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Abstract—Using a hybrid systems approach, we address the
practical stabilization of operating points for switched affine sys-
tems, ensuring a minimum dwell time and an admissible chattering
around the operating point. Two different solutions are shown to
induce uniform dwell time, based on time or space regularization.
The proposed solutions provide useful tuning knobs to separately
adjust the switching frequency during transients and at the steady
state. The strengths of the method are illustrated by simulating a
boost converter.

Index Terms—Hybrid dynamical systems, Lyapunov stability,
switched affine systems.

|. INTRODUCTION

Switched systems are key to modeling several physical control sys-
tems. Among them,
switched affine systems (SAS) are given by

t=A,xr+a,, z(0)=umx
z=Cx €8

where the control input o : R>g — N := {1,2,..., N} is the switch-
ing signal, assigning a specific desired mode among N possible ones
at each time.

Moreover, in dynamics (1), x € R” is the state, z € R? is a perfor-
mance output, and A; and a; have suitable dimensions for all i € N.

Many works have been published in the past 20 years about stabiliza-
tion of switched linear systems (SLS), being SAS with a; = 0,7 € N/
(see, e.g., [5], [6], [12], [23], and references therein). For SLS, the ob-
jective is to stabilize the origin, which is a common equilibrium to all
the dynamics. Indeed, homogeneity of the SLS dynamics is exploited in
those works, thereby simplifying the control design providing, among
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other things, direct tools to show uniform upper bounds on the switch-
ing rate (dwell time) of the input along the ensuing solutions. The goal
of stabilizing an operating point x. € R", which is the more general
objective in the SAS case, is much more challenging. Indeed, in the
general case considered in this paper z. is not a common equilibrium
with the consequence that asymptotic stabilization of . is not possible
with finite switching rates (uniform dwell time). Indeed, the fact that
Z, 18 not a common equilibrium implies that arbitrarily fast switching
is needed by any asymptotic stabilizer as the solutions approach z,.
This substantial difference calls upon alternative solutions and proof
techniques not relying on the homogeneity properties enjoyed by the
SLS case.

Important results toward stabilization of operating points in SAS
have appeared in [3], [9], [17], [20], and also for switched systems
with a general nonlinear form [14], [15]. However, these results can
induce sliding modes and generate arbitrarily fast switching already
during the transients (in addition to the above-mentioned steady-state
issues). Alternative approaches, inducing a positive dwell time, can
be found in the context of specific SAS applications, such as power
converters [2], [18], [22]. In these works, the authors aim at ensuring
a dwell time associated with an admissible chattering around the oper-
ating point. Nevertheless, the work in [2] does not prove a minimum
time associated to space regularization, the work in [22] is focused
on a specific power converter application (boost converter), and the
work in [18] does not provide a full stability proof. Interesting results
are also reported in [21], which ensures dwell time properties of a
class of systems of the type (1), where a, is a bounded function of
time, possibly converging to zero. However, only a mild boundedness
property is proven in [21] for the case of nonvanishing converging
ay,, which is the setting that we consider here. The results in [8]
and [10], address the general class (1) and are based on the use of
sampled-data controllers guaranteeing practical stability for a periodic
switching controller. Nonlinear switched systems are addressed in [24],
which focuses on discrete-time systems by using a dwell-time H ., con-
trol. Finally, both space and time regularization are proposed without
using Lyapunov functions in [4], which has limited applicability be-
cause the discontinuities may occur only in a set given by a smooth
manifold of dimension 1 for the time-regularization case and in a dis-
continuity surface having codimension 2 for the space-regularization
case.

Summarizing the above, control of SAS can exhibit transient chat-
tering (or lack of dwell time guarantees) possibly due to the pres-
ence of sliding modes in the proposed controller and then are bound
to unavoidable steady-state chattering when approaching the operat-
ing point. While the first problem can be avoided by a suitable con-
trol action, the second one requires resorting to practical (rather than
asymptotic) stability guarantees. Motivated by this fact, in this paper,
we address practical stabilization of an operating point x. for SAS (1),
ensuring the following features:
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1) stabilization of an (arbitrarily small) set around the operating point
x. whose size can be adjusted by design parameters;

2) apositive minimal dwell time between consecutive switches during
the transient and steady-state response, which can be adjusted by
the design parameters, to warrant practical implementability,

3) tradeoff knobs (design parameters) that can be suitably adjusted
to favor dwell-time properties versus performance guarantees (a
linear quadratic (LQ) cost for the transient phase and the size of
the stabilized set for the steady-state phase).

Following the notation of the above cited works [2], [18], [22], we
guarantee a positive dwell time by modifying (regularizing) the chat-
tering controllers using either space- or time-regularization techniques,
where the former enforces dwell time using space-based hystheresis
logics, and the latter uses instead an explicit timer inhibiting switches
up to some guaranteed dwell time. By casting the practical stabiliza-
tion problem using the recent hybrid framework in [7], we show that
time and space regularizations are two variations of a central result,
consisting in our Lemma 2 in Section V, which provides an elegant
and unified view of the two approaches. To the best of our knowl-
edge, such a unified view, and the distinction between transient and
steady-state chattering avoidance has not been proposed before, but
only scattered results, perhaps for specific subclasses of (1) such as
SLS or specific applications, are available in the literature. Rigorous
proofs are given for our global and practical stability statements, using
the hybrid Lyapunov theory in [7] and its extensions in [16] and [19].

This paper is organized as follows. Section II provides the prob-
lem formulation, whereas Section III describes the proposed solution
while Section IV discusses optimality-based parameter tuning. Time
and space regularizations inducing dwell time and practical stability
are introduced and characterized in Section V. Finally, Section VI
discusses an illustrative example and Section VII draws concluding
remarks.

Il. PROBLEM SETUP

We aim to provide feedback strategies determining o such that prac-
tical stabilization of an operating point z, € R" for SAS (1) is achieved
while satisfying requirements 1)-3) of Section I. To this end, we make
the following standard assumption (see [3], [10], [13], and [21]).

Assumption 1: Given A := {} € [0,1]"| Zlvz] A; = 1}, there ex-
ists A € A, such that

N N
> hi(Aize +a;) =0, and Y 4, A; is Hurwitz. 2)

i=1 i=1

Definition 1: The set of admissible operating points 2, C R" is
given by

Q. :={z. € R" | 3r € A satisfying (2)}. 3)

Hence, x. € Q2. if it is an equilibrium point for the averaged
dynamics
1\7

i=1

a':EF(m):—{

and a stability condition is satisfied on the corresponding convex
dynamics. Also see [2], [3], [10], [13], and the discussion in [1,
Remark 1]. While requirement z. € {2, may appear to be nonrestrictive
for stabilizability of =, from o, it is already known that this condition
is not necessary even for the case of SLSs with N = 2, a; = as = 0,
and x, = 0, as commented in [12, Sec. 3.4.2]. The average dynamics
can be perceived as the result of arbitrarily fast switching and as the
solution of the differential inclusion (4). Such generalizations are well
characterized in the context of hybrid inclusions of [7], by way of solu-

tions corresponding to the so-called hybrid arcs. In this paper, we adopt
that framework and discuss properties of those hybrid arcs for hybrid
formulations of SAS (1).

More specifically, we address the following problem: Given the
SAS (1), for each x. € Q). design a feedback law for the switching
signal o that globally asymptotically stabilizes an arbitrarily small
neighborhood of x. by suitably adjusting the design parameters (in
other words, a parametric feedback that practically stabilizes x.),
while satisfying requirements 2) and 3) discussed in Section I.

[Il. CONTROL SOLUTION AND HYBRID MODEL

Consider (1), z. € Q. and A, € A satisfying (2). We select two
matrices P and (@ as follows:

Property 1: Matrices P = PT >0 € R" and Q = Q" >0 ¢
R™ ™ satisfy

N N
(ZAWAZ.T>P+P<ZAS,,-A,-> +2Q <0. )
i=1 i=1

Clearly due to Zf\zl Ao i A; being Hurwitz matrices P, (Q satisfying
Property 1 always exist. Note that Property 1, which can be already
found in [21] and in the recent work [9], imposes less restrictive as-
sumptions than in our preliminary work [1], which corresponds to a
special case.

Following the formalism in [7], we propose a hybrid controller hav-
ing state o, giving the closed loop

ﬂ = o) (@e)ec

LERE (©6)
+} € G(z,o0), (z,0) €D
g

where f is the flow map and G is a (set-valued) jump map capturing
the switching logic, selected as
A,z + a,

f(z,0) = 0

xT

G(o,0) = argmin (z — z.)" P(A;x + a;) )

ieN

)

and where the so-called “flow” and “jump” sets C and D encom-
pass, respectively, the regions in the (extended) space (z,0) where
the switching strategy continues with the current mode o (set C) or
switches to a new mode (set D). They are selected as

C:={(z,0)
D = {(z,0)

3T P(Ayx +a,) < —ni” Q) ®)
22T P(Ayx +a,) > —ni’ Q) ©)

where & := = — x, and scalarn € (0, 1) is a design parameter that will
be shown to be useful for achieving a tradeoff between the transient
switching frequency and a quadratic integral performance level, as
characterized later in Theorem 2. The next lemma is an instrumental
step to prove our main stability result.

Lemma 1: Consider z, € €., A, € A satisfying (2) and matrices
P e R" and ) € R"*", satisfying Property 1. Then, for each x &
R™, denoting  := x — x.

min#" P(Ajz + a;) < -3 Q% = —|&[7,. (10)
ieN
|
Proof: The proof is a slight variation of the derivations in [3, eq.
(12)] and is therefore omitted for the sake of compactness. |



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 64, NO. 11, NOVEMBER 2019 4813
Following up on standard stability theory for hybrid systems [7], we  of hybrid solutions:
establish uniform global asymptotic stability of the compact attractor ,
k41
A:={(z,0):2=x,,0 € N}. (11) Z / (k) [Pdr (18)

Theorem 1: Consider z. € €., A, € A satisfying (2) and matrices
P e R"™ and @ € R"*", satisfying Property 1. Attractor (11) is
uniformly globally asymptotically stable (UGAS) for hybrid system
(6)-(9).

Proof: Let us take the candidate Lyapunov function

1

- 1 AN
V(z) = §|:p\f§ = §Z‘TP1‘. (12)

If (z,0) € C, using (8) we get along flows
(VV(2), f(%,0)) = &' P(A, (& +x.) +a,) < —nF' Q. (13)

Across jumps, for (z,0) € D, we get, fromz™ =z

1
V(Et)-V(z)= E{iTPf—azTsz} =0. (14)
Uniform global asymptotic stability is then shown by [16, Th. 1].
In particular, since the distance of x to the attractor (11) is defined by
|x|4 = |Z|, we have that [16, eq. (6)] holds from the structure of V'
and from (13) and (14). Following [16, Th. 1], we build the hybrid

restriction H; A by intersecting C and D with
Ss.a = {(z,0):

and then proving (semiglobal) practical persistence flow for H; a,
for each fixed values of (4, A). In particular, practical persistent flow
amounts to showing that there exists v € K, and M > 0, such that,
all solutions to H; A satisfy

|Z|>6 and |Z| <A} (15)

t>~vG)—M Y(t,5) € dom¢& (16)
where dom § = Uje10m7 ¢[tjstjv1] x {j} is the hybrid time domain
(see [7, Ch. 2] for details). To establish (16), notice that after each

jump, from the definition of G in (7) and from (10), we have

T (Ayvz+ B, ) < —-37Q3 < —i' Qi A7)
where we used 77 < 1 and (0, 0) ¢ S; a . Therefore, if any solution to
‘H;,a performs a jump from Ss A, it will remain in S5 o (because
remains unchanged) and then, from (9), it must jump to the interior
of the flow set C NS5 . Moreover, from the strict inequality in (17),
all such solutions must flow for some time after the jump and since
CN S5 a is bounded, continuity of solutions with respect to initial
conditions [7, Prop. 6.14] implies that there is a uniform dwell time
p(d,A) between each pair of consecutive jumps (the well defined
minimum over such flowing times over the compact set). This dwell
time p(d, A) clearly implies [16, eq. (4)] with the class K, function
~v(3) = p(6,A)j and M = 1. Then, all the assumptions of [16, Th. 1]
hold and UGAS of A is concluded. |

IV. PARAMETER TUNING FOR GUARANTEED PERFORMANCE

While Theorem 1 addresses stability, we provide here perfor-
mance guarantees for the closed loop (6)—(9), which follows the same
paradigm as the one discussed, in a continuous-time setting, in [3]. This
performance guarantee, may, for example, refer to desirable levels of
dissipated energy, current peak, response time, among others.

Within the considered hybrid context, as discussed in the proof of
Theorem 1, solutions are parametrized in a hybrid time domain. Then,
we use a quadratic performance metric focusing on the flowing aspect

kedom; §

where £ = (z,0) : dom¢ — R" x N is a solution to hybrid system
(6)—(9), whose domain is characterized by jump times ¢, k € N > 1
(namely times t;, > 0 such that both (¢;,%k — 1) and (¢, k) belong
to dom &), and 2(¢, j) := CZ(t,7) for all (¢,7) € dom¢ is a suitable
performance output. For these hybrid solutions, we may then give the
following guarantee on the performance cost (18).

Theorem 2: Consider  hybrid system (6)—(9) satistying
Assumption 1 and Property 1. If
cre<@ (19)
then the following bound holds along any solution £ = (x, o) of (6)—
9):
1. T m~ 1, 9

where Z(t,j) = z(t,j) — z., for all (¢, j) € dom(§).
Proof: Consider any solution £ = (z,0) to H. For each (¢,7) €
dom ¢, denoting ¢ = t; to simplify notation, we have from (13)

V(@ j)) S V@t k) V(b))
k=0

=3 [TV G ). SRt k)

fk+l

|CTCdT

J (21
< / —n|z(7, k) |Qd7' < nZ/

=0tk

(21

where the last inequality comes from (19). Considering Z(7, k) =
Cz(t, k), taking the limitas ¢ + j — +oo and using the fact that UGAS
established in Theorem 1 implies lim; ;. o V(Z(¢, 7)) = 0, we get
from (21), n.J(§) < V(%(0,0)) = 3]#(0,0)|}, as to be proven. W

From (20), if matrices P and @ satisfy (19), the guaranteed per-
formance level for our scheme (in terms of size of the upper bound
for index J in (18) along solutions) is proportional to the inverse of
n € (0,1). Then, large values of n < 1 lead to improved upper bounds
of the LQ performance along solutions. On the other hand, from (8)
and (9), smaller values of 7 correspond to strictly smaller jump sets
(and larger flow sets), which reveals that solutions are expected to
flow longer before a switch of control input o. Therefore, one may
use parameter 7 to find a tradeoff between suitable transient switching
frequency and transient performance along solutions.

In light of Theorem 2, we may tune the parameters P, () following
an optimization capturing the goal of reducing as much as possible the
right-hand side of (20). To this end, we make the following natural
selection:

Q=C"C+vI (22)
where v > 0 is a (typically small) positive constant, which may be zero
ifCTC > 0.

Since @ in (22) satisfies (19), under the assumption that the convex
combination Zl 1 Ae,i A; is Hurwitz, the following convex optimiza-
tion expressed by linear matrix inequalities always leads to a feasible
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solution: eigenvalues of ), respectively, and by p,,; the maximum eigenvalue of
P. Define now the function x(7) := 2g¢ — |Z(¢; + 7, )| and notice

min Trace(P), subject to: P : Q5
P_pT >0 ) ] ) that (25) implies x(0) < 0. Consider now the flow dynamics in (7) and

N N
> heiATP+ P a AT <20
i=1

i=1

(23)

and this optimized selection clearly satisfies Property 1, while mini-
mizing the upper bound in (20).

V. PRACTICAL GLOBAL RESULTS USING SPACE OR
TIME REGULARIZATION

The hybrid control law proposed above can provide arbitrarily fast
switching as the solution approaches x.. In particular, given an initial
condition in A, one sees that the hybrid dynamics (6)—(9) has at least
one solution that keeps jumping onto A without flowing. Infinitely fast
switching is not desirable in terms of energy efficiency and reliability
in many applications, such as power converters, because every switch
dissipates energy and reduces the switch lifespan. For this reason, we
propose a redesign of the hybrid law, aiming at reducing the number
of switches when £ = x — x, is close to zero, and avoiding infinitely
fast switching. This goal is reasonable for the proposed law, because
it is possible to show that away from A, during transients, our control
law already enjoys a desirable property of positive dwell time between
switches, as long as Assumption 1 and Property 1 hold. To do so, we
change system (6)—(9) with shorthand notation H := (f, G,C, D), for
a nonnegative scalar ¢, to the redesigned system

Hs = (f7G7C€7D5) (243)
C. . =CU{(z,0): V(z —=x,) <e} (24b)
D, :=DnN{(z,0): V(z—z.)>¢€} (24c¢)

with V" as in (12). A useful practical dwell-time property for H is then
established next. Lemma 2 below is a nontrivial consequence of the
fact that Zeno solutions can only occur at the equilibrium x. for the
hybrid closed loop. The ensuing dwell-time results are key to proving
the properties of the regularized dynamics of this section.

Lemma 2: There exists a positive scalar 7 such that for each 0 <
T < T, there exists a scalar € > 0 such that all solutions to H jumping
from set D. flow for at least T" ordinary time units after the jump, before
reaching again set D.. Moreover, as 1" tends to zero, we have that ¢
tends to zero as well.

Proof: To prove the lemma, it is enough to fix any scalar ¢ = &*
in (24) and show that there exists 7™ such that all solutions starting
from D.« flow for at least 7 ordinary time units after the jump before
reaching set D. The rest of the lemma follows trivially from the fact
that smaller values of € < &* are associated with the solutions starting
in D.+ (already characterized by 1) plus additional solutions starting
in the compact set D. \ D.-, that enjoy a dwell-time property because
any jump from this set maps to the interior of the flow set (and then
one can consider the minimum flowing time over this compact set of
initial conditions). Without loss of generality we can impose that the
dwell time 7" converge to zero as € converges to zero, thereby defining
the function ¢ discussed in the lemma.

Letus then fix a scalar e = €* in (24) and first notice that any solution
jumping from D, - attime (¢;, j — 1) satisfies, before and after the jump

*

qm €

(5, 5)[5 = :zTQazzquszz%vwm =2z, (25)

where the dependence on (¢, j) has been omitted at the right-hand side,
and where we denoted by ¢,, and ¢;; the minimum and maximum

introduce scalars b, = A, z. + a, to get

i=Ax+a, =A,3+b, (26)
so that we may characterize the variation of x as
X =28 QA+ by) < k1|Z[g + k2 lZlg 27)

wher = 29 max |A, | an = 29 max . Using now
ere K . ”Ea{| »| and ko mag\? |b, |. Using no

2] < Ix| + 2¢q, which also gives |Z]q <\/I|+4/2:q, because |x|
and €¢ are both nonnegative, we get the bound

X(7) < ri(Ix(T)] 4+ 2eq) + 2 (VIX(T)] + /22q)
= r1 IX(T)] + ke V/IX(T)] + K3,

where k3 = 2k16¢ + K24/2¢¢ > 0. Denote by ¢ the solution to the
differential equation induced by (28) starting at zero. This solution is
continuous by definition, and strictly increasing because x; > 0 for
all ¢ = 1,2, 3. Then, there exists 7 such that ¢(7}) = ¢, and from
standard comparison theory, and recalling that x(0) < 0 (by (25)), we
have x(7) < ¢ forall 7 < T, which implies

\a S t]qu — t]‘ (28)

Z(t; + 7)o =260 —x(7) 2 eq VT <Th. (29)

Consider now (17) and define the function '

BT (A, T+,
s(z) := ( 5 ) +1
WQ
which, from (17) clearly satisfies ¢(Z(¢;, 7)) < 0 after the jump from
D.-. We prove below the existence of 7™ such that

s(@(tj+71,5)) <1—mn, forallT <T* (30)

which trivially proves Z(t; +7,j)7 (A, (t; + 7,7) + by) < —n
|Z(t; +7,7)[¢ for all 7 < T, which in turn implies that the solu-
tion does not belong to D, thus completing the proof of the lemma.

To prove (30), we proceed again with bounding the derivative of ¢.
Straightforward derivations provide, along flowing solutions according
to (7)

28T P(A, & + b,)E" Q(A,E +b,)
B

¢ =

L AN(PA, + ATP)A T + 3" (247 P+ PA )b, +b] Pb,
|Z[3
1

1
Sa+Q—=+S=7
‘I‘Q

1o
where ¢, ¢, g3 are sufficiently large positive scalars (and where we

5 1 5 H : o
used |z] < \/quQ in several places). Consider now any time 7 <

T}, and use bound (29) to obtain ¢ < ¢ + ¢ 551/2 + ¢ sél, which,
together with ¢(Z(¢;,7)) <0, and integrating <, immediately gives
(30) for T* := min{T,, Ty}, where Tp := —— 41— [ ]

<1 +<26;1/2+<3sc’21
Lemma 2 ensures that a positive dwell time holds if solutions remain
sufficiently far from A. Then, we have two possibilities to modify our
control law to ensure that dwell time is enjoyed by solutions. One of
them corresponds to replacing the jump set D by the restricted ver-
sion in D. (we call it space regularization) and forcing solutions to

ITo avoid overloading notation, the hybrid time is only specified on the &
component, but the state variable o should be evaluated at the same hybrid time
in the derivations at the end of the proof of Lemma 2.
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flow in D \ D. (this is called space regularization and is addressed in
Section V-A), and the other one corresponds to forcing solutions not
to jump unless some dwell time has expired (this is called time reg-
ularization and is addressed in Section V-B). Then, it makes sense to
introduce the following e-inflated version of attractor A

A ={(3,0): V() <e, 0 € N} (€)))
which evidently reduces to A as € tends to zero. Practical stabilization
of A comprises finding a parametric control law (whose parameter is €)
such that for each sufficiently small value of ¢ a subset of A, is UGAS
for the closed loop. This is done in the next sections.

A. Space Regularization

Based on Lemma 2, for any value of a positive scalar €, let us consider
the space-regularized version of H = (f, G,C, D) given in (24). The
regularized dynamics are clearly motivated by the fact that jumps are
forbidden when solutions are e-close to the attractor.

Mainly using Lemma 2 the following desirable results are enjoyed
by hybrid system H..

Theorem 3: Consider point =, and a vector A, satisfying Assump-
tion 1 and matrices P € R"*" and () € R"*" satisfying Property 1.
The following hold:

1) for any positive scalar ¢, set A, in (31) is UGAS for dynamics H.
in (24);

2) set A is globally practically asymptotically stable for (24), with
respect to parameter €; and

3) there exists 7" > 0 such that all solutions to H. enjoy a T-dwell-
time property, namely given any solution ¢ to H., all (¢,j) €
dom ¢ satisfy ¢ > % —1.

Proof: First notice that sets C. and D. are both closed. Indeed, C.
is the union of two closed sets and D. is the intersection of two closed
sets. Then, due to the properties of f and G, system H. satisfies the
hybrid basic conditions of [7, As. 6.5] and we may apply several useful
results pertaining to well-posed hybrid systems.

Proof of item 3): This item follows in a straightforward way from
Lemma 2. Indeed, solutions to . can only jump from D.. Any such
solution ¢ flows for at least 7' time after each jump, before reaching
again D., which clearly implies ¢t + 1 > % (where the takes care
of the initial condition), as to be proven.

Proof of item 1): Consider the following Lyapunov function
candidate:

“1”

V.(2) = max{V(Z) —e,0} (32)

which is clearly positive definite with respect to 4. and radially un-
bounded. Since outside set A, the hybrid dynamics H. coincides with
the one of H, then (13) and (14) hold for any (%, o) not in .A., which
implies that

(VV.(2), f(z,0)) <0
V.(3) = Vi(#) = 0

Vi el \ A
Vi eD. \ A..

(33)
(34)

Moreover, from the property established in item 3), all complete so-
lutions to H. must flow for some time, and therefore from (33), we
have that no solution can keep V. constant and nonzero. UGAS of A.
by applying the nonsmooth invariance principle in [19], also using the
well posedness result established at the beginning of the proof.

Proof of item 2): The proof follows in a straightforward way from
the previous item, after noticing that given any neighborhood Z of A,
there exists a small enough £ > 0 such that A. C 7. |

B. Time Regularization

Based on Lemma 2, for any value of 7' < 7™, we may introduce the
following additional state variable 7 to dynamics (6):

T
M =S e,
5 P =r(f), 33
ET .’L'+
|:0_+ € G(x70-)7 (;1;’0') eDET
Tt = 0»

where (s) := min{1,2 — s}, forall s > 0 and the jump and flow sets
are the following time-regularized versions of C and D in (6)—(9):

C., =Cx[0,2T|U{(z,u,T):
D., =D x [T, 27].

T€[0,T)}
(35b)

The above regularization is clearly motivated by the fact that jumps
are forbidden when the timer 7 is too small, namely not enough time
has elapsed since the last jump. Then, all solutions are forced to flow
for at least 1" ordinary time after each jump. Also note that function r
at the right-hand side of (35a) allows a solution to flow forever while
ensuring that timer 7 remains in a compact set.

Before proceeding any further, we emphasize that forcing a solu-
tion to flow regardless of whether it belongs to D or not, may lead
to an increase of function V. It is useful to quantify how much
increase V' can experience from the set where V(Z) < ep (let re-
call e7 := ¢, being ¢ introduced in Lemma 2). To this end, we ex-
ploit the affine nature of the dynamics and observe that along solu-
tions of (35) we have V (&) < |Z||P||z| = |Z||P||z| < |Z||P|(x:|E| +
ko) < 20V (%) +206,/v (@), where « and [ are large enough posi-
tive scalars and where we used positive definiteness of P and the
sector growth condition || = || < |A, (z — x.)| + |[As 2 + a,| <
K1|Z| + K2 (which clearly holds for some x; > 0 and ko > 0). Pro-
ceeding as in [11, page 203], we obtain along any solution ¢ satisfying
(t,j) e dom¢and (t + T, j) € dom ¢

VIBETT.9) < " V@) + B / " ettds

— e V@) + L e - 1)

«

vr e [0,T].

Therefore, assuming that V' (¢(t, j)) < e, we obtain forall 7 € [0, T']

232

V(o(t+7,7)) <ep(T) =2 Ter + —Z(e”T —1)%. (36)
o
This bound motivates introducing the following set:
Er ={(%,0,7): V(&) <er(T), 0 € N,7€[0,2T]}  (37)

which enjoys the nice property of shrinking to A. x {0}, as T con-
verges to zero.

Mainly using Lemma 2 the following desirable results are enjoyed
by hybrid system H.. in (35).

Theorem 4: Consider point . and a vector X, satisfying Assump-
tion 1 and matrices P € R"*" and Q € R"*" satisfying Property 1.
The following holds:

1) all solutions to H.,. enjoy a dwell-time property corresponding to
T,

2) for any positive scalar 7' < T, there exists a compact set A. X
[0,2T] C &, which is UGAS for dynamics M., in (35); and
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3) set A x {0} is globally practically asymptotically stable for (35),
with respect to parameter 7' (namely as long as 7" is sufficiently
small, the UGAS set A, x [0, 27"] characterized in the previous
item can be made arbitrarily close to A x {0}).

Proof: Similar to the proof of Theorem 3 we start by noticing that
hybrid system (35) enjoys the hybrid basic conditions of [7, As. 6.5],
because sets C., and D, are both closed and f and G enjoy desirable
properties. Then, we may apply several useful results pertaining well-
posed hybrid systems (specifically, in the proof of item 2 below).

Proof of item 1: The dwell-time property of solutions follows in a
straightforward way from the fact that solutions are forced to not jump
until the timer variable 7 has reached the value 7. Since 7 = 1 for all
7 < T, then all solutions flow for at least 7" ordinary time after each
jump (because 77 = 0 across jumps).

Proof of item 2: Consider the two hybrid systems H. and H., in
(24) and (35), respectively. For any positive value of 7" < T™, we have
shown in the proof of item 1 of Theorem 3 that it suffices to pick ey = ¢
(coming ¢ from Lemma 2) to obtain UGAS of the attractor A, in (31)
and a dwell time of 7" for all solutions to H, . Since the (z, o) dynamics
of H. and H. . coincide, except for the dwell-time restriction on H. .,
the above-mentioned dwell-time property of solutions to . ensures
that (possibly after an initial flow of at most 7" ordinary time) the (z, o)
component of each solution to ., remaining outside A. x [0, 277,
coincides with a solution to H., therefore any such solution to H.,
must approach A. x [0, 27'], which is a strict subset of &7 in (37). Two
things may happen then. Either the solution approaches A. x [0, 27
without ever reaching it, so it eventually remains in &7, or it reaches
A. x [0,27] and may then be forced to flow by the dwell-time logic
of H., . However, in this last case we get from bound (36) that such
a solution cannot flow outside £ . As a consequence, £r is uniformly
attractive and reached in finite time by all solutions, in addition to being
strongly forward invariant for H. . .

‘We now use the well-posedness property established at the beginning
of the proof to exploit a number of regularity results from [7, Ch. 6
and 7]. Denote by Q (&7 ) the w-limit set of &7 (see [7, Def. 6.23]) and
note that it cannot be empty, and must satisfy Q(Er) C Er, because
&r is bounded and strongly forward invariant. Then, using again strong
forward invariance of & we get boundedness of all solutions starting
from & and we may apply [7, Prop. 6.26] to obtain that Q(Er) is
compact, nonempty, uniformly attractive from £r, and strongly forward
invariant. Since also &7 is uniformly attractive, we may then apply a
global version  of [7, Prop. 7.5] applied to the compact attractor (&7 ),
to conclude global asymptotic stability of Q(Er ), which is equivalent
to UGAS from [7, Th. 3.40 and Th. 7.12].

Proof of item 3: Item 3 follows in a straightforward way by recalling
from Lemma 2 that € converges to zero as 1" goes to zero, and then
that also ¢(7T") in (36) enjoys the same property. As a consequence, set
Er in (37) shrinks to A x {0} as T" goes to zero, and since we estab-
lished in item 2 that A, x [0,27] C & for all T' > 0, we can make
A, x [0,2T] arbitrarily close to A x {0} by selecting T sufficiently
small. |

VI. ILLUSTRATIVE EXAMPLE

The two hybrid control schemes developed in Section V-A (space
regularization) and V-B (time regularization) are tested on a boost
converter model taken from [3]. The state variable is x = [i], 'UC}T s
where 77, denotes the inductor current and, v- denotes the capacitor

2A global version of [7, Prop. 7.5] is trivially obtained by establishing its
hypotheses for any arbitrary positive value of .

x10° <108

8.232
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Fig. 1. Top surfaces: Evolution of the switching frequency with space
regularization in the transient (left) and at the steady state (right). Bot-
tom surfaces: Evolution of the average switching frequency with time
regularization in the transient (left) and at the steady state (right).

voltage. The switched system (1) is then defined by the matrices

B R _1
L L L
Al = 0 1 ’ A2 = 1 1 )
_R(]C[) Co RyCy
V. T
o ma =[G o]

where the considered nominal values are: Vi, = 100V, R =2Q, L =
500 uH, C, = 470 uF, and R, = 50 (2. The desired equilibrium point
is chosen as x, = [3 120]T. Assumption 1 is therefore satisfied
with A, = [0.22 0.78]. We select the quadratic cost function in (18) as

J= 3 ‘/fh’”lRiU(Uc(T:k)_Ue)Q“'R(iL(T,kJ)—ie)ZdT

kedomj (&) 7k

where p = 1000 to suitably penalize the voltage error. Multiplying
the cost by (pR)™!, one clearly sees that this corresponds to selecting
C =0 (RRy) 7] and v = p~! in (22), which gives Q = [ p/(;%o ]
With this value of @, in order to satisfy Property 1, we choose P =
[0-5248 0.1032
0.1032 1.0596 1 . . .

In Fig. 1, we report on the results of extensive simulation tests,

and the arising statistics about the switching frequency. To suitably
illustrate the different roles of the “transient” parameter 7 introduced
in Section III and the “steady-state” parameters ¢ and 7" introduced
in Sections V-A and V-B, respectively, we select a grid of possible
values of (7,) (for the space regularization case, shown in the two
upper surfaces), and a grid of possible values of (1, 7") (for the time
regularization case, shown in the two bottom surfaces). Two large sets
of simulations have been carried out using space regularization and
time regularization, respectively, leading to Fig. 1.

Let us first consider the upper surfaces of Fig. 1 (space regulariza-
tion). Each point on these surfaces correspond to a pair (77, €) and has
been generated by first running eight simulations from eight different
initial conditions, with good coverage of all the possible directions of
the initial error. These initial conditions all correspond to an initial
value of V' (Z(0,0)) = 200 (they are all on the same level set of V).
Each simulation runs for 50 ms and the statistics reported in the left of
Fig. 1 show the average switching frequency in the time domain pre-
ceding the first time (¢,7) € dom  when V (Z(,7)) < & (when the
response is still in the transient phase). The right surface shows instead
the response in the remaining portion of each simulation (where the
response has reached the steady state). Each of these statistics repre-
sents the number of switches normalized by the length of the interval,
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Fig.2. Lyapunov function V (z) with space regularization (left) and with
time regularization (right).

averaged over the eight simulated solutions. We may appreciate the fact
that the steady-state parameter ¢ has no effect on the transient switch-
ing frequency and has significant effect on the steady-state switching
frequency. The converse holds for the transient parameter 7, which is
shown to have an effect on the transient switching frequency.

Time regularization is instead used in the lower surfaces of Fig. 1,
corresponding to a grid of selections of the two parameters (7,7"),
where for each point on the grid eight simulations from the same initial
conditions as in the previous case, are performed. For this second case,
a rough indication of the expiration of the transient phase has been
performed by detecting the smallest time (%, j) when V (Z(¢,7)) < 1
namely it is 200 times smaller than the initial condition), and transient
statistics (providing the lower left surface of Fig. 1) is the averaged
switching frequency over hybrid times up to ¢ = /2, whereas the
steady-state statistics (providing the lower right surface of Fig. 1) are
computed by focusing on hybrid times after %f and until the end of
the simulation run. The resulting two lower plots of Fig. 1 confirm the
same trends as in the space regularization case, even though here the
steady-state tuning knob is given by scalar 7'

Fig. 2 shows the evolution of the Lyapunov function (12) with space
regularization (left) and time regularization (right) for the same initial
condition and different selections of the steady-state parameters € and
T'. In the left plot, we may see that as ¢ is decreased, the solution comes
closer to the operating point z. but, as noticed in Section I1I, the price to
pay for such proximity is a high average switching frequency (indeed,
z, is not an equilibrium for the two dynamics of the switching scheme).
Conversely, for larger values of ¢, the number of jumps decreases and,
as expected, the error between x and z. increases. Similarly, for the
right plot of Fig. 2, smaller values of 1" provide solutions that remain
increasingly close to z. exhibiting a large switching frequency, and
vice-versa.

VIl. CONCLUSIONS AND FUTURE WORK

We addressed practical stabilization of operating points for SAS by
using a hybrid controller that performs a tradeoff between minimum
dwell time and the size of the asymptotically stable set. Practical asymp-
totic stability is obtained by two design strategies, involving space and
time regularization. Each one of these strategies is associated to a con-
venient tuning knob that may be used to perform a tradeoff between the
dwell time and the magnitude of the steady-state oscillations around
the operating point. The switching frequency during the transient phase
of the response can also be adjusted using another convenient knob,
having the intuitive role of trading off transient dwell time with LQ
guarantees, as seen from an integral quadratic performance index. The
proposed construction has been numerically illustrated on a boost con-
verter example. Future work comprises experimental validation of the
proposed strategy, as well as possible generalizations requiring weaker
conditions on the system matrices A;,7 = 1,2,...,n.
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