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Abstract

Hybrid integrator-gain systems (HIGS) are hybrid control elements used to overcome fundamental performance limitations
of linear time-invariant feedback control, and have enjoyed recent successes in engineering applications such as high-precision
motion systems. However, despite the relevance of digital implementations, the creation of sampled-data versions of HIGS and
their formal analysis have not been addressed in the literature so far, and will form the topic of the present paper. Thereto, we
present discrete-time HIGS elements, which preserve the main philosophy behind the operation of HIGS in continuous time.
Moreover, stability criteria are presented that can be used to certify input-to-state stability of discrete-time and sampled-data
HIGS-controlled systems based on both (i) (measured) frequency response data, and (ii) linear matrix inequalities (LMIs). A
comparison between these stability criteria is presented as well. A numerical case study is provided to illustrate the application
of the main results.
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1 Introduction

Hybrid integrator-gain systems (HIGS) are hybrid con-
trol elements that have been shown to be effective
in overcoming fundamental limitations of linear time-
invariant (LTI) control [31, 33]. Extensive research has
led to several fruitful results for HIGS-based control
design in terms of mathematical formalization, well-
posedness and stability analysis [6, 26, 27], improving
closed-loop performance of control systems, mainly in
the context of high-precision motion control [5, 28, 32],
but also for the consensus of multiagent systems [35].
In addition, in [31, 33] it has been formally shown that
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well-known fundamental limitations of LTI feedback
control wherein overshoot in the step response of the
system is unavoidable for any stabilizing LTI controller,
can indeed be overcome using HIGS-based control. Fi-
nally, let us stress a particularly desirable feature of
HIGS, as characterized by its describing function [5],
which is a 20 dB/decade amplitude decay similar to
that of a linear integrator, while inducing only 38.15
degrees of phase lag (as opposed to 90 degrees in the
linear case). In turn, this improvement in terms of phase
lag hints towards the possibility of designing controllers
capable of achieving the desired closed-loop bandwidth
with a much reduced gain at higher frequencies, thereby
improving closed-loop performance.

Thus far, the literature related to HIGS has pre-
dominantly focused on continuous-time (CT) HIGS-
controlled systems. Obviously, in practice, almost all
controllers are implemented digitally and thus in discrete
time (DT). This leads to a closed-loop configuration
consisting of CT plants, e.g., a high precision motion
system, to be controlled by DT controllers (and sample
and hold elements), and thus, an overall sampled-data
(SD) control system. In this paper, we aim to address
important aspects related to the creation of proper SD
implementations of HIGS-based controllers and their
analysis, which are missing in the current literature ex-
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cept for our preliminary conference version [25] of this
work.

Generally speaking, a large body of literature is available
for SD control, see, e.g., [2,4,8,9], from which three main
approaches can be distinguished. These are [20]:

(1) the continuous-time design approach (abbreviated
as CTD), in which CT controllers are designed
based on a CT model of the plant and the obtained
CT controllers are subsequently discretized and
implemented;

(2) the discrete-time approach (abbreviated as DTD),
in which a discrete-time (DT) controller is designed
based on a DT model of the plant;

(3) the sampled-data design approach (abbreviated as
SDD), in which a discrete-time controller is directly
designed based on a CT model of the plant.

In the CTD approach, while one can benefit from CT
(physical)design/analysis insights and tools, the digital
controller implementation is not considered. Tomake the
CTD work, there is a need for a digital implementation
that approaches the behavior of the (designed) CT con-
troller well. In the literature this approach is also referred
to as emulation. In particular one needs a (i) high sam-
pling rate, and (ii) a consistent discretization of the CT
controller [1,11,12,23,30] such that the solutions to the
DT controller are close to the solutions of the controller
designed in CT, under fast sampling. While fast sam-
pling could be achieved by (expensive) hardware, con-
sistent discretization of HIGS, being a hybrid controller
with a discontinuous vector field, is not straightforward.
The SDD approach (see, e.g., [2, 13]) does not consider
an “approximate” CT model of the implemented digital
controller (as in the CTD approach) and includes the
inter-sample plant behavior in the analysis and design
(as opposed to the DTD approach). However, it is the
most complex approach among the three due to the hy-
brid nature of the system it considers. Additionally, SDD
methods require CT plant models, which are not always
readily available. In many applications, such as control
of high precision motion systems, the plant model is of-
ten obtained by means of data-driven methods and thus
evolves in DT. Therefore, using SDD methods for such
applications is not always a well justified choice [22].

In this paper, motivated also by the reasons above, we
present tools for the analysis of SD HIGS-controlled sys-
tems based on the DTD approach, which is typically
easier to apply in practice compared to the SDD ap-
proach, and can be used in conjunction with DT mod-
els obtained from system identification. Moreover, DTD
methods have the advantage of providing direct guaran-
tees on DT closed-loop behavior (in contrast to the CTD
approach) involving the size of the sampling period in
the analysis and design conditions that can also be used
to provide guarantees when taking the inter-sample be-
havior into account [21]. The latter will be discussed in

this paper as well.

In summary, our contributions are fourfold. As a first
contribution, we present twoDT versions of HIGS, which
preserve the essential characteristics and the main phi-
losophy behind the operation of CT HIGS. As a sec-
ond and third contribution we present two different sta-
bility criteria that can be used to certify input-to-state
stability (ISS) of systems consisting of DT HIGS-based
controllers and a DT LTI plant. These two ISS crite-
ria are based on (i) (measured DT) frequency response
data, and (ii) linear matrix inequalities (LMIs). We also
show that the LMIs are guaranteed to provide less con-
servative results compared to the frequency-domain cri-
terion as satisfaction of the latter implies feasibility of
a special case of the LMIs. As a fourth and final con-
tribution, it is shown that DT ISS implies also ISS of
sampled-data HIGS-controlled systems consisting of DT
HIGS-based controllers and a CT LTI plant (including
the inter-sample behavior). A numerical case study is
also provided to illustrate the results.

The remainder of this paper is organized as follows. Sec-
tion 2 contains preliminary material and a short intro-
duction to CT HIGS and its main motivation. Section
3 introduces our proposed DT HIGS. In Section 4 the
closed-loop system under consideration as well as stabil-
ity criteria in frequency- and time-domain are presented.
Section 5 extends the DT stability analysis to sampled-
data HIGS-controlled systems. This is followed by a nu-
merical example and conclusions in Sections 6 and 7,
respectively.

2 Preliminaries

In this section, we present some preliminary material
that is needed in the sequel.

2.1 Notation and definitions

We note that a matrix A ∈ Rn×n is symmetric by A ∈
Sn×n. Given a symmetric matrix A ∈ Sn×n we say that
it is positive(negative)-definite, denoted by A ≻ (≺)0, if
x⊤Ax > (<) 0 for all x ∈ Rn \ {0}. We write A ∈ Sn×n

≥0 ,
if A is symmetric and all its elements are non-negative.
The inequality symbols >, ≥, <, ≤ for a vector are
understood component-wise. For a vector x ∈ Rn we
denote its p norm in Rn by ∥x∥p. We write ∥x∥ for the
standard Euclidean norm. For a matrix A ∈ Rn×m, we
use ∥A∥∞ := max1≤i≤m

∑n
j=1|aij |, where |aij | denotes

the absolute value of the element in the ith row and jth

column of A. For a bounded function u : R≥0 → Rn, we
write ∥u∥∞ = supt∈R≥0

∥u(t)∥. Similarly for a bounded

function w : N → Rn we use the notation ∥w∥∞ =
supk∈N∥w(k)∥.

2

CONFIDENTIAL. Limited circulation. For review only
Automatica submission 23-0080.3

Preprint submitted to Automatica
Received November 20, 2023 08:38:48 Pacific Time



Definition 1. [17] A function α : [0, a) → [0,∞) is said
to belong to classK, if it is continuous, strictly increasing
and α(0) = 0, it is a K∞ function if it belongs to class K
andα(s) → ∞ as s → ∞. A function β : [0, a)×[0,∞) →
[0,∞) is said to belong to class KL, if, it is continuous
and for each fixed s, the mapping r 7→ β(r, s) belongs
to class K with respect to r and, for each fixed r, the
mapping s 7→ β(r, s) is decreasing with respect to s and
β(r, s) → 0 as s → ∞.

Consider a system of the form

x[k] = f(x[k − 1], w[k − 1]) (1)

with x[k] taking values in Rn and w[k] taking values
in Rm, denoting the state and input, respectively, at
discrete time k ∈ N. Moreover, f : Rn × Rm → Rn is a
function satisfying f(0, 0) = 0.

Definition 2. [16] System (1) is said to be input-to-
state stable (ISS) with respect to w, if there exist a KL-
function β : R≥0 ×R≥0 → R≥0 and a K-function γ such
that, for each bounded input w : N → Rm and each initial
condition x0, it holds that

∥x[k, x0, w]∥ ≤ β(∥x0∥, k) + γ(∥w∥∞),

for each k ∈ N, where x[k, x0, w] denotes the state of
system (1), for initial state x[0] = x0 and input w at
discrete-time instant k.

Definition 3. [10,16] A function V : Rn → R is called
an ISS Lyapunov function for the system (1), if the fol-
lowing holds:

(1) There exist K∞-functions α1 and α2 such that for
all x ∈ Rn

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥). (2)

(2) There exist a K∞-function α3 and a K-function γ,
such that

V (f(x,w))− V (x) ≤ −α3(∥x∥) + γ(∥w∥) (3)

for all x ∈ Rn and all w ∈ Rm.

Theorem 1. The system (1) is ISS in the sense of Defi-
nition 3, if it admits an ISS Lyapunov function as defined
in Definition 3.

Proof. See [10,16] for the proof. 2

2.2 Continuous-time HIGS

A CT HIGS element [5], denoted by H , is described by

H :


ẋh(t) = ωhe(t) if (e(t), u(t), ė(t)) ∈ F1,

xh(t) = khe(t) if (e(t), u(t), ė(t)) ∈ F2,

u(t) = xh(t)

(4a)

(4b)

(4c)

with state xh(t) ∈ R, input e(t) ∈ R, time-derivative
ė(t) ∈ R of the input, and output u(t) ∈ R, at time
t ∈ R≥0. The parameters ωh ∈ [0,∞) and kh ∈ (0,∞)
denote the integrator frequency and the gain parameter
of the HIGS element, respectively. Moreover, F1 and F2

denote the regions in R3, where the different subsystems
are active. A HIGS element primarily operates in the
so-called integrator mode (4a). However, the integrator
mode dynamics can only be followed as long as the input-
output pair (e, u) of H remains inside the sector

S :=

{
(e, u) ∈ R2 | eu ≥ 1

kh
u2

}
. (5)

A visual illustration of the set S is provided in Fig. 2 in
Section 3.2 below. When the pair (e, u) tends to leave S,
a switch is made to the so-called gain mode (4b), keeping
the trajectories on the sector boundary, where u = khe,
and thus in S. In particular, the sets F1 and F2, are
given by

F2 :={(e, u, ė) ∈ R3 | (e, u) ∈ S ∧ u = khe

∧ ωhe
2 > khėe},

(6)

F1 := {(e, u, ė) ∈ R3 | (e, u) ∈ S} \ F2. (7)

As a result of this construction, the sector S is a forward
invariant set for the input-output pair (e, u) of a HIGS
element, which results in e and u having the same sign
at all times. This feature leads to favorable properties
in terms of the reduced phase lag of 38.15 degrees from
a describing function perspective [6], in contrast to the
90 degrees phase lag of a standard linear integrator, as
was already indicated in the introduction. In [31, 33], it
was shown how these features of sign equivalence can
be used to overcome fundamental performance limita-
tions present in LTI control, making HIGS a promising
control element. Additionally, HIGS has been shown to
offer performance enhancing properties, for applications
such as high-precision mechatronics [5,32]. In [6], HIGS
have been mathematically formalized in the framework
of extended projected dynamical systems (ePDS). Using
this description, in [14] existence and forward complete-
ness (i.e., existence of solutions on [0,∞)) of solutions of
ePDS in general and HIGS-controlled systems in partic-
ular has been established (in open-loop and closed-loop
settings as considered in this paper, for bounded, piece-
wise constant inputs).
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3 Discrete-Time HIGS

In this section, we present two DT versions of HIGS,
which preserve the main characteristics and the working
principle of CT HIGS elements as in (4). In particular,
we present DT variants of HIGS that:

(i) operate as a linear DT integrator as long as the re-
sulting DT trajectories satisfy the sector constraint
(5) ;

(ii) switch to other operating regimes only when re-
quired to make the sector S, as in (5), forward in-
variant, i.e., to ensure that the input-output trajec-
tories of DT HIGS satisfy (5) at all discrete times.

For the proposed DT HIGS versions, we will provide
formal analysis tools in Sections 4 and 5.

3.1 DT HIGS: A bimodal version

In this section we present a first DT version of HIGS,
which is obtained by discretization of the individual op-
erating modes of CT HIGS (4) and is given by

H̃ :


xh[k] = xh[k − 1] + ωhTse[k], if ξ[k] ∈ F̃1,

xh[k] = khe[k], if ξ[k] ∈ F̃2,

u[k] = xh[k],

(8a)

(8b)

(8c)

where e[k] ∈ R, xh[k] ∈ R, and u[k] ∈ R denote the in-
put, state and output of the system, respectively, at time
instant t = kTs, with k ∈ N the discrete time-step, and
Ts ∈ R>0 the sampling period. The decision of which
mode of operation is active is based on the decision vari-
able ξ[k] := (e[k], u−[k], e−[k]) := (e[k], u[k−1], e[k−1]),
while the regions where different subsystems are active,
are denoted by F̃1, F̃2 ⊆ R3, which will be specified
below.

The DT integrator mode dynamics are given by (8a), ob-
tained by backward Euler discretization of (4a). More-
over, the DT gain mode dynamics are given by (8b). In
view of specifications (i) and (ii) above, given an input
e, a DT HIGS element should primarily operate in the
integrator mode (8a), while generating an output u such
that (e[k], u[k]) ∈ S, for all k ∈ N, with S as defined in
(5). We assume that (e[0], u[0]) ∈ S, which, given e[0],
can always be arranged by a proper choice of u[0] = xh[0]
(e.g., u[0] = 0 is always a viable choice). Thereto, we
define

F̃1 :={ξ = (e, u−, e−) ∈ R3 | (e−, u−) ∈ S

∧ (u− + ωhTse)e ≥
1

kh
(u− + ωhTse)

2},
(9)

as the region where the integrator mode dynamics (8a)
are active. Note that the second condition defining the
set in (9) is “testing” if operation according to the in-
tegrator mode dynamics (8a), would lead to trajecto-
ries that satisfy the sector constraint, as computed in

(u− + ωhTse)e ≥ 1
kh

(u− + ωhTse)
2, in (9). When this is

not the case, the gain mode dynamics are active, which
leads to the active region

F̃2 :={ξ = (e, u−, e−) ∈ R3 | (e−, u−) ∈ S

∧ (u− + ωhTse)e <
1

kh
(u− + ωhTse)

2},
(10)

as it results in operation in the gain mode (8b) only if
the trajectories resulting from the integrator mode (8a)
would violate (5).

Assumption 1. The parameters ωh, kh, and Ts, are
such that 0 < Ts ≤ kh

ωh
.

Assumption 1 can be easily satisfied by design and en-
sures that (8) always operates in the integrator mode
from zero initial conditions. This is an important prop-
erty, as otherwise, given an input e, a DT HIGS ele-
ment would only operate in the integrator mode if there
has been a sign change in successive input samples. This
is clearly undesirable as the integrator mode should be
the primary mode of operation of DT HIGS. Indeed for
xh[k − 1] = u[k − 1] = 0, the output of the integrator
mode is given by u[k] = ωhTse[k], which under Assump-
tion 1 satisfies (e[k], u[k]) ∈ S.

An illustration of the regions F̃1, and F̃2, when kh =
ωh = 1, Ts = 0.5, is provided in Fig. 1. Note that while

e−

e u− = −ωhTse

u− = (kh − ωhTs)e

u− = khe
−

u−F̃1

F̃2

1

Fig. 1. Regions F̃1, and F̃2, in the (e, u−, e−) space.

the gain mode dynamics (4b) of a CT HIGS element are
active on a subset of a lower-dimensional subspace of the
(e, u, ė) space (see Fig. 3 in [6]) and thus in a region with
empty interior (due to the condition u = khe in (6)), as
shown in Fig. 1, both modes of (8) are active on sets
with non-empty interiors.

3.2 DT HIGS: A trimodal version

In this section, we present an alternative DTHIGSwhich
ensures forward invariance of the sector S by means of

4

CONFIDENTIAL. Limited circulation. For review only
Automatica submission 23-0080.3

Preprint submitted to Automatica
Received November 20, 2023 08:38:48 Pacific Time



projecting the integrator dynamics in (8a) onto the sec-
tor. In view of specification (i) (see the beginning of Sec-
tion 3), we define the primary mode of operation of DT
HIGS as

xh[k] = uint[k] := xh[k − 1] + ωhTse[k],

u[k] = xh[k],
(11)

which is similar to the integrator-mode dynamics (8a),
of the bimodal DT HIGS. As in the case of (8), we as-
sume (e[0], u[0]) ∈ S. Moreover, it is also assumed that
Assumption 1 holds, as it ensures that for zero initial
conditions, the integrator dynamics always produce tra-
jectories that belong to S.

In order to have forward invariance of S, we project the
integrator dynamics along u onto S, leading to

xh[k] =

{
P[0,khe[k]](uint[k]), if e[k] ≥ 0,

P[khe[k],0](uint[k]), if e[k] ≤ 0,

(12a)

(12b)

with uint[k] as defined in (11) andPI(v) := argmina∈I |a−
v|, for a set I ⊆ R. Note that (12) is inspired by the
re-written expression of S as

S ={(e, u) ∈ R2 | e ≥ 0 ∧ u ∈ [0, khe]}∪
{(e, u) ∈ R2 | e ≤ 0 ∧ u ∈ [khe, 0]}.

It is easy to see (as illustrated in Fig. 2) that for e[k] ≥ 0

P[0,khe[k]](v) =


v, if 0 ≤ v ≤ khe[k],

khe[k], if v ≥ khe[k],

0, if v ≤ 0,

(13)

and similar expressions hold for e[k] ≤ 0, i.e.,

P[khe[k],0](v) =


v, if khe[k] ≤ v ≤ 0,

khe[k], if v ≤ khe[k],

0, if v ≥ 0.

(14)

Note that by using a similar reasoning as in Section
3.1, when ξ[k] := (e[k], u−[k], e−[k]) := (e[k], u[k −
1], e[k − 1]) ∈ F̃1, with F̃1 as defined in (9), one has
0 ≤ |uint[k]| ≤ kh|e[k]| and therefore, by solving (12)
the integrator dynamics (11) are obtained. Next, let

us consider the case where ξ[k] ∈ F̃2 with F̃2 as de-
fined in (10). For e[k] ≥ 0 and e[k]−e[k] ≥ 0 (and
thus e−[k] ≥ 0), we have xh[k − 1] = u−[k] ≥ 0
(since (e−[k], u−[k]) ∈ S) which in turn results in

xh[k − 1] + ωhTse[k] ≥ 0. As a result, ξ[k] ∈ F̃2

and e−[k]e[k] ≥ 0, implies uint[k] > khe[k], lead-
ing to P[0,khe[k]](uint[k]) = khe[k]. Similar arguments

can be used for e[k] ≤ 0 to show that if ξ[k] ∈ F̃2

and e−[k]e[k] ≥ 0, then P[khe[k],0](uint[k]) = khe[k].

e

u
u = khe

uint[k]

P[0,khe[k]](uint[k]) = khe[k]

uint[k]
P[0,khe[k]](uint[k]) = 0

uint[k]

P[khe[k],0](uint[k]) = khe[k]

uint[k]
P[khe[k],0](uint[k]) = 0

S

S

Fig. 2. input-output (e, u)-plane of DT HIGS and possible
outcomes of projection.

Therefore, solving (12) leads to xh[k] = khe[k], when

ξ[k] ∈ F 2, with

F 2 := {ξ = (e, u−, e−) ∈ R3 | ξ ∈ F̃2∧ee− ≥ 0}. (15)

Moreover when ξ[k] ∈ F̃2, for e[k] ≥ 0 and e−[k]e[k] ≤ 0
we have xh[k − 1] = u−[k] ≤ 0 (since (e−, u−) ∈ S). As
a result of Assumption 1 we have xh[k−1]+ωhTse[k] ≤
khe[k]. Therefore ξ[k] ∈ F̃2 implies uint[k] < 0 and thus
P[0,khe[k]](uint[k]) = 0. By using similar arguments for
the case where e[k] ≤ 0 we conclude that solving (12)

leads to xh[k] = 0 when ξ[k] ∈ F 3, with

F 3 := {ξ = (e, u−, e−) ∈ R3 | ξ ∈ F̃2∧ee− < 0}. (16)

As a result of the discussions above, solving (12), leads
us to the explicit piecewise linear system representation

H :


xh[k] = xh[k − 1] + ωhTse[k], if ξ[k] ∈ F 1,

xh[k] = khe[k], if ξ[k] ∈ F 2,

xh[k] = 0, if ξ[k] ∈ F 3,

u[k] = xh[k],

(17a)

(17b)

(17c)

(17d)

of the so-called trimodal DTHIGS. An illustration of the
regions F 1, F 2, and F 3, when kh = ωh = 1, Ts = 0.5s,
is provided in Fig. 3.

The response of a CT HIGS element (4) to a sinusoidal
input, is compared to those of DT HIGS elements as in
(8) and (17) in Fig. 4. As it can be seen in Fig. 4, initially
the three responses are similar to each other. After a
zero crossing in the input e, however, the trimodal DT
HIGS (17) element generates an output, which is much
closer to the output of the CT HIGS (4) element, for
finite positive values of Ts. In the next two sections we
will present tools to analyze these two DT versions in
closed-loop settings.
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e−

e u− = −ωhTse

u− = (kh − ωhTs)e

u− = khe
−

u−F 1

F 2

F 3

1

Fig. 3. Regions F 1, F 2, and F 3 in the (e, u−, e−) space.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4. Response of CT and the different DT HIGS elements
with kh = ωh = 1, Ts = 0.04s, to a sinusoidal input.

4 Stability analysis of DT HIGS-controlled sys-
tems

In this section we present stability conditions for DT
HIGS-controlled systems. In particular, conditions are
presented that can be used to certify ISS of DT HIGS-
controlled systems based on both (measured) frequency
response functions (Section 4.2) and LMIs (Section 4.3).
The relation between the two criteria will be discussed
in Section 4.4.

4.1 DT Closed-loop system description

We consider the closed-loop system in Fig. 5, consisting
of a DT LTI system G and a DT HIGS element HDT ,
which can be one of the two versions discussed in the
previous section. Here, G contains the linear part of the
loop, consisting of the plant to be controlled and possibly
LTI parts of the controller. The system G is given by

Σ
G

HDT

v

w
e

u

−

Fig. 5. DT HIGS-controlled closed-loop system.

G :

{
xg[k] = Agxg[k − 1] +Bgvv[k − 1] +Bgww[k − 1],

e[k] = Cgxg[k]

(18)

with state xg[k] taking values in Rng , output e[k] tak-
ing values in R, control input v[k] in R and exogenous
disturbances w[k] in Rnw , at discrete time k ∈ N. More-
over, Ag, Bgv, Bgw, and Cg are real matrices of appro-
priate dimensions. The DT HIGS element HDT is given
by either (8) or (17). For the closed-loop interconnection
in Fig. 5, we have the state x[k] = [x⊤

g [k] x
⊤
h [k]]

⊤ ∈ Rn,
where n = ng+1. In the case whereHDT is given by (8),
by combining (8) and (18), we arrive at the state-space
representation

Σ :

{
x[k] = Aix[k − 1] +Biw[k − 1], if ξ[k] ∈ F̃i, i ∈ {1, 2}
e[k] = Cx[k],

(19)

for the closed-loop dynamics with F̃i, i ∈ {1, 2}, as de-
fined in (9) and (10), and

[A1 B1 ] =

[
Ag −Bgv Bgw

ωhTsCgAg 1− ωhTsCgBgv ωhTsCgBgw

]
,

(20)

[A2 B2 ] =

[
Ag −Bgv Bgw

khCgAg −khCgBgv khCgBgw

]
, (21)

C = [Cg 0 ] . (22)

In the case where the HIGS element HDT is given by
(17), we obtain

Σ :

{
x[k] = Aix[k − 1] +Biw[k − 1], if ξ[k] ∈ F i, i ∈ {1, 2, 3}
e[k] = Cx[k],

(23)

with F i, i ∈ {1, 2, 3}, as defined in (9), (15), and (16),
the matrices Ai, Bi, C, i ∈ {1, 2} as defined in (20), (21),
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(22), and

[
A3 B3

]
=

[
Ag −Bgv Bgw

0 0 01×nw

]
. (24)

In the next subsections, we study ISS of (19) and (23)
as in Definition 2.

4.2 Frequency-domain stability conditions

In this section results are presented, which guarantee ISS
of (19) and (23), using simple-to-check graphical condi-
tions based on frequency response functions. As accurate
frequency response functions can generally be measured
quickly in practice (e.g., in mechatronic positioning sys-
tems), and provide a model dedicated to the system un-
der consideration, such frequency-based conditions for
ISS, are appealing to control practitioners.

Theorem 2. Consider systems (19) and (23) with
(Ag, Bgv, Cg) being a minimal realization. The systems
are ISS, if

i) The system matrix Ag is Schur;
ii) 1

kh
+ Re{W (z)} > 0, for all z ∈ C, |z| = 1, with

W (z) = Cg(zI −Ag)
−1Bgv. (25)

Proof. The proof is based on showing that under the
conditions stated in the theorem, there exists an ISS
Lyapunov function for the systems under consideration,
which by Theorem 1 implies ISS of the underlying sys-
tems. The proof is divided into the following steps:

(i) Initially we use stability of G , implied by i), pos-
itive realness of Cg(zI − Ag)

−1Bgv + 1
kh

, follow-

ing from ii), minimality of (Ag, Bgv, Cg), and the
fact that u[k]e[k] ≥ 1

kh
u2[k] for all k ∈ N, to con-

struct a quadratic ISS Lyapunov function Vg(xg) =

x⊤
g Pgxg, with Pg ≻ 0 for G , by application of the

DT KYP Lemma [3,24].
(ii) For both cases where HDT is given by (8) or (17),

a quadratic Lyapunov-like function Vh(xh) is con-
structed for the DT HIGS HDT in isolation with
input e[k− 1] = Cgxg[k− 1]. By explicit use of the
sector constraint of HDT it is shown that the Lya-
punov function decreases along the trajectories of
the DT-HIGS element.

(iii) The functions Vg and Vh constructed in the previ-
ous steps are combined into a single quadratic ISS
Lyapunov function for the underlying closed-loop
systems, thereby proving the theorem.

Throughout the proof we have dropped time depen-
dence, where clear from the context, to lighten the

notation.
Step 1: It follows from the DT KYP Lemma [3] (some-
times also referred to as the Kalman-Szegö-Popov
Lemma), that the minimality of (Ag, Bgv, Cg), together
with the hypotheses in the Theorem imply the existence
of a symmetric positive definite matrix Pg, a matrix L
and a positive constant ε such that

A⊤
g PgAg − Pg = −L⊤L− εPg,

B⊤
gvPgAg = Cg −

√
2

kh
−B⊤

gvPgBgv L.
(26)

Consider the Lyapunov function Vg(xg) = x⊤
g Pgxg. One

has

∆Vg := Vg(Agxg +Bgvv +Bgww)− Vg(xg)

= (Agxg +Bgvv +Bgww)
⊤Pg(Agxg +Bgvv +Bgww)

− x⊤
g Pgxg = x⊤

g (A
⊤
g PgAg − Pg)xg+

2x⊤
g A

⊤
g PgBgvv + 2x⊤

g A
⊤
g PgBgww+

v⊤B⊤
gvPgBgvv + 2v⊤B⊤

gvPgBgww + w⊤B⊤
gwPgBgww.

Using (26) and v = −xh, yields

∆Vg = x⊤
g (−L⊤L− εPg)xg

− 2x⊤
g (C

⊤
g −

√
2

kh
−B⊤

gvPgBgv L⊤)xh

+ 2x⊤
g A

⊤
g PgBgww + x⊤

hB
⊤
gvPgBgvxh − 2x⊤

hB
⊤
gvPgBgww

+ w⊤B⊤
gwPgBgww

by using the sector constraint (5) ofHDT and reworking
the expression above we get

∆Vg ≤ −εVg(xg)− L̃⊤L̃

+
(
2x⊤

g A
⊤
g PgBgw − 2x⊤

h B
⊤
gvPgBgw + w⊤B⊤

gwPgBgw

)
w

≤ −εVg(xg)+(
2x⊤

g A
⊤
g PgBgw − 2x⊤

h B
⊤
gvPgBgw + w⊤B⊤

gwPgBgw

)
w,

with L̃ =
(
Lxg −

√
2
kh

−B⊤
gvPgBgv xh

)
. Moreover,

note that(
2x⊤

g A
⊤
g PgBgw − 2x⊤

hB
⊤
gvPgBgw + w⊤B⊤

gwPgBgw

)
w

≤ 2λmax(Pg)∥Ag∥∥Bgw∥∥xg∥∥w∥+
2λmax(Pg)∥Bgv∥∥Bgw∥∥xh∥∥w∥+ λmax(Pg)∥Bgw∥2∥w∥2

≤ α1∥xg∥∥w∥+ α2∥xg∥∥w∥+ α3∥w∥2 = α4∥xg∥∥w∥+
α3∥w∥2,

withα1 = 2λmax(Pg)∥Ag∥∥Bgw∥ ,α3 = λmax(Pg)∥Bgw∥2,
α2 = 2λmax(Pg)kh∥Bgv∥∥Bgw∥∥Cg∥, α4 = α1+α2, and
where we have used that ∥xh∥ ≤ kh∥Cg∥∥xg∥. Note that
the latter is a direct consequence of the sector condition
(5). Indeed, as a result of (5) the input and output of
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the HIGS element satisfy ∥xh∥ = ∥uh∥ ≤ kh∥e∥. Noting
that e = Cgxg, we conclude ∥xh∥ ≤ kh∥Cg∥∥xg∥. By
using Young’s inequality, we get

∆Vg ≤ −
(
ελmin(Pg)−

α4

2δ1

)
︸ ︷︷ ︸

c1

∥xg∥2+
(
α4δ1
2

+ α3

)
︸ ︷︷ ︸

c2

∥w∥2.

(27)
Note that both c1 and c2 are both positive, if δ1 is taken
sufficiently large.

Step 2: Consider the quadratic Lyapunov function
Vh(xh) = x2

h, for the isolated DT HIGS element HDT ,
given by (8) or (17). When HDT operates in the inte-
grator mode, i.e., according to (8a) or (17a), we have

∆Vh(xh[k]) := Vh(xh[k])− Vh(xh[k − 1]) =

∆Vh,int(xh[k − 1]) := Vh(xh[k − 1] + ωhTse[k])− Vh(xh[k − 1])

= (xh[k − 1] + ωhTse[k])
2 − x2

h[k − 1] = 2ωhTse[k]xh[k − 1]

+ (ωhTs)
2e2[k]

≤ ωhTsx
2
h[k − 1] + (ωhTs + (ωhTs)

2)e2[k] = −c3x
2
h[k − 1]

+ (c3 + ωhTs)x
2
h[k − 1] + (ωhTs + (ωhTs)

2)e2[k]

(28)

for some c3 > 0, and where we have made use of Young’s
inequality. Once again using the sector constraint (5)
of HDT and applying Young’s inequality for products
yields

∆Vh,int(xh[k − 1]) ≤ −c3∥x2
h[k − 1]∥+

(c3kh + ωhTskh)∥Cg∥2∥xg[k − 1]∥2

+ (ωhTs + (ωhTs)
2)︸ ︷︷ ︸

α̃

∥e[k]∥2.

Note that by using (18) and application of Young’s in-
equality we get

∥e[k]∥2 ≤ (α̃1 + α̃2(kh∥Cg∥2)∥xg[k − 1]∥2 + α̃3∥w[k − 1]∥2,
(29)

with

α̃1 = ∥CgAg∥2 + ∥CgAg∥∥CgBgv∥ + ∥CgAg∥∥CgBgw∥,
α̃2 = ∥CgAg∥∥CgBgv∥ + ∥CgBgv∥2 + ∥CgAg∥∥CgBgw∥,
α̃3 = ∥CgAg∥∥CgBgw∥+ ∥CgBgw∥2 + ∥CgAg∥∥CgBgv∥.

Therefore, we have

∆Vh,int(xh) ≤ −c3∥xh∥2

+
(
(c3kh + ωhTskh)∥Cg∥2 + α̃α̃1 + α̃α̃2kh∥Cg∥2

)︸ ︷︷ ︸
β1

∥xg∥2

+ α̃α̃3︸︷︷︸
γ1

∥w∥2,

where we have dropped the time arguments for ease of
notation.

When HDT operates in the gain mode, i.e., either ac-
cording to (8b) or (17b), we have

∆Vh(xh[k]) := Vh(xh[k])− Vh(xh[k − 1]) =

∆Vh,gain(xh[k − 1]) := x2
h[k]− x2

h[k − 1] = k2
he

2[k]− x2
h[k − 1]

≤ −xh[k − 1]2 + k2
hα̃1∥xg[k − 1]∥2

+ k2
hα̃2k

2
h∥Cg∥2∥xg[k − 1]∥2 + k2

hα̃3∥w∥2

with α̃i, i ∈ {1, 2, 3}, as defined above. As such, we get

∆Vh,gain(xh) ≤
− x2

h +
(
k2hα̃1 + k4hα̃2∥Cg∥2

)︸ ︷︷ ︸
β2

∥xg∥2 + k2hα̃3︸ ︷︷ ︸
γ2

∥w∥2. (30)

Lastly, when HDT is given by (17), and it operates in
the zeroing mode (17c), we have

∆Vh(xh[k]) := Vh(xh[k])− Vh(xh[k − 1]) =

∆Vh,zero(xh[k − 1]) := V (0)− V (xh[k − 1]) = −x2
h[k − 1].
(31)

Hence, for both cases wherein HDT is given by (8) or
(17), one has

∆Vh(xh) ≤ −α∥xh∥2 + β∥xg∥2 + γ∥w∥2, (32)

along all modes of operation, with α = min (1, c3), β =
max (β1, β2), and γ = max (γ1, γ2).

Step 3: Let us now consider the closed-loop system in
Fig. 5. Consider the Lyapunov function

V (xg, xh) = Vg(xg) + µVh(xh) = x⊤Px,

with x =
[
x⊤
g x⊤

h

]⊤
, P =

[
Pg 0

0 µ

]
, and some µ > 0.

Note that P ≻ 0 due to Pg being positive define and µ >
0. As a result of (27) and (32), for the closed-loop system
(19) and (23), the one-step difference in the Lyapunov
function V (xg, xh), given by ∆V (x) := V (Aix+Biw)−
V (x), with i ∈ {1, 2} forHDT as in (8a) and i ∈ {1, 2, 3}
for HDT as in (17a), satisfies

∆V (x) = ∆Vg + µ∆Vh

≤ −(c1 − µβ)∥xg∥2 − µα∥xh∥2 + (c2 + µγ)∥w∥2

≤ −κ1∥x∥2 + κ2∥w∥2,
(33)

with κ1 := min
(
(c1 − µβ), µα

)
, κ2 := c2 + µγ, and µ

sufficiently small such that c1 − µβ > 0. This shows
that V (xg, xh) is an ISS Lyapunov function for both
(19) and (23), thereby concluding the proof. 2
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The conditions in Theorem 2 resemble the Tsypkin cri-
terion [18], which is the DT analog of the CT circle crite-
rion [17] for the study of DT absolute stability. However,
while the Tsypkin criterion is concerned with memory-
less nonlinearities, DT HIGS is a dynamical system with
memory, thereby requiring additional steps and argu-
ments in the proof (particularly step 2 and its integration
with step 1 in step 3). Theorem 2 can be verified using
easy-to-measure frequency response functions (FRFs).
In particular, condition i) can be checked using standard
linear control arguments. For a given value of kh ∈ R>0,
checking condition ii), boils down to checking whether
the Nyquist plot of W (ejω) lies to the right of the verti-
cal line passing through the point −1

kh
+j0 in the complex

plane, for all ω ∈ [0, 2π].

4.3 Time-domain stability analysis

In this section we present LMI-based conditions that
guarantee ISS of (19) and (23) using a multiple Lya-
punov function approach [7]. In doing so, we exploit the
fact that the input-output pairs of the proposed DT
HIGS elements (8) and (17) belong to the set S on (5),
for all k ∈ N. In particular, we partition the input-output
space of the DT HIGS element HDT and allow differ-
ent Lyapunov functions to be active within each region
of the partition. The partitioning employed in this work
is similar to the one used in [19, 32, 34] for reset control
systems and CT HIGS-controlled systems, but is now
extended towards a DT setting. More specifically, the
input-output e−u plane is partitioned intoN sub-sectors
Ci, i ∈ {1, 2, . . . , N}, by choosing N + 1 equidistantly
spaced angles 0 = θ0 < θ1 < · · · < θN = arctan (kh)
(see Fig. 3 in [25]). Loosely speaking, Ci is related to the
sector [θi−1, θi] in the e− u plane. As shown in [32, 34],
for every pair (e, u) located in Ci one has

[
− sin θi−1 cos θi−1

sin θi − cos θi

]
︸ ︷︷ ︸

Ei

[
e

u

]
≥ 0 (34)

for all (e, u) in the first quadrant of the e− u plane, and

Ei

[
e

u

]
≤ 0, for all (e, u) in the third quadrant of the

e− u plane. Moreover, note that the state of the closed-
loop system in Fig. 5, can bemapped to the input-output
pair of HDT according to

[
e[k]

u[k]

]
=

[
Cg 0

0 1

]
︸ ︷︷ ︸

C

[
xg[k]

xh[k]

]
. (35)

Therefore, (e, u) ∈ Ci, i ∈ {1, 2, . . . , N}, translates on
the level of states to x ∈ Si, i ∈ {1, 2, . . . , N}, with

Si = {x ∈ Rn | EiCx ≥ 0 ∨ EiCx ≤ 0} (36)

with Ei and C defined as in (34) and (35), respectively.

We are now ready to state themain results of this section.

Theorem 3. Consider the system (19). Suppose there
exist symmetric matrices Wi, U1,ij , U2,i, Y1,ij , Y2,i ∈
S2×2
≥0 and Pi ∈ Sn×n , for i, j ∈ {1, 2, . . . , N}, such that

Pi − C
⊤
E⊤

i WiEiC ≻ 0, (37)

A⊤
1 (Pj + C

⊤
E⊤

j Y1,ijEjC)A1 − Pi + C
⊤
E⊤

i U1,ijEiC ≺ 0,
(38)

A⊤
2 (PN + C

⊤
E⊤

NY2,iENC)A2 − Pi + C
⊤
E⊤

i U2,iEiC ≺ 0.
(39)

Then the closed-loop system (19) is ISS.

Proof. Due to (36) together with the non-negativity of
the elements inWi, (37) implies that V (x) = x⊤Pix > 0,
when x ∈ Si, i ∈ {1, 2, . . . , N} and x ̸= 0, ensuring posi-
tive definiteness of V . Furthermore, in integrator mode,
one has

∆V ij
1 := V (A1x+B1w)− V (x) =

x⊤(A⊤
1 PjA1 − Pi)x+ 2x⊤A⊤

1 PjB1w + w⊤B⊤
1 PjB1w,

(40)

i, j ∈ {1, . . . , N}, when x ∈ Si and A1x + B1w ∈ Sj .

Note that when x ∈ Si it holds that x
⊤C

⊤
E⊤

i U1,ijEiCx ≥
0 for U1,ij ∈ S2×2

≥0 , and when A1x + B1w ∈ Sj , it holds
that

0 ≤(A1x+B1w)⊤C
⊤
E⊤

j Y1,ijEjC(A1x+B1w) =

x⊤A⊤
1 C

⊤
E⊤

j Y1,ijEjCA1x+ 2x⊤A⊤
1 C

⊤
E⊤

j Y1,ijEjCB1w

+ w⊤B⊤
1 C

⊤
E⊤

j Y1,ijEjCB1w,
(41)

and thus

− x⊤A⊤
1 C

⊤
E⊤

j Y1,ijEjCA1x ≤

2x⊤A⊤
1 C

⊤
E⊤

j Y1,ijEjCB1w + w⊤B⊤
1 C

⊤
E⊤

j Y1,ijEjCB1w
(42)

for Y1,ij ∈ S2×2
≥0 . Due to (38), (40), (42) as well as non-

negativity of the elements of Y1,ij , and U1,ij , by appli-
cation of S-procedure relaxations , we obtain for x ∈ Si,
A1x+B1w ∈ Sj ,

∆V ij
1 ≤ −ϵ1∥x∥2

+ 2x⊤(A⊤
1 PjB1 +A⊤

1 C
⊤
E⊤

j Y1,ijEjCB1)w

+ w⊤(B⊤
1 PjB1 +B⊤

1 C
⊤
E⊤

j Y1,ijEjCB1)w,

(43)

9

CONFIDENTIAL. Limited circulation. For review only
Automatica submission 23-0080.3

Preprint submitted to Automatica
Received November 20, 2023 08:38:48 Pacific Time



for some ϵ1 > 0. Young’s inequality for products yields
now

∆V ij
1 ≤ (−ϵ1 +

1

δ1
)∥x∥2

+ (δ1∥A⊤
1 (Pj + C

⊤
E⊤

j Y1,ijEjC)B1∥2

+ ∥B⊤
1 (Pj + C

⊤
E⊤

j Y1,ijEjC)B1∥)∥w∥2

(44)

with δ1 > 0, sufficiently large (δ1 > 1
ϵ1
, when x ∈ Si, and

A1x + B1w ∈ Sj , i, j ∈ {1, 2, . . . , N}). Next, note that
after operating in gain mode, the state x lies within the
last sub-sector SN , i.e., one always hasA2x+B2w ∈ SN .
Therefore, in the gain mode, one has for x ∈ Si

∆V iN
2 := V (A2x+B2w)− V (x) =

x⊤(A⊤
2 PNA2 − Pi)x+ 2x⊤A⊤

2 PNB2w + w⊤B⊤
2 PNB2w,

(45)

for i ∈ {1, . . . , N}. As a result of (39), noting

that x ∈ Si implies x⊤C
⊤
E⊤

i U2,iEiCx ≥ 0 for

U2,j ∈ S2×2
≥0 , and A2x + B2w ∈ SN implies (A2x +

B2w)
⊤C

⊤
E⊤

NY2,iENC(A2x+B2w) ≥ 0, for Y2,j ∈ S2×2
≥0 ,

using similar arguments as in (41)- (43) and by applica-
tion of S-procedure relaxations and Young’s inequality
for products we get

∆V iN
2 ≤ (−ϵ2 +

1

δ2
)∥x∥2

+ (δ2∥A⊤
2 (PN + C

⊤
E⊤

NY2,iENC)B2∥2

+ ∥B⊤
2 (PN + C

⊤
E⊤

NY2,iENC)B2∥)∥w∥2

(46)

for some ϵ2 > 0 and δ2 > 1
ϵ2
.

Combining (44) and (46) yields

∆V := V (Aix+Biw)− V (x) ≤ −α∥x∥2 + σ∥w∥2,
(47)

for i ∈ {1, 2} with α = minj(ϵj − 1
δj
), j ∈ {1, 2} and

σ = max(β, γ), where

β =max(i,j){δ1∥A⊤
1 (Pj + C

⊤
E⊤

j Y1,ijEjC)B1∥2

+ ∥B⊤
1 (Pj + C

⊤
E⊤

j Y1,ijEjC)B1∥}

γ =maxi{δ2∥A⊤
2 (PN + C

⊤
E⊤

NY2,iENC)B2∥2

+ ∥B⊤
2 (PN + C

⊤
E⊤

NY2,iENC)B2∥}
with i, j ∈ {1, . . . , N}. We thus conclude that V is an
ISS Lyapunov function for (19), thereby completing the
proof. 2

Theorem 3 provides sufficient LMI conditions for certi-
fying ISS of the closed-loop system in Fig. 5, when HDT

is given by the bimodal DT HIGS (8). Next, we provide
similar conditions for the case where HDT is given by
the trimodal DT HIGS (17).

Theorem 4. Consider the system (23). Suppose there
exist symmetric matrices Wi, U1,ij , U2,i, U3,i, Y1,ij , Y2,i,

Y3,i ∈ S2×2
≥0 with non-negative elements, non-negative

scalars τ2i, τ3i ∈ R≥0, and Pi ∈ Sn×n , for i, j ∈
{1, 2, . . . , N}, such that

Pi − C
⊤
E⊤

i WiEiC ≻ 0, (48)

A⊤
1 (Pj + C

⊤
E⊤

j Y1,ijEjC)A1 − Pi + C
⊤
E⊤

i U1,ijEiC ≺ 0,
(49)

A⊤
2 (PN + C

⊤
E⊤

NY2,iENC)A2 − Pi + C
⊤
E⊤

i U2,iEiC

+ τ2iQ ≺ 0, (50)

A⊤
3 (P1 + C

⊤
E⊤

1 Y3,iE1C)A3 − Pi + C
⊤
E⊤

i U3,iEiC

− τ3iQ ≺ 0 (51)

with Q = Ξ+ Ξ⊤ where

Ξ =

 C⊤
g CgAg

−1
2
C⊤

g CgBgv

(−1
2
C⊤

g CgBgv)
⊤ 0

.
Then (23) is ISS.

Proof. As in the case of Theorem 3, due to (36) and the
non-negativity of the elements in Wi, i ∈ {1, . . . , N},
(48) implies that the Lyapunov function V (x) =
x⊤Pix > 0, when x ∈ Si, i ∈ {, . . . , N}, and x ̸= 0,
and is thus positive definite within the sector of HDT .
Following similar arguments as in the proof of Theorem
3, we get

∆V ij
1 := V (A1x+B1w)− V (x)

≤ (−ϵ1 +
1

δ1
)∥x∥2 + (δ1∥A⊤

1 (Pj + C
⊤
E⊤

j Y1,ijEjC)B1∥2

+ ∥B⊤
1 (Pj + C

⊤
E⊤

j Y1,ijEjC)B1∥)∥w∥2,
(52)

with ϵ1 > 0 and δ1 > 1
ϵ1

such that ϵ1 − 1
δ1

is positive. In
the gain mode, we have for x ∈ Si,

∆V iN
2 := V (A2x+B2w)− V (x) =

x⊤(A⊤
2 PNA2 − Pi)x+ 2x⊤A⊤

2 PNB2w + w⊤B⊤
2 PNB2w,

(53)

for i ∈ {1, . . . , N}. Note that according to (15), the gain
mode is followed when

e[k]e[k − 1] =
1

2
x⊤[k − 1]Qx[k − 1]

+ x⊤[k − 1]

[
Ing

0

]
C⊤

g Bgw︸ ︷︷ ︸
S

w[k − 1] ≥ 0.

(54)
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Using (54), and following the same reasoning as in (41)-
(43) in the proof of Theorem 3, we obtain

∆V iN
2 ≤ −(ϵ2 −

1

δ2
)∥x∥2

+ (δ2∥A⊤
2

(
PN + C

⊤
ENY2,iENC

)
B2 + τ2,iS∥2

+ ∥B⊤
2 PNB2 +B⊤

2 E⊤
NY2,iENCB2∥)∥w∥2

(55)

for some ϵ2 > 0 and δ2 > 1
ϵ2

such that ϵ2 − 1
δ2

> 0.

In the zeroing mode, we have for x ∈ Si,

∆V i1
3 := V (A3x+B3w)− V (x) =

x⊤(A⊤
3 P1A3 − Pi)x+ 2x⊤A⊤

3 P1B3w + w⊤B⊤
3 P1B3w,

(56)

for i ∈ {1, . . . , N}. According to (16), the zeroing mode
is followed when

e[k]e[k − 1] =
1

2
x⊤[k − 1]Qx[k − 1]

+ x⊤[k − 1]

[
Ing

0

]
C⊤

g Bgw︸ ︷︷ ︸
S

w[k − 1] < 0.

Using the same reasoning as in (55) we get (also noting
that after operation in the zeroing mode A3x + B3w ∈
S1),

∆V i1
3 ≤ −(ϵ3 −

1

δ3
)∥x∥2

+ (δ3∥A⊤
3

(
P1 + C

⊤
E1Y3,iE1C − τ3,iS

)
B3 − τ3,iS∥2

+ ∥B⊤
3 P1B3 +B⊤

3 E⊤
1 Y3,iENCB3∥)∥w∥2,

(57)

for some ϵ3 > 0 and δ3 > 1
ϵ3

such that ϵ3 − 1
δ3

> 0.

Combining (52) and (55) and (57) yields

∆V := V (Aix+Biw)− V (x) ≤ −α∥x∥2 + σ∥w∥2,
(58)

for i ∈ {1, 2, 3}, α = minj(ϵj − 1
δj
), j ∈ {1, 2, 3}, and

σ = max(β, γ, ζ) with

β =max(i,j){δ1∥A⊤
1 (Pj + C

⊤
E⊤

j Y1,ijEjC)B1∥2

+ ∥B⊤
1 (Pj + C

⊤
E⊤

j Y1,ijEjC)B1∥}

γ =maxi{δ2∥A⊤
2 (PN + C

⊤
E⊤

NY2,iENC)B2 + τ2,iS∥2

+ ∥B⊤
2 (PN + C

⊤
E⊤

NY2,iENC)B2∥},

ζ =maxi{δ3∥A⊤
3 (P1 + C

⊤
E⊤

1 Y2,1E1C)B3 − τ3,iS∥2

+ ∥B⊤
3 (P1 + C

⊤
E⊤

1 Y3,iE1C)B3∥},

where i, j ∈ {1, . . . , N}. We thus conclude that V is an
ISS Lyapunov function for (23), thereby completing the
proof. 2

4.4 The link between the two criteria

Considering the closed-loop system in Fig.5, we have
thus far presented two sets of stability results for
both (19) and (23). In particular, Theorem 2 presents
frequency-domain conditions for certifying ISS (for
both (19) and (23)), while Theorem 3 and Theorem 4,
provide LMI-based conditions for certifying ISS of (19)
(consisting of bimodal DT HIGS) and (23) (consisting
of trimodal DT HIGS), respectively. The strength of
Theorem 2 lies in the fact that it can be verified based
on graphical evaluations of FRF measurements. How-
ever, this theorem only makes use of sector boundedness
of the input-output pair of the HIGS element HDT and
does not exploit specific knowledge related to its dynam-
ics, making it possibly conservative. Moreover, Theorem
2 concludes stability of the closed-loop system on the
basis of the existence of a common quadratic Lyapunov
function (see Step 3 in the proof of Theorem 2). Theo-
rems 3 and 4, on the other hand, make extensive use of
specific knowledge related to the internal HIGS dynam-
ics and conclude stability on the basis of the existence of
piecewise quadratic Lyapunov functions. Consequently,
Theorems 3 and 4 are expected to produce less conser-
vative results when compared to Theorem 2. Next, we
prove this formally by stating results relating the satis-
faction of the frequency-domain conditions in Theorem
2 to the feasibility of the LMIs in Theorems 3 and 4.

Theorem 5. Under minimality of (Ag, Bgv, Cg), satis-
faction of the conditions in Theorem 2 implies feasibility
of the LMIs in Theorem 3 with N ∈ N≥1, Wi = Y1,ij =

Y2,i = 02×2, U1,ij = U2,i = U = 1
α

[
0 1

1 0

]
, and Pi =[

Pg 0

0 µ

]
, i ∈ {1, . . . , N} where Pg ∈ Sng×ng is a positive-

definite matrix and µ ∈ R>0, α = sin(arctan(kh)).

Proof. As shown in Step 3 of the proof of Theorem 2,
this theorem concludes ISS of the closed-loop system on
the basis of the existence of a Lyapunov function of the

form V (x) = x⊤Px with P =

[
Pg 0

0 µ

]
, wherein µ > 0

and Pg ∈ Sng×ng is a positive definite matrix. Therefore,
Pi = P is also positive definite and thus satisfies (37)
with Wi = 0.
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Let us now turn our attention to (38). Note that for
N = 1, with P1 = P as defined above and A1 as defined
in (20), we have

A⊤
1 P1A1 − P1 = I1 + µQ1 (59)

with

I1 =

A⊤
g PgAg − Pg −A⊤

g PgBgv

−B⊤
gvPgAg B⊤

gvPgBgv

 ,

Q1 =

(ωhTs)
2A⊤

g C
⊤
g CgAg ωhTsA

⊤
g C

⊤
g q1

⋆⊤ q1q
⊤
1 − 1

 .

where q1 = 1− ωhTsCgBgv. Also note that with N = 1
and the choice of U as specified above we have

C
⊤
E⊤

1 UE1C =

[
0 C⊤

g

Cg
−2
kh

]
.

By application of the DT KYP lemma (see (26)), we
have

I1 =

−L⊤L− εPg

√
2
kh

−B⊤
gvPgBgvL

⊤ − C⊤
g

⋆⊤ BgvPgBgv

 (60)

for some matrix L and a positive constant ε. Therefore,
under the conditions stated in the theorem, (38) is given
by

I1 + µQ1 + C
⊤
E⊤

1 UE1C

=

 −L⊤L− εPg

√
2
kh

−B⊤
gvPgBgvL

⊤√
2
kh

−B⊤
gvPgBgvL BgvPgBgv − 2

kh


︸ ︷︷ ︸

I

+µQ1.

(61)

By Schur’s lemma, the matrix I, is negative definite if
and only if

−L⊤L− εPg +

(
2
kh

−B⊤
gvPgBgv

)
L⊤L(

−B⊤
gvPgBgv + 2

kh

) = −εPg ≺ 0

and −L⊤L − εPg ≺ 0, which indeed holds given that
Pg is positive definite, and ε > 0. Consequently, (61)
is negative definite for µ = m1 > 0 sufficiently small.
Similar reasoning can be used to rewrite (39) as

I + µQ̃ (62)

with

Q̃ =

 k2
hC

⊤
g Cg −k2

hC
⊤
g CgBgv

−k2
hB

⊤
gvC

⊤
g Cg k2

hB
⊤
gvC

⊤
g CgBgv

 .

Once again, (62) is negative definite for µ = m2 > 0,
sufficiently small. Therefore, under the conditions stated
in the theorem, the LMIs (37)- (39) are satisfied with

µ = min(m1,m2), thereby concluding the proof for
N = 1. Let us lastly note that due to the satisfaction
of the LMIs with N = 1 and the choice of P specified
above, for N > 1, the choice Pi = P satisfies the LMIs
as well. This completes the proof. 2

Next, we state a similar result, linking Theorems 2 and
4.

Theorem 6. Under minimality of (Ag, Bgv, Cg), sat-
isfaction of the conditions in Theorem 2 implies feasi-
bility of the LMIs in Theorem 3 with N ∈ N≥1, Wi =
Y1,ij = Y2,i = Y3,i = 02×2, U1,ij = U2,i = U3,i =

U = 1
α

[
0 1

1 0

]
, and Pi =

[
Pg 0

0 µ

]
, τ2i = τ3i = 0 where

Pg ∈ Sng×ng is a positive-definite matrix and µ ∈ R>0,
α = sin(arctan(kh)).

Proof. Satisfaction of the LMIs (48), (49), and (50) fol-
lows from the exact same arguments as in the proof of
Theorem 5. For the satisfaction of (51), we note that
under the conditions stated in the theorem, for N = 1,
(51) can be written as

I + µQ, (63)

with I as defined in (61) and Q =

[
0 0

0 −1

]
. Following

the same reasoning as in the proof of Theorem 5, we
conclude that all the LMIs in Theorem 4 are satisfied
for µ sufficiently small, thereby concluding the proof. 2

With Theorems 5 and 6, we have shown that satisfaction
of the conditions in Theorem 2 implies feasibility of a
specific case of the LMIs. Consequently, the frequency-
domain conditions in Theorem 2 will never yield less
conservative stability guarantees than the ones obtained
by the LMIs in Theorems 3 and 4.

5 Sampled-data ISS Guarantees

In the previous section, stability criteria were presented
that can be used to guarantee ISS for closed-loop HIGS-
controlled systems in DT (ignoring inter-sample behav-
ior). In this section we show that DT ISS, implies ISS
of sampled-data HIGS-controlled systems, thus also tak-
ing into account the inter-sample behavior, building on
ideas in [29].

Consider the interconnection in Fig. 6 consisting of a CT
linear plant P, and a general DT nonlinear controller
ϕ (e.g., a HIGS-based controller), interconnected via a
sampler and a zero-order hold device. Here, the plant is
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P

Ts
ZOH

d(t)

ϕ

y(t)

y[k]up[k]

up(t)

Fig. 6. CT plant P and sampled-data nonlinear controller.

given by

P :

{
ẋp(t) = Apxp(t) + Bpuup(t) + Bpdd(t),

y(t) = Cpxp(t)
(64)

with Ap, Bpu, Bpd, Cp real matrices of appropriate di-
mensions, xp(t) ∈ Rnp the state of the plant, up(t) ∈ Rnu

and d(t) ∈ Rnd the control input and the input distur-
bances, respectively, and y(t) ∈ Rny the plant output,
at time t ∈ R≥0. The nonlinear controller ϕ is of the
general form

ϕ :

{
xϕ[k] = f(y[k], y[k − 1], xϕ[k − 1]),

up[k] = h(xϕ[k])
(65)

with f : Rny × Rny × Rnϕ → Rnϕ , h : Rnϕ → Rny ,
and xϕ[k] ∈ Rnϕ , up[k] ∈ Rnu , y[k] ∈ Rny denoting its
state, output and input, respectively, at discrete time
k ∈ N, corresponding to time instants t = kTs with Ts

the sampling period, as before. For the interconnection
in Fig. 6, we choose the state xsd(t) = [x⊤

p (t) x⊤
ϕ (t)]

⊤ ∈
Rn. Note that ẋϕ(t) = 0, for t ∈ [kTs, (k + 1)Ts). In this
section we investigate ISS of the closed-loop system in
Fig. 6, as defined in Definition 4 below.

Definition 4. [21] The interconnection in Fig.6 is said
to be input-to-state stable if there exists β ∈ KL and
γ ∈ K, such that for all xsd(t0) ∈ Rn and ∥d∥∞ ≤ ∞,

∥xsd(t)∥ ≤ β(∥xsd(t0)∥, t− t0) + γ(∥d∥∞), ∀t ≥ t0.
(66)

Note that the class of systems described by (65) includes
as a particular case HIGS-based controllers as shown in
Fig. 7, consisting of a DT HIGS element and DT LTI
controllers Ci, i ∈ {1, 2, 3}.

HDT

C1

C2C3
y[k]up[k]

ϕ

e[k]u[k]

Fig. 7. The controller ϕ in the case of HIGS-based control.

Analysis of the system in Fig. 6 by following the DTD
approach, requires a DT model of the plant P (64),

which can be obtained via exact zero-order hold (ZOH)
discretization of (64), leading to

P :

{
xp[k] = Apxp[k − 1] +Bpup[k − 1] + w[k − 1],

y[k] = Cpxp[k]
(67)

with Ap := eApTs , Bp :=
∫ Ts

0
eApτdτBpu, w[k − 1] :=∫ kTs

(k−1)Ts
eAp(kTs−τ)Bpdd(τ)dτ, Cp := Cp. Considering

(67), we obtain the exact DT model

xsd[k] =

[
Apxp[k − 1] +Bph(xϕ[k − 1]) + w[k − 1]

f(Cpxp[k], Cpxp[k − 1], xϕ[k − 1])

]
,

y[k] =
[
Cp 0

]
xsd[k] (68)

with xsd[k] =
[
x⊤
p [k] x

⊤
ϕ [k]

]⊤
for the system in Fig. 6.

Using this exact model, we can formulate a corollary
of Theorem 6 in [21], which can be used for concluding
(CT) ISS of the sampled-data system under considera-
tion, based on DT ISS of (68).

Corollary 1. Suppose the DT system (68) is ISS with
respect to the DT disturbance w. Then, the sampled-data
system in Fig. 6, is ISS with respect to the CT disturbance
d, in the sense of Definition 4.

Proof. In between sampling instances, the system dy-
namics are linear since ẋϕ(t) = u̇p(t) = 0 for t = (k −
1)Ts+λTs, 0 < λ < 1 (due to ZOH), and thus the inter-
sample behavior of states xsd(t) = [x⊤

p (t) x
⊤
ϕ (t)]

⊤ can be
readily computed and shown to satisfy the boundedness
property

∥xsd(t)∥ ≤ γ1(∥xsd((k − 1)Ts)∥) + γ2(∥d∥∞) (69)

for all t ∈ [(k − 1)Ts Ts], k ∈ N \ {0} and γ1, γ2 ∈ K∞.
Moreover, note that for (k − 1)Ts ≤ t ≤ kTs, ∥w[k −
1]∥∞ ≤ c∥d∥∞, with c =

∫ kTs

(k−1)Ts
∥eAp(kTs−τ)Bpd∥∞dτ =∫ Ts

0
∥eAp(Ts)Bpd∥∞dτ . Thus ISS of the DT system (68)

with respect to w, implies its ISS with respect to the CT
disturbance d. It follows now from Theorem 6 of [21],
that the boundedness property (69), and ISS of (68)
with respect to the DT disturbance w, implies ISS of
the sampled-data system in Fig. 6 with respect to the
CT disturbance d. 2

For the case where ϕ is a HIGS-based controller as in
Fig. 7, (68) is given by (19) or (23). Thus, as a result
of Corollary 1, one may conclude ISS of the resulting
sampled-data HIGS-controlled system using Theorem 2
and Theorem 3 or Theorem 4.

13

CONFIDENTIAL. Limited circulation. For review only
Automatica submission 23-0080.3

Preprint submitted to Automatica
Received November 20, 2023 08:38:48 Pacific Time



Remark 1. Let us shortly note that while Corollary 1
builds on the results from [21] and uses a similar line of
thought, our setting is slightly different from [21] in the
sense that while in the configuration of Fig. 6, we con-
sider linear CT systems controlled by DT nonlinear con-
trollers, the work in [21] considers CT nonlinear systems
controlled by linear DT controllers.

Remark 2. For a stabilizing controller of (64) to ex-
ist, stabilizability of (Ap,Bpu) as well as detectability of
(Ap, Cp) are required. Moreover, as shown in [4], in order
to avoid the loss of these properties as a result of sampling,
and thus for the existence of a DT stabilizing controller of
(64), the sampling period Ts should be non-pathological
(see [4] for a detailed exposition on this topic) with re-
spect to Ap. Interestingly, note that, as shown in [22],
in high precision motion control applications (forming
a main area of application for HIGS-based control), the
sampling is non-pathological for all Ts ∈ R>0.

6 Numerical Example

In this section, we present a numerical example illustrat-
ing and comparing the different stability criteria pre-
sented in Section 4. The reader interested in time and
frequency-domain simulations/experiments of successful
applications of HIGS-based control improving over LTI
control, is referred to [5,15,28,32,35]. Moreover [31,33]
it is shown how HIGS-based controllers overcome fun-
damental limitations of LTI control.

Consider the interconnection in Fig. 6, where P is a
mass-spring-damper system with transfer function

P(s) =
1

ms2 + bs+ k
(70)

and mass m = 1 kg, damping coefficient b = 0.0564
Ns/m and stiffness coefficient k = 1 N/m. Moreover,
the controller ϕ is as depicted in Fig. 7, with C1(z) = 0,
C2(z) = 1 and C3(z) = C(z) a linear lead filter, obtained
by discretization of C(s) = 1.4 s+5

s+6.95 , using zero-pole

matching [9]. Let us first consider a sampling time of
Ts = 0.001s (also used for the discretization of C(s)). To
evaluate ISS of the DT closed-loop system using Theo-
rem 2, note that the poles of the linear part of the system
Plin(z) = P (z)C(z), with P (z) the ZOH discretization
of (70), are within the unit circle and thus condition i)
in Theorem 2 is satisfied. Checking condition ii) in The-
orem 2, amounts to inspecting the Nyquist diagram of
Plin(e

jω) as shown in Fig. 8, from which it follows that
the closed-loop system is guaranteed to be ISS for any
ωh ∈ (0,∞) and kh ≤ 0.12, by Theorem 2. Indeed, 0.12
is the maximal kh value for which the Nyquist diagram
in Fig. 8 falls to the right side of the vertical line passing

Fig. 8. Nyquist diagram of P (z)C(z).

through −1
kh

+j0, in the complex plane, and thus satisfies

condition ii) in Theorem 2.

In addition, the results obtained from Theorem 3 us-
ing LMI-based ISS guarantees for the case where HDT

is given by (38) , are portrayed in Fig. 9a as a function
of the number N of partitions, N ∈ {1, 2, 4}. Note that
Fig. 9a also shows the range of parameters for which the
system is estimated to be ISS based on extensive time-
series simulations. As it can be seen in Fig. 9a, by using

(a) (b)

Fig. 9. ISS region found by time-series simulations , ISS
(kh, ωh) values returned by Theorem 3 (as a function of
the number of partitions N), the kh value obtained from
Theorem 2 , for a sampling time of (a) Ts = 0.001s, and
(b) Ts = 0.1s.

Theorem 3, one concludes stability of (19) for a range of
(kh, ωh) well beyond the values found by application of
the frequency-domain conditions in Theorem 2, the lat-
ter indicated by the area to the left of the dashed (red)
line. This is indeed expected as a result of Theorem 5
and the discussions in Section 4.4. To illustrate the effect
of the sampling period, Fig. 9b portrays the analysis re-
sults obtained with a sampling time of Ts = 0.1s. Note
that for Ts = 0.1s, the simulation-based estimated ISS
region (the grey area) is smaller than for Ts = 0.001s.
This indicates the general need for the analysis tools pre-
sented in this paper as pure CT analysis (see for exam-
ple [6]) completely ignores the role of sampling, which in
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turn could cause wrong conclusions regarding stability.
Let us also make the observation that even with a single
quadratic Lyapunov function, i.e., for N = 1, Theorem
3 provides a feasible range of (kh, ωh) values extending
well beyond those obtained by Theorem 2, which indi-
cates the strength of the relaxation terms introduced in
Theorem 3.

The results obtained from application of Theorem 4 for
the case where HDT is given by (17) are presented in
Fig. 10. Similar observations as in the case of Fig. 9 can

(a) (b)

Fig. 10. ISS region found by time-series simulations , ISS
(kh, ωh) values returned by Theorem 4 (as a function of
the number of partitions N), the kh value obtained from
Theorem 2 , for a sampling time of (a) Ts = 0.001s, and
(b) Ts = 0.1s.

be made. Namely, the results obtained from the LMIs
are less conservative (even withN = 1) compared to the
frequency-domain conditions, as expected due to Theo-
rem 6. Moreover, the stability region is smaller for the
case with slower sampling, thereby indicating the need
for the tooling presented in this paper.

Lastly note that by virtue of Corollary 1, the results
presented regarding stability of the closed-loop system
in DT, are also valid for the SD system consisting of the
CT plant (70) and the DT HIGS-based controllers.

7 Conclusions

In this paper, we have introduced two DT versions of
HIGS, which preserve the main characteristics of CT
HIGS, namely primary operation in the integrator mode
while guaranteeing sign equivalence (sector bounded-
ness) of its input-output pair. For the DT HIGS ele-
ments we have presented novel stability criteria that can
be used to conclude ISS using (i) (measured) frequency
response conditions and (ii) LMI-based conditions. We
have also shown that satisfaction of these stability cri-
teria imply ISS of sampled-data systems consisting of a
CT plant and DT HIGS-based controllers (including the
inter-sample behavior). While the frequency-domain cri-
teria do not require parametric models and can be eval-
uated using easy-to-obtain frequency response data, we

have formally proven that their satisfaction implies fea-
sibility of a special case of the LMI-based conditions and
thus are more conservative. This has been further illus-
trated by a numerical example showing that the LMIs
are significantly less conservative than the frequency-
domain criteria. Future research directions include re-
duction of the conservatism associated with the stabil-
ity analysis, as well as transforming the presented sta-
bility criteria for synthesis of sampled-data HIGS-based
controllers. Moreover, extensions of the work to cases
with asynchronous sampling and hold elements and in
the presence of delays is of interest. Lastly, in Theo-
rems 5 and 6 we have shown that the satisfaction of the
frequency-domain conditions in Theorem 2 are sufficient
for the feasibility of the LMIs in Theorems 3 and 4. An
interesting future direction of research is to investigate
whether the inverse implication also holds true.
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