynamics, both its backward and
forward Euler integration are exact with respect to the
integration of the state ( since e0 = I), and thus, the choice
between backward and forward Euler discretization, only
influences the approximation of the input term used on the
right-hand-side of (5a), i.e., e[k] for backward Euler and
e[k − 1] for forward Euler.

As in the case of CT HIGS, given an input e, a DT
HIGS element is designed to primarily operate in the in-
tegrator mode (5a), while generating an output u such that
(e[k], u[k]) ∈ S, for all k ∈ N, with S as defined in (2).
We assume that (e[0], u[0]) ∈ S, which, given e[0], can
always be arranged by a proper choice of xh[0] = u[0] (e.g.,
xh[0] = u[0] = 0 is always a viable choice). At moments
when the integrator mode dynamics lead to trajectories that
would violate (2), a switch is made to the other mode such
that the resulting input-output pair (e[k], u[k]) ∈ S, for all
k ∈ N. To capture this philosophy, we define

F̃1 :={ξ̃ ∈ R3 | (e−, u−) ∈ S ∧

(u− + ωhTse)e ≥
1

kh
(u− + ωhTse)

2}
(6)

as the region where the integrator mode dynamics (5a) are
active. Note that the second condition defining the set in (6)
uses a one-step ahead prediction of the output u, according
to the integrator mode dynamics (5a). In particular, with F̃1

as defined in (6), given (e[k − 1], u[k − 1]) ∈ S and a new
sample e[k] of the input, the integrator mode dynamics are
active, if the output u[k] to be generated by operation in the
integrator mode satisfies (e[k], u[k]) ∈ S, as computed in
(u− + ωhTse)e ≥ 1

kh
(u− + ωhTse)

2, in (6).
Using a similar reasoning as above, the region where the

gain mode dynamics are active is chosen as the complement

F̃2 :={ξ̃ ∈ R3 | (e−, u−) ∈ S

∧ (u− + ωhTse)e <
1

kh
(u− + ωhTse)

2},
(7)

as it results in operation in the gain mode (5b) only if the
trajectories resulting from the integrator mode (5a) would
violate (2). With the choice of sets F̃1 and F̃2 as in (6)
and (7), the DT HIGS element (5) predominantly operates
in the integrator mode and generates an output u such that
(e[k], u[k]) ∈ S, for all k ∈ N, thereby preserving the main
philosophy behind the operation of CT HIGS (1).

An illustration of the regions F̃1, and F̃2, when kh =
ωh = 1, Ts = 0.5, is provided in Fig. 1. Note that while the
gain mode dynamics (1b) of a CT HIGS element are active
on a lower-dimensional subspace of the (e, u, ė) space (due
to the condition u = khe in (4)), as shown in Fig. 1, both
modes of (5) are active on sets with non-empty interiors.

In the next section we describe the use of DT HIGS in a
DT control setting (with a DT plant) and analyse this system
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Fig. 1: Regions F̃1, and F̃2, in the (e, u−, e−) space.
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Fig. 2: HIGS-controlled closed-loop system.

in Sections V and VI, after which we discuss the sampled-
data control setting (including the inter-sample behavior)
with CT plants in Section VII.

IV. DT CLOSED-LOOP SYSTEM DESCRIPTION

We consider the closed-loop system in Fig. 2, consisting
of a DT LTI system G and a DT HIGS H , as described in
(5). Here, G contains the linear part of the loop, consisting
of the plant to be controlled and possibly LTI parts of the
controller. The system G is given by

G :

{
xg[k] = Agxg[k − 1] +Bgvv[k − 1] +Bgww[k − 1],

e[k] = Cgxg[k]

(8)

with state xg[k] taking values in Rng , output e[k] taking val-
ues in R, control input v[k] in R and exogenous disturbances
w[k] in Rnw , k ∈ N. Moreover, Ag, Bgv, Bgw, and Cg

are real matrices of appropriate dimensions. For the closed-
loop interconnection in Fig. 2, we have the state x[k] =
[x⊤

g [k] x
⊤
h [k]]

⊤ ∈ Rn, where n = ng +1. By combining (5)
and (8), we arrive at the state-space representation

Σ :

{
x[k] = Aix[k − 1] +Biw[k − 1], if ξ̃[k] ∈ F̃i, i ∈ {1, 2}
e[k] = Cx[k],

(9)

for the closed-loop dynamics with

[
A1 B1

]
=

[
Ag −Bgv Bgw

ωhTsCgAg 1− ωhTsCgBgv ωhTsCgBgw

]
,

(10)

[
A2 B2

]
=

[
Ag −Bgv Bgw

khCgAg −khCgBgv khCgBgw

]
, (11)

C =
[

Cg 0
]
. (12)

We study the stability of (9) in the next sections. In doing
so, we adopt the notion of input-to-state stability (ISS) as
defined in Definition 4.1 below.

Definition 4.1: 1 [7] System (9) is said to be input-to-state
stable (ISS) with respect to w, if there exist a KL-function
β : R≥0 × R≥0 → R≥0 and a K-function γ such that, for
each bounded input w : N → Rnw and each initial condition
x0, it holds that

∥x(k, x0, w)∥ ≤ β(∥x0∥, k) + γ(∥w∥∞),

for each k ∈ N, where x(k, x0, w) denotes the trajectory of
system (9), with initial state x0 and input w at discrete-time
instant k.

V. FREQUENCY-DOMAIN STABILITY CONDITIONS

In this section results are presented, which guarantee ISS
of (9), using simple-to-check graphical conditions based on
frequency response functions of the plant model (8). As
frequency response functions are generally easy to measure
in practice (e.g., in mechatronic positioning systems), such
frequency-based conditions for ISS, are appealing to control
practitioners.

Theorem 5.1: Consider system (9) with (Ag, Bgv, Cg) be-
ing a minimal realization. The system is ISS, if

(i) The system matrix Ag is Schur;
(ii) 1

kh
+ Re{W (z)} > 0, for all z ∈ C, |z| = 1, with

W (z) = Cg(zI −Ag)
−1Bgv. (13)

The conditions in Theorem 5.1, resemble the Tsypkin crite-
rion [9], which is the DT analog of the CT circle criterion
[8], for the study of DT absolute stability. However, while
the Tsypkin criterion is concerned with static, memory-less
nonlinearities, DT HIGS is a dynamical system, thereby
requiring additional steps and arguments in the proof.

Theorem 5.1 can be verified using easy-to-measure fre-
quency response functions (FRFs). In particular, condition
(i) can be checked using standard linear control arguments.
For a given value of kh ∈ R>0, checking condition (ii), boils
down to checking whether the Nyquist plot of W (ejω) lies
to the right of the vertical line passing through the point
−1
kh

+ j0 in the complex plane, for all ω ∈ [0, 2π]. Therefore,
checking the conditions in Theorem 5.1 does not require an
analytical model of the plant, which can be hard to obtain
in practice.

VI. TIME-DOMAIN STABILITY ANALYSIS

In this section we present LMI-based conditions that
guarantee ISS of (9), using a multiple Lyapunov function
approach [4]. We exploit the fact that the input-output pair
of the proposed DT HIGS (5) satisfies (2), for all k ∈ N.
In particular, we partition the input-output space of DT
HIGS (5) and allow different Lyapunov functions to be
active within each region of the partition. The partitioning

1A continuous function α : [0,∞) → [0,∞) is said to belong to class
K, if it is strictly increasing and α(0) = 0. A continuous function β :
[0,∞)× [0,∞) → [0,∞) is said to belong to class KL, if for each fixed
s, the mapping r 7→ β(r, s) belongs to class K and, for each fixed r, the
mapping s 7→ β(r, s) is decreasing and β(r, s) → 0 as s → ∞.
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Fig. 3: Partitioning of the input-output space of DT HIGS.

employed in this work is similar to the one used in [20], [22]
for reset control systems and CT HIGS-controlled systems.
More specifically, the input-output e−u plane is partitioned
into N sub-sectors Ci, i ∈ {1, 2, . . . , N}, by choosing N+1
equidistantly spaced angles 0 = θ0 < θ1 < · · · < θN =
arctan (kh), as shown in Fig. 3. Loosely speaking, Ci is
related to the sector [θi−1, θi] in the e− u plane. As shown
in [20], [22], for every pair (e, u) located in Ci one has[

− sin θi−1 cos θi−1

sin θi − cos θi

]
︸ ︷︷ ︸

Ei

[
e
u

]
≥ 0 (14)

for all (e, u) in the first quadrant of the e − u plane, and

Ei

[
e
u

]
≤ 0, for all (e, u) in the third quadrant of the e− u

plane. Moreover, let us note that[
e[k]
u[k]

]
=

[
Cg 0
0 1

]
︸ ︷︷ ︸

C

[
xg[k]
xh[k]

]
. (15)

Therefore, (e, u) ∈ Ci, i ∈ {1, 2, . . . , N}, translates on the
level of states to x ∈ Si, i ∈ {1, 2, . . . , N}, with

Si = {x ∈ Rn | EiCx ≥ 0 ∨ EiCx ≤ 0} (16)

with Ei and C defined as in (14) and (15), respectively.
Note that while a CT HIGS element (1) operates in the

gain mode (1b) when u = khe (see (4)) and thus x lies on
the boundary of SN , a DT HIGS (5) can operate in both the
integrator mode (5a) as well as the gain mode (5b) when
x ∈ Si, for all i ∈ {1, ..., N}. However, after operation in
the gain mode, the trajectories do lie on the boundary of
SN . Moreover, another subtlety that arises in the DT setting
is that due to the DT nature of the dynamics, the solutions
to the system can jump over sub-sectors, e.g., at t = kTs

x[k] ∈ S1, and at t = (k + 1)Ts, x[k + 1] ∈ S3. Such
a scenario is not encountered in CT due to the continuous
evolution of solutions.

Theorem 6.1: Consider the system in (9). Suppose there
exist symmetric matrices Wi, U1,ij , U2,i, Y1,ij , Y2,i ∈ S2×2

≥0

and Pi ∈ Sn×n , for i, j ∈ {1, 2, . . . , N}, such that

Pi − C
⊤
E⊤

i WiEiC ≻ 0, (17)

A⊤
1 (Pj + C

⊤
E⊤

j Y1,ijEjC)A1 − Pi + C
⊤
E⊤

i U1,ijEiC ≺ 0,
(18)

A⊤
2 (PN + C

⊤
E⊤

NY2,iENC)A2 − Pi + C
⊤
E⊤

i U2,iEiC ≺ 0.
(19)

Then the closed-loop system (9) is ISS.
The strength of Theorem 5.1 lies in the fact that it can

be verified based on graphical evaluations of FRF measure-
ments. However, this Theorem only makes use of sector
boundedness of the input-output pair of the HIGS element
H and does not exploit specific knowledge related to the
internal dynamics of the HIGS element, making it possibly
conservative. Moreover, Theorem 5.1 concludes stability of
the closed-loop system on the basis of the existence of
a common quadratic Lyapunov function. Theorem 6.1 on
the other hand, makes extensive use of specific knowledge
related to the internal HIGS dynamics and conclude stability
on the basis of the existence of multiple Lyapunov functions.
Consequently, Theorem 5.1. The downside of the LMI-based
stability conditions with respect to the frequency domain
condition is that they rely on parametric models of the
underlying system which are not always easy to obtain.
Additionally, in case the LMIs are infeasible, it is not clear
how the controller parameters should be tuned to render the
LMIs feasible.

We now state a result relating the satisfaction of the
frequency-domain conditions in Theorem 5.1 to the feasi-
bility of the LMIs in Theorem 6.1.

Theorem 6.2: Under minimality of (Ag, Bgv, Cg), satis-
faction of the conditions in Theorem 5.1 implies feasibility
of the LMIs in Theorem 6.1 with N = 1, Wi = Y1,ij =

Y2,i = 02×2, U1,ij = U2,i = U = 1
α

[
0 1
1 0

]
, and P =[

Pg 0
0 µ

]
, where Pg ∈ Sng×ng is a positive-definite matrix

and µ ∈ R>0, α = sin(arctan(kh)).
As a result of Theorem 6.2, Theorem 5.1 will yield more con-
servative results compared to Theorem 6.1, due to certifying
ISS on the basis of the existence of a common quadratic
Lyapunov function (with a particular structure), as well as
the particular choice of the S-procedure relaxations.

VII. SAMPLED-DATA ISS GUARANTEES

In the previous sections, stability criteria were presented
that can be used to guarantee ISS for closed-loop HIGS-
controlled systems in DT (ignoring inter-sample behavior).
In this section we show that DT ISS, implies ISS of sampled-
data HIGS-controlled systems, thus also taking into account
the inter-sample behavior, building on ideas in [15]. Consider
the interconnection in Fig. 4 consisting of a CT linear plant
P , and a general DT nonlinear controller ϕ (e.g., a HIGS-
based controller), interconnected via a sampler and a zero-
order hold device.

Here, the plant is given by

P :

{
ẋp(t) = Apxp(t) + Bpuup(t) + Bpdd(t),

y(t) = Cpxp(t)
(20)
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P
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ZOH

d(t)

ϕ

y(t)

y[k]up[k]

up(t)

Fig. 4: CT plant P and sampled-data nonlinear controller.

with Ap, Bpu, Bpd, Cp real matrices of appropriate dimen-
sions, xp(t) ∈ Rnp the state of the plant, up(t) ∈ Rnu and
d(t) ∈ Rnd the control input and the input disturbances,
respectively, and y(t) ∈ Rny the plant output, at time
t ∈ R≥0. The nonlinear controller ϕ is of the general form

ϕ :

{
xϕ[k] = f(y[k], y[k − 1], xϕ[k − 1]),

up[k] = h(xϕ[k])
(21)

with xϕ[k] ∈ Rnϕ , up[k] ∈ Rnu , y[k] ∈ Rny denoting its
state, output and input, respectively, and f : Rny × Rny ×
Rnϕ → Rnϕ , h : Rnϕ → Rny , at discrete time k ∈ N,
corresponding to time instants t = kTs with Ts the sampling
period, as before. Note that the class of systems described by
(21) includes as a particular case, HIGS-based controllers as
shown in Fig. 5, consisting of a DT HIGS element (5) and
DT LTI controllers Ci, i ∈ {1, 2, 3}. Analysis of the system

H

C1

C2C3
y[k]up[k]

ϕ

e[k]u[k]

Fig. 5: The controller ϕ in the case of HIGS-based control.

in Fig. 4 by following the DTD approach (cf. Sections V and
VI), requires a DT model of the plant P (20), which can be
obtained via exact ZOH discretization of (20), leading to

P :

{
xp[k] = Apxp[k − 1] +Bpup[k − 1] + w[k − 1],

y[k] = Cpxp[k]
(22)

with Ap := eApTs , Bp :=
∫ Ts

0
eApτdτBpu, w[k − 1] :=∫ kTs

(k−1)Ts
eAp(kTs−τ)Bpdd(τ)dτ, Cp := Cp. Considering

(22), we obtain the exact DT model

xsd[k] =

[
Apxp[k − 1] +Bph(xϕ[k − 1]) + w[k − 1]

f(Cpxp[k], Cpxp[k − 1], xϕ[k − 1])

]
,

y[k] =
[
Cp 0

]
xsd[k] (23)

with xsd[k] =
[
x⊤
p [k] x⊤

ϕ [k]
]⊤

for the system in Fig. 4.
Using this exact model, we can formulate a corollary of
Theorem 6 in [12], which can be used for concluding (CT)
ISS of the sampled-data system under consideration, based
on DT ISS of (23). See [15] for definition of ISS for CT
systems.

Corollary 7.1: Suppose the DT system (23) is ISS with
respect to the DT disturbance w. Then, the sampled-data

system in Fig. 4, is ISS with respect to the CT disturbance
d.
For the case where ϕ is a HIGS-based controller as in Fig.
5, (23) is given by (9). Thus, as a result of Corollary 7.1,
one may conclude ISS of the resulting sampled-data HIGS-
controlled system using Theorem 5.1 and Theorem 6.1.

Remark 7.1: For a stabilizing controller of (20) to ex-
ist, stabilizability of (Ap,Bpu) as well as detectability of
(Ap, Cp) are required [6]. Moreover, as shown in [1], [10],
in order to avoid the loss of these properties as a result of
sampling, and thus for the existence of a DT stabilizing
controller of (20), the sampling period Ts should be non-
pathological (see [1], [10] for a detailed explanation on
this topic) with respect to Ap. As such, these conditions
are necessary for the satisfaction of the stability criteria in
Sections V and VI.

VIII. NUMERICAL EXAMPLE

Consider the interconnection in Fig. 4, where P is a mass-
spring-damper system with transfer function

P(s) =
1

ms2 + bs+ k
, (24)

and mass m = 1 kg, damping coefficient b = 0.0564 Ns/m
and stiffness coefficient k = 1 N/m. Moreover, the controller
ϕ is as depicted in Fig. 5, with C1(z) = 0, C2(z) = 1 and
C3(z) = C(z) a linear lead filter, obtained by discretization
of C(s) = 1.4 s+5

s+6.95 , using zero-pole matching. Let us first
consider a sampling time of Ts = 0.001s (also used for the
discretization of C(s)). To evaluate ISS of the DT closed-
loop system using Theorem 5.1, note that the poles of the
linear part of the system Plin(z) = P (z)C(z), with P (z)
the ZOH discretization of (24), are within the unit circle
and thus condition (i) in Theorem 5.1 is satisfied. Checking

Fig. 6: Nyquist diagram of P (z)C(z).

the condition (ii) in Theorem 5.1, amounts to inspecting the
Nyquist diagram of Plin(e

jω) as shown in Fig. 6, from which
it follows that the closed-loop system is guaranteed to be
ISS for any ωh ∈ (0,∞) and kh ≤ 0.12, by Theorem 5.1.
Indeed, 0.12 is the maximal kh value for which the Nyquist
diagram in Fig. 6 falls to the right side of the vertical line
passing through −1

kh
+ j0, in the complex plain, and thus

satisfies condition (ii) in Theorem 5.1. In addition, the results
obtained from Theorem 6.1 using LMI-based ISS guarantees,
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(a) (b)

Fig. 7: ISS region found by time-series simulations , ISS
(kh, ωh) values returned by Theorem 6.1 (as a function of
the number of partitions N ), the kh value obtained from
Theorem 5.1 , for a sampling time of (a) Ts = 0.001s,
and (b) Ts = 0.25s.

are portrayed in Fig. 7a as a function of the number N of
partitions, N ∈ {1, 2, 4}. Note that Fig. 7a also shows the
range of parameters for which the system is estimated to
be ISS based on extensive time-series simulations. As it can
be seen in Fig. 7a, by using Theorem 6.1, one concludes
stability of (9) for a range of (kh, ωh) well beyond the values
found by application of the frequency-domain conditions in
Theorem 5.1. This is indeed expected as a result of Theorem
6.2.

To illustrate the effect of the sampling period, Fig. 7b
portrays the analysis results obtained with a sampling time
of Ts = 0.25s. Note that for Ts = 0.25s, the simulation-
based estimated ISS region (the grey area) is considerably
smaller than for Ts = 0.001s. This indicates the general
need for the analysis tools presented in this paper as pure
CT analysis (see for example [3]) completely ignores the role
of sampling, which in turn could cause wrong conclusions
regarding stability. Let us also make the observation that even
with a single quadratic Lyapunov function, i.e., for N = 1,
Theorem 6.1 provides a feasible range of (kh, ωh) values
extending well beyond those obtained by Theorem 5.1, which
indicates the strength of the relaxation terms introduced in
Theorem 6.1.

IX. CONCLUSIONS

We have proposed a DT version of HIGS, which preserves
the main characteristics of CT HIGS, namely predominant
operation in the integrator mode while guaranteeing sign
equivalence (sector boundedness) of its input-output pair.
For this DT HIGS element we have presented novel sta-
bility criteria that can be used to conclude ISS using (i)
(measured) frequency response conditions and (ii) LMI-
based conditions. We have also shown that satisfaction of
these stability criteria imply ISS of sampled-data systems
consisting of a CT plant and DT HIGS-based controllers
(including the inter-sample behavior). While the frequency-
domain criteria do not require parametric models and can be
evaluated using easy-to-obtain frequency response data, we
have formally proven that their satisfaction implies feasibility
of a special case of the LMI-based conditions and thus are

more conservative. This has been further illustrated by a
numerical example showing that the LMIs are significantly
less conservative than the frequency-domain criteria. Future
research directions include reduction of the conservatism
associated with the stability analysis, as well as transforming
the presented stability criteria for synthesis of sampled-data
HIGS-based controllers.

REFERENCES

[1] T. Chen and B. Francis. Optimal sampled-data control systems.
Springer, 1995.

[2] D. Deenen, M. F. Heertjes, M. Heemels, and H. Nijmeijer. Hybrid
integrator design for enhanced tracking in motion control. In American
Control Conference, pages 2863–2868, 2017.

[3] D. Deenen, B. Sharif, S. van den Eijnden, H. Nijmeijer, M. Heemels,
and M. F. Heertjes. Projection-Based Integrators for Improved Mo-
tion Control: Formalization, Well-posedness and Stability of Hybrid
Integrator-Gain Systems. 133:109830, 2021.

[4] G. Ferrari-Trecate, F.A. Cuzzola, D. Mignone, and M. Morari. Analy-
sis of discrete-time piecewise affine and hybrid systems. Automatica,
38(12):2139–2146, 2002.

[5] M. F. Heertjes, S. van den Eijnden, B. Sharif, M. Heemels, and
H. Nijmeijer. Hybrid Integrator-Gain System for Active Vibration
Isolation with Improved Transient Response. IFAC-PapersOnLine,
52(15):454–459, 2019.

[6] J. P. Hespanha. Linear systems theory. Princeton university press,
2009.

[7] Z. Jiang and Y. Wang. Input-to-state stability for discrete-time
nonlinear systems. Automatica, 37(6):857–869, 2001.

[8] Hasan K. Khalil. Nonlinear Systems. Prentice Hall, 3rd edition, 2002.
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