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Self-triggered and event-driven control for
linear systems with stochastic delays

S. Prakash, E.P. van Horssen, D. Antunes, W.P.M.H. Heemels

Abstract— Delays are often present in embedded and net-
worked control loops and represent one of the main sources
of performance limitations. In this paper, we propose two
aperiodic control strategies to optimize closed-loop performance
in the presence of stochastic delays: (i) a self-triggered strategy,
in which the deadline to drop data is decided on-line based
on the current state; (ii) an event-driven strategy, whereby
the control input is updated immediately after the delayed
data becomes available, leading in general to faster but time-
varying control loops. These schemes are designed and analyzed
using a standard LQG framework, which allows for assessing
and comparing closed-loop performance. We establish that
our self-triggered strategy always achieves a better closed-loop
performance than periodic control with an optimal sampling
period. Moreover, we provide examples where the event-driven
strategy outperforms the self-triggered strategy and examples
where the opposite is observed.

I. INTRODUCTION

In many control applications, delays in the control loop
are inherent [15]. Prime examples are real-time embedded
control systems, where delays result from the computational
time needed by the underlying real-time platform to execute
the control task [4], [11], and networked control systems
where delays result from the time taken for the propagation
of signals through the communication network [9], [11].
Another class of examples are applications requiring inten-
sive data-processing algorithms (e.g. vision-based control)
introducing processing delays in the control loop. These
delays are mostly randomly varying depending on factors
such as computational load, network traffic, and quality of
sensor data. In several applications, especially those requiring
high-performance, these random delays must be taken into
account during control design.

In a traditional periodic control setting, these delays can be
handled by picking a sufficiently large sampling time, such
that even the largest possible delays can be accommodated,
but this leads to very conservative designs. Alternatively,
a sampling period can be selected according to the time-
constants of the system dynamics; when a delay occurs that
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cannot be accommodated within a sampling period, the cor-
responding signal-data is ‘lost’, and typically replaced by the
most recently available signal-data. Many control strategies
have been proposed to cope with this ‘packet-dropping’ (see,
e.g., [14]). The choice of sampling period obeys a trade-
off: a small sampling period increases the packet drop rate
deteriorating performance, while a large sampling period
leads to a slow loop, also deteriorating performance. Some
works in the literature find an optimal sampling period
according to given performance specifications [7].

In this paper, we explore the possibility of using aperiodic
control to cope with independent and identically distributed
(i.i.d.) stochastic delays, and in particular we propose self-
triggered and event-driven control strategies. Event-based
and self-triggered control have been proposed in recent
years as alternatives to standard periodic control. The main
motivation behind these alternatives is to reduce the rate
at which the control input is updated, either to reduce the
communication or the computational burden [8]. Instead,
in this paper, we propose the self-triggered and event-
driven approaches with the purpose of improving closed-loop
performance in the presence of stochastic delays. However,
before presenting the aperiodic approaches, we consider a
method similar to [7] to obtain the best performance by
periodic control with packet drops, which will be used as a
benchmark to evaluate the performance of the two aperiodic
schemes.

In the self-triggered approach, the deadline to drop data,
which in a periodic time-triggered scheme coincides with the
sampling period, is decided on-line based on the current state.
Here, the challenge is to design a policy for picking such a
deadline on-line to optimize closed-loop performance. This
problem of designing an on-line control policy as well as a
scheduling policy is in general hard [13]. Furthermore, note
that, contrarily to the event-driven and periodic schemes, for
a particular policy for picking such a deadline on-line, the
closed-loop model is non-linear.

In the proposed event-driven strategy, the actuation input
is updated immediately after the control update becomes
available. Event-driven strategies have been proposed to
tackle stochastic delays in other works in the literature, for
example, in [12], [10]. However, there, the sensor node is
sampled periodically and a new control update is restricted
from occurring at least until the next sampling instance of
the sensor. Furthermore, in [12] it is assumed that the total
delay in one complete loop is not more than one sampling
period of the sensor, and in [10] it is limited by a certain

3023



multiple of the sampling period. To illustrate the approaches,
we consider a control loop with a delayed actuation signal.
In our approach, the sensor is allowed to sample immediately
after the last actuation update occurs. Moreover, the delay is
allowed to be arbitrarily large but finite. The actuation delay
is considered to be significantly larger than the computational
delay of the controller.

To model the system with stochastic delays or data-loss,
we use a linear time-varying system model with stochastic
parameters. The analysis for such systems becomes more
intricate than for periodic control schemes, where the models
are typically time-invariant. However, using the tools for
systems with i.i.d. parameters provided in [6], we can design
and analyze such systems. Note that the event-driven policy
differs from event-triggered policies in the sense that in
event-triggered control, the sampling occurs when the state
of the plant deviates from a certain threshold while in event-
driven control the sampling occurs at a system event which
is not necessarily dependent on the value of its state.

These schemes are designed and analyzed in the standard
linear quadratic Gaussian (LQG) framework, where closed-
loop performance is evaluated by an average cost. Our main
result establishes that the proposed self-triggered strategy
outperforms the periodic control strategy with optimal sam-
pling period in this average cost sense. This result highlights
the benefits of aperiodic control in the context of control
loops with stochastic delays. For certain systems the event-
driven strategy can further improve performance with respect
to the self-triggered strategy. This is illustrated by a simula-
tion example. However, we also provide an example where
the proposed self-triggered strategy outperforms the event-
driven strategy, concluding that both aperiodic strategies are
viable options for control loops with stochastic delays.

The remainder of the paper is organized as follows.
The problem formulation is discussed in Section II. In
Section III we discuss the best periodic control strategy to
cope with stochastic delays in control loops. In Section IV
the proposed aperiodic strategies are discussed and the main
results are presented. Section V presents simulation examples
comparing the performance of the three proposed methods.
Section VI provides concluding remarks.

II. PROBLEM FORMULATION

We consider a continuous-time plant modeled by the
following stochastic differential equation

dx. = (Acxe + Beue)dt + Bydw(t), x.(0) = zg, (1)

where z.(t) € R™ is the state and u.(t) € R™ is the
applied control input at time ¢ € R>o, and w is an 7n,,-
dimensional Wiener process with incremental covariance
I,,,,dt [2]. We make the standard assumptions that (A., B.)
is controllable and B, has full rank.

As in the standard linear quadratic Gaussian (LQG) frame-
work, the average quadratic cost
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Fig. 1. Control loop with actuation delay dj, zero-order
hold (ZOH) input holding, and the next control update and
sampling instance fj;.

is chosen as the performance criterion where
ge(x,u) = 27Q.x + uT R.u with positive definite matrices
Q. and R,.

The plant is sampled at times t, k € N, with 511 > t,
for all k£ € N. At every sampling instant ¢;, we assume that
the sensor provides a measurement of the full state x.(ty).
However, due to, e.g., communication delays, only after a
delay d, € R>( can the control input be updated using sensor
data acquired at time ;. We assume that between control
input updates the control input u, is held constant and that
the delays are independent and identically distributed with
known cumulative delay distribution function F' : R>o —
Rio,1) and thus Pr(dx < 6) = F(J). The corresponding
probability density function is denoted by f(4), f : R>o —
R>. The control loop is depicted in Figure 1.

A control strategy must specify not only how to update
the control input based on the state measurements but also
when to update the control input. In this paper, we consider
three strategies for determining when to update the control
input, leading to three different problems for minimizing
the performance index (2). These are described next and
illustrated in Figure 2.

1) Periodic control: This is the most commonly used
strategy whereby the sensor data is acquired at a fixed
sampling rate leading to ty4y; — ¢t = 7, for all k € N,
where 7 € Rs( and control updates also occur at times
tk, k € N, with a one-interval delay, i.e, the applied control
input u.(ty) at time ¢, is a function of the state samples and
previous control inputs at times t;, ¢ € N[o,k)- Moreover,
when §; > 7 we assume the sensor data acquired at time
ti is dropped and the control input is not updated. Hence,
in addition to holding the control input constant between
updates, i.e.,

uc(t) = uc(ty), t€ [tr,try1), 3)
we also have for k € N that

U if5k<7',

Ue(thy1) = { €]

uc(t,,,) otherwise,

where wuy is the control update designed at time ¢; and
uc(ty ) is the limit value of u.(t) as time ¢ approaches t 1
from below. We assume u.(t; ) = u.(to) is given as part of
the initial conditions. The problem that we are interested
in this case is first, for fixed 7, to find a control policy
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Fig. 2: Tllustration of the scheduling schemes of the three
proposed methods. (a) Periodic control with data loss (with
7* being the optimal sampling period) (b) Self-triggered
control (c) Event-driven control.

w specifying ur, = p(I;) as a function of the information
available for control at time ¢; being

Iy = {(zc(tt), ue(tr)) | 1 € Njg iy} (5)

to minimize the performance index (2) and then to pick the
optimal 7. As we will see in Section III, we can solve this
problem optimally, see also [7].

2) Self-triggered control: In this case, instead of picking
a constant deadline for dropping data when the delay is too
large, which coincides with the sampling period for periodic
control, we allow the next deadline to be a function of the
information available for control, i.e.,

tor1 — te = 7(Ix), (6)

where 7 is now a policy to be designed. The equations (3), (4)
still hold taking into account that 7 is a function of I.
Note that the closed-loop system is aperiodic in this case.
Now, the problem is to design a control policy p spec-
ifying ux, = p(g), ¥ € N and a policy 7 specifying
thv1 =t +7(Ig), k € N as in (6) to minimize the
performance index (2). We will provide in Section IV a
policy, which leads to a guaranteed better performance than
that of the periodic control strategy presented in Section III.

3) Event-driven control: In event-driven control, the con-
trol input is updated immediately when the new data becomes
available, i.e., tx41 — tx = 0. Furthermore, a new sensor
measurement is taken at that same instant. The artificial
delays introduced by the periodic and self-triggered strategies
when Jj, is less than the deadline are not present. Therefore,
the actuation signal may be updated (significantly) faster than
in the previous two cases. Although, there are no data drops
in this case, we can have longer waiting times when the
delays are long while in the previous two cases the packets
can be dropped to start computing a new control input. Since
the times at which the control updates occur depend on the
realization of the stochastic delays and are not assigned by
the controller, the problem is simply to find a control policy
u specifying ur, = p(lg), & € N, as a function of the
information I, defined as in (5) available to the controller
at time ¢y, to minimize the performance index (2). We will
be able to solve this control design problem optimally in
Section IV, building upon the work in [6].

Remark 1: The above problem formulation assumes that
the sensors can be sampled at any time. However, the

formulation can also capture the more realistic scenario
where the sensors can be sampled at a fast rate, in the
sense that the possible sampling period is much smaller than
typically delay values. In fact, considering that the actuation
updates are delayed to the next sampling instant, the delays
take values in a countable set, which can be captured by a
piecewise constant cumulative probability distribution.

In order to analyze the three methods, it is convenient to
obtain a discrete-time description of the system, which we
provide next.

A. Discretization
By discretization of system (1) at times tx, £ € N, we
obtain
Tpt1 = A(mg)zk + B(Te) ik + wg, @)

where zj, 1= z.(t;) and Gy := u.(t;) are the state of the
plant and the applied control input, respectively, at t, and
we define 75, = tx+1 — g, k € N, as the k-th intersampling
time (in general varying). For 7 € R>(, we have

A(r) =e*", B(r)= /T eA* Beds. (®)
0

The disturbance is a sequence of zero-mean independent
random vectors w, € R"™, k € N, with covariance
E[wk(wk)ﬂ = W(Tk) with W(T), T E RZO’ given by

W(r) = / e** B, Ble" *ds. ©)
0
The average cost can be written as
N(T)-1
J =limsup = E Z 9> r) | (10)
T—o0 T b—0

where N(T) is the number of sampling instants up to time
T, & := [x] 47 is an augmented state,
9k, i) = ELQ(T)Eks

where for 7 € Ry
ik
an= [0 0]

i (12

We will use a Bernoulli random variable v to capture
the occurrence of packet-drops in the sense that v, = 1
will denote that the control input u; has been successfully
applied to the system while 5 = 0 will denote that u; has
been dropped. As a consequence, (4) can be written as

keN,

Y

[AC BC}
%c Jg]e 0 0 ds.

U = Ye—1ug—1 + (1 — Y—1)lik—1, (13)

with @49 = u.(tg). We combine this equation and (7) and
write

Ehr1 = Ay, (Th)&k + By ug + Wy, (14)

Wy, = [w] 0]T and for 7 € R>( and v € {0,1}, we have

A(r)  B(7)

0
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This open-loop model is used for the three methods but
differs in the manner the variables 75 and 7, kK € N, are
determined. In periodic control, 7, is fixed with the value of
the sampling period and ~y; is a Bernoulli random variable;
in self-triggered control, 7 is a variable that is chosen on-
line at ¢;, based on the information I and ~j is a Bernoulli
random variable; in event-driven control, 75 is a stochastic
random variable that takes the value of the control delay dy,
at discrete time k, and v = 1 for every k € N.

III. PERIODIC CONTROL WITH DATA LOSSES

The optimal periodic control strategy is found in two
steps. The optimal control policy is first deduced for a
fixed sampling period 7. This is done using the dynamic
programming algorithm, which gives the solution in the form
of a Riccati equation from which the optimal control gain
K, and the corresponding optimal cost JP*(7) is obtained.
Then, the optimal sampling period, denoted by 7* is deduced
from the function JP* : R>g — R, i.e.,

* . P
7" = arg min JP* (7). (16)

The optimal control policy for the system (14) to minimize
the cost function (10) can be obtained by applying the
standard dynamic programming algorithm [3] and is given
by

up = =K &, a7
where K is the optimal control gain given by
K. =G, (BT (1)P; A, (7). (18)

Here, the notation M1 is used to denote the Moore-Penrose
pseudo-inverse of the matrix M, and P, and G, are obtained
from the solution to the algebraic Riccati equation

Py = A, (1) B AL, (1) + Q(r) - K. TG K,

19
G, =Bl PB,,.
The notation X,, PY,, indicates the mean value
E[X,, PY,,], ie.,
XW-,PY’YI« = pT(leyl) + (1 - pT)(XOPYE))v (20)

where X, and Y,, are random matrices that depend on the
Bernoulli random variable v, and p, is the probability of
success, which is given by p, = Pr[y; = 1] = F(7).

The Riccati equation (19) leads to a stabilizing solution
(17) for system (15) if the system is ms-stabilizable and Q(7)
is a positive definite matrix i.e. Q(7) > 0. Here, the notion
of stability considered is mean square stability (mss), c.f. [5,
p- 58].

As will be seen in Section V, Figure 3, there is a minimum
success rate p for p, (which in our case translates into a
minimum for the sampling period 7) below which the system
will not have a stabilizing solution, c.f. [14].

It can be shown (see, e.g., [3]) that applying the control
policy as in (17), results in the cost

TP (r) = %tr(PT/V[?T), @
where W, = [WéT) 8}.

IV. APERIODIC CONTROL AND MAIN RESULTS

In this section, we present and discuss the two proposed
aperiodic methods. In Subsection IV-A, we introduce a novel
self-triggered control strategy guaranteed to outperform the
optimal periodic control strategy discussed in Section III. In
Subsection IV-B, we provide the optimal control input policy
for the event-driven strategy.

A. Self-triggered control

In the self-triggered strategy, the times elapsed between
sampling times 75 are selected based on the information
available to the controller, i.e., according to a state-dependent
policy, and the control input policy is also to be designed.
Note that, the average cost (10) takes the form

J® =limsupE [Zé_ol 9(&k: k)

L—1
L—oo

k=0 Tk

|501 ~ (22)

We propose the following method to determine these
policies for the intervals between sampling times and for the
control input, which builds upon the optimal sampling period
7* and the matrices P,-, defined for the periodic control
strategy.

thr1 =t = 7(&k) (23)
(&) = argmin,, ¢4 161 Z ()& + B(a), (24)
up = —L(7(&k))Ex, (25)

where o and & are given constants such that) < a < 7* < &
and

B(a) = tr(Pr-Wa) — Tﬁ tr( Py W, ) (26)
Z(a) = Ay, () TP Ay, (@) + Q(ar)

— L(@)" (BT, (a)Pr- By, () L(e) 27)
L(a) = BT (a)Pr-By, () (B (a)Pr-A,, (@). (28)

The rationale behind this policy is to add an optimization
for the current sampling interval and current control at each
time ¢; over a search space that includes the optimal periodic
control policy. In fact, in the optimization (24) it is possible
to pick 7(&;) = 7* in which case uy, = K =&, where K« is
the gain of the optimal periodic control policy. The following
result is the main result of the paper establishing that this
policy achieves an average cost less than or equal to the
average cost of the optimal control policy.

Theorem 1: Let J;,,. := JP*(7*) be the periodic control
cost for the optimal control input policy and for the optimal
sampling time, and J® be the average cost of policy (23)-
(25). Then

I < ey
Proof: The proof is omitted for brevity. [ ]

Note that the inclusion of 7* in the set of allowable
deadlines does not directly guarantee better performance.
It is also required to derive an appropriate one-stage cost
argument in (24) whilst the expected cost in the performance
index is taken over multiple stages. In fact, the trigger policy
(24) is deduced from the proof. The proof builds upon the
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proof for a result in [1] established in a different context.
However, the fact that the intervals between decision times
are time-varying and that a continuous parameter (7y) is
picked instead of a number of discrete options as in [1] makes
the proof (more) challenging. In particular, this is reflected
in the definition of the self-triggered policy (24). The last
term is needed to cope with time-varying intervals between
deadline decisions.

B. Event-driven control

To obtain the optimal control input policy for the event-
driven case, we consider the discretized system (14) and use
the fact that we can write the cost (10) as

1 1 Nl
Je = 3 lim sup i Z Elg(&k, Or)],

N—o0 k=0

(29)

where § = E[6]. The proof of this fact is omitted for brevity.
Since the delays in the loop will result in varying sampling
intervals, the randomness in the system due to the delays in
the loop results in randomness in the system matrices of the
discretized system, and in the matrices of this cost function.
As shown in, for example [6], dynamic programming can
now be applied on such systems which are characterized
by randomly time-varying system parameters. In fact, the
optimal solution will be in the form of a stochastic Riccati
equation from which a constant control gain is deduced.

The optimal control policy for the system (14) to minimize
this cost function is obtained by applying the dynamic
programming algorithm [6] and is given by

up = =K, (30)
where K¢ is the optimal control gain given by
K¢ = G“I (BT P A,(5)), (31)

and P€ and G* are obtained from the solution to the algebraic
Riccati equation

Pe = A (5)TPeAL () + Q(0) — KTGK*,
G¢ = B] P°B;.

(32)

In the above Riccati equation, the notation U (0) PV (§) and

Z(0) are used to indicate the mean values E[U(5)PV ()]
and E[Z(0)], respectively, given by

U@ﬁww»:AmwwﬂW@mwwx
(33)

Z() = /O " Z(s)dF(s).

The mean cost corresponding to the control law will be
given by

1 —
J¢ = = tr(PW*),
5

with W5 being the mean covariance

(34)
where We = o 0

of the disturbance wy, in (14), i.e.,
Ws :/ W(s)dF(s),
0

where W (s) is obtained from (9).

Event-driven
768.73(-26.83 %)

Periodic
cost 1050.7

Self-triggered
993.2(-5.46 %)

TABLE I: Comparison of performance for event-driven and
periodic control for the probability distribution of delays dy,

given by f = f1.

V. EXAMPLE

In this section, we compare the performance of (optimal)
periodic control to that of self-triggered and event-driven
control on a second-order system given by (1) with

a=ly ] m=ll] =g Y] o9

I ml

This model represents a simple inverted pendulum system
with force input with the state vector being z. = [z #]T,
where x and & are the angular displacement and the angular
velocity, respectively. The system matrices in equation (1)
take the form as shown in (35) with the gravitational accel-
eration g = 10ms~2, mass of pendulum m = 0.25kg, length
| = 0.5m and damping co-efficient d = 1Nm/rads?.
The cost function matrices in (2) are taken as,

10
N (6)
The delay § is set to be randomly varying with Gamma
distribution having shape and scale parameters £ = 10

and 0 = 0.01, respectively. We denote the corresponding
probability distribution function by f; : R>g — R>( and
the cumulative distribution function by F1 : R>o — Ryg q).

We start with the evaluation of the periodic control strat-
egy with packet drops. For this, we take 7™ and 7%
described in Section IIT as 2.2- 10716 and 0.25, respectively.
A set of n = 500 values s;, 7 € Ny 500, are selected in
[rmin - pmaz] at regular intervals, for the sampling period
7. Following the procedure described in Section III, it is
observed that the system is not ms-stabilizable for sampling
periods less than = = 0.079s, below which the packet drop
rate is above 72.7%. The plot of (21), i.e., JP*(7), against
T is obtained for the remaining values of s; as shown in
Figure 3. The optimal sampling period and the corresponding
optimal cost for periodic control are found from the graph
as 7* = 0.1327s and JP*(7*) = 1050.7, respectively, and is
validated by Monte-Carlo (MC) simulations.

Next, we consider the self-triggered control method. The
average cost, when the self-triggered control method is
applied, is found by MC simulations. For this, o and @
as described in Section IV-A are chosen as 0.01 and 0.25,
respectively. The average cost for self-triggered control is
obtained as J® = 993.2.

Lastly, we consider the event-driven control method. The
average cost, when the proposed event-driven control method
is applied, is obtained by solving the Riccati equation (32)
and using equation (34) as J® = 768.7, and is validated by
MC simulations.
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Fig. 3: Comparison of the performance of the three methods
on an example system for the probability distribution of
delays dy given by f = f; and F' = F3.

Event-driven
5541.3

Periodic
2053.9

cost

TABLE II: Performance of event-driven and periodic control
for the probability distribution of delays J; given by f = fo.

The average costs resulting from event-driven and self-
triggered control methods are compared with that of the op-
timal periodic control in Figure 3. It is seen that with event-
driven control an improvement of 26.83% was achieved
against periodic control while an improvement of 5.46% was
observed with self-triggered control as shown in Table I.
Note that, the performance of event-driven and self-triggered
control methods is compared with the best possible perfor-
mance by periodic control.

The average sampling interval for self-triggered control (as
obtained by Monte-Carlo simulations) and for event-driven
control (the mean of the delay 4), are 0.092s and 0.1s, i.e.,
an increase in control rate by 31.4% and 24.6%, respectively,
from periodic control. Though the aperiodic methods result
in significant increase in control rate, with periodic control,
at such high control rates, the performance deteriorates from
the optimal, as can be seen in Figure 3.

Although the improvement of event-driven control is
significantly larger than that of periodic and self-triggered
control in this particular example, it is not necessarily always
the case. To show this, we consider the same system with
the parameter d = 5 Nm/rads~! and a different probability
distribution function for the delays & given by

6.25, if ¢ €[0.01,0.09) U (0.91,0.99]
f2(0) = .
0, otherwise.
In this setting, the resulting cost for event-driven con-

trol J¢ = 5541.3 is higher than that of periodic control
JP*(7*) = 2053.9 as also shown in Table II. Note that, for
this case, the event-driven performance is worse than that of
periodic control and therefore also worse than self-triggered
control by Theorem 1. The occurrences of large delays
deteriorate the performance of the event-driven scheme.
Hence, performance analysis, made possible by the methods
presented in this paper, is essential when deciding to apply
aperiodic control schemes.

VI. CONCLUSION

In this paper, we considered control loops where the
presence of stochastic delays limit performance of tradi-
tional control strategies. To enhance performance, a-priori
knowledge of the probability distribution of the delay is
used in the controller design. Three control strategies to
handle the delays were analyzed. The first method deduces
the best possible performance that can be obtained by con-
ventional periodic control with packet drops and an optimal
periodic sampling interval. The resulting performance is used
as a benchmark for two subsequently proposed aperiodic
strategies, namely self-triggered and event-driven control.
It is shown, with an example of a simple second order
system, that the self-triggered and event-driven control strate-
gies were able to achieve better performance (26.8% and
5.52%, respectively) than periodic control. A second example
showed that event-driven control is not necessarily better
than periodic control. However, with self-triggered control,
performance improvement is always guaranteed, as formally
established in our main result.
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