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State estimation for systems with varying sampling rate’
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Abstract

We investigate problems that occur in state estimation when
the outputs of a continuous time system are sampled at non-
equidistant time instants. The time interval between the
samples is assumed to be known, and to belong to a pre-
scribed set. An observer synthesis procedure is proposed
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where & = eAli M = f(;"' eA% Bds, where the index iy
takes value in {1, ..., N}, depending on the time interval
between the last two samples. The variables wy and v; de-
note discrete time equivalents of process and measurement
noise, which can be taken to be white, zero miean, uncorre-
lated, with covariance matrices [4,5]:

. . ’I,' R
which guarantees the stability of the estimation error and in 0, = / eAfGQGTeATTdT, R}~ 5
addition minimizes the covariance of the observation error. 0 hi
3
1 Introduction Note that wy can be taken as wy = [ eA%*~DGuw(r)dt

In this paper we study the problem of state estimation for a
continuous time linear system, corrupted with process and
measurement noise, in the case when the time interval be-
tween the samples is not constant, but belongs to some known
set of time intervals. By an example we will show that sim-

k-1
and therefore the expression for Qf, above is exact. A similar
expression for vy is hard to find, and therefore the chosen
R}, is an approximation, but is generally accepted [4] and
used [5]. The equations of the observer are given by:

: . o Berr = Q'8 + Mg + Lic [ye — 3 3

ply choosing static Kalman filters for each of the discretized xktl hxk + e+ L [y k= k] (32)
systems corresponding to each sample time might yield un- k= Cxk (3b)
stable estimation error dynamics. Therefore, we develop a where Ly is a time varying observer gain. One way to

procedure for choosing static observer gains in a Luenberger
type of observer, so that the stability of the estimation error
in the noise-free case is guaranteed under any sequence of
the allowed inter-sample times. Moreover, our procedure
guarantees that the covariance of the estimation error will be
asymptotically bounded by an upper bound, which can be
optimized. .

2 Preliminaries

Consider the following continuous time system:

x = Ax + Bu+ Gw
y=Cx+v

(1a)
(1b)
The process and measurement noise, denoted by w and v,

respectively, are assumed to be mutually uncorrelated, Gaus-
sian and have covariances E[w(t)w(t —s)] = Q8(r —s) and

determine Ly is to use the time varying Kalman filter:
Ly = (@' P.CT)(R, +CP,CT)™!, where the covariance of
the state estimation error (which is defined as ex = xx — Xx)
Py = Efey e,:r] at each time step k is given by the well known
Riccati recursion formula:

Pp= (@ — L 1C)P_1(® ~ Lp10) + Q) + Ly  RULL_; )
For linear time invariant systems, the state estimation error
covariance P; asymptotically converges towards the steady
state value Py, and in order to reduce computational burden,
the asymptotic gain L is often used.
In our case it is possible to compute the asymptotic observer
gain L' = Lgo, for each of the inter-sampling times /;, and
to use these gains in the observer (3), whenever the data
is sampled with corresponding sampling rate h;. Such an
approach may not yield a stable observer. :

Example 2.1 Consider the stable continuous time system (1) with:

Elv(t)v(t — s)] = RS8(t — s). We assume that the system 0 1 0

(1) is sampled only at discrete sampling instants t;, where A= [ —-1000 -0.1 ] B= [ 1 ] c=[1 1
ty —tgi—1 € {hy1, h2, ..., hy}. The state evolution of the sys- L o 05 o

tem at the sampling instants can be described by: G= [ 0 1 ] Q= [ 0 05 ] R=05

Xeg1 = D*xp + Thuy + wy,
Yk =Cxx+ v

(2a)
(2b)
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Measurements are taken with two different sampling rates 7; = 0.004s and
hy = 0.08s. We obtain the following two asymptotic gains for the system
discretized at sampling rates k) :

L' =[=0.00100.1156]T: L2 =[0.0075 —088771T (5

Observers for each individual sampling rate h;o are stable
with the corresponding gain L1:2, but if the sampling sequence
(h1,hyi, b, hyoha by by, hy o hy, by, . ) oceurs the (noise-free) estima-
tion error dynamics ey = (®k ~ LikC)ey is not stable as the spectral
radius p((®! — L1C)*(¢2 — L2C)) > 1. A simulation is shown on figure
1, where w and v are set to zero. It is interesting to note that the estimation
error of the time varying Kalman filter, for the same sampling sequence
readily converges to 0. The price to be paid for such performance is the
increased computational effort, which is not always desirable.
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Figure 1: Phase portrait of the of the estimation error: divergent
sequence

3 Main results

We will give now conditions under which the observer is
stable for any variation among the prescribed sampling rates
by using static observer gains that only depend on the last
sample time.

Theorem 3.1 Assume that! Qf, +Li R;L"T is positive def-
inite foralli = 1,2, ..., N.Ifthere exist P = PT > 0and
L',ie{l,2,..., N} suchthat:

@ = LIOP@ —LiO)T = P4+ (0 + LIR)LIT) < 0 then:  (6)

1. Inthenoise free case (w = v = 0) the estimation error
dynamics exy1 = (O — L'*C)ey is asymptotically
stable under all sequences of admissible inter-sample
times taken from {hy, ha, ..., hn}.

2. The covariance of the estimation ervor Py, = Ele; e;r]
is asymptotically bounded by P, ie. Ve >
0 3koYk = ko Py < P+el. Moreover, if Pyy < P
for some kg then P, < P forall k > ko.

Proof. As the term (in + L R:}LiT) is positive definite, we have (@ -
LiC)P(®! — LiC)T — P < 0. By using Schur complements twice we
obtain (@' — LIC)T p=1(®f — LiC) — P~! < 0, which implies that for
w = v = 0 the function V(e) = ¢ P~le can play the role of a common
Lyapunov function for all possible linear error dynamics as V(egy1) —
V(er) < 0. Hence, the estimation error dynamics is guaranteed to be
asymptotically stable. under any sampling sequence [1,2].

To prove the second part, combining (4) with (6) we derive:

P —P <@ —LiC)P_y - PY@ - LiO)T o)

Notethatif P,_) < P, thenthe expression on the right hand side is negative
definite, and it follows that P, < P as well. This proves the second
statement in point 2 of the theorem. If we iterate (7) we get: .

k k
P —P< (H(cb"i - L"JC)) (Py—P) (n(qa"i - L"J‘C)T) .
®)

j=1 j=1

where Py is the error covariance at time k = 0. Since there exists a common
quadratic Lyapunov function for all the dynamics (¢ — L' C), namely V,

INote that Q:, + L'R) L' is already positive semi-definite for all i.
Sufficient condittons for strictness are, for instance, (A, GS) controllable
where Q = SST.
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k . .
we have that klim 1 (@' — L'iC) = 0. independently of the values i ;.

o0 jt]
Hence, the claim of the theorem follows.

Equation (6) can be cast into a linear matrix inequality form
under the conditions R} > 0 and Q,, > 0 for all i (this
is the case when R > 0, and (A, GS) controllable where
0=3SS§ . Consequently, (6) can be efficiently solved for
the unknown matrix variables. Also, a convex optimization
problem can be formulated that minimizes P, in a certain
sense, for example min Aypqx (P), where Ay () is the max-
imal eigenvalue, or minlogdet P. This transformation is
quite standard and can be found in [1, 3].

Example 3.2 We consider the setup presented in example 2.1, and we will
apply the presented design procedure, in order to obtain asymptotically
stable observer, for any sequence of sampling times /11 2. Solving the
system of linear matrix inequalities we obtain (we minimize min log det P)
L1 =10.00180.7199]7, L? = [0.0193 —0.9310] T and, as an asymptotic
upper bound of the covariance of the estimation error:

p_[ 01275 04959
=| —04959 289.1227

The behavior of the estimation error is depicted in figure 2.
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Figure 2: Phase portrait of the of the estimation error: convergent
sequence

4 Conclusions

The paper discussed the problem of observer design for a
continuous time system, when the output is sampled at non-
equidistant time instances, but the time interval between the
samples belongs to a prescribed set. An example demon-
strated that simply applying asymptotic Kalman filters might
yield unstable estimation error dynamics. Therefore, we pre-
sented an observer design procedure that is robust against
the variations in sampling rate, and, in addition bounds the
covariance of the estimation error. These bounds can be
minimized via a convex optimization problem.
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