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Abstract—Motivated by scenarios where the communi-
cation or the computation resources are limited, event-
triggered control consists of transmitting data between the
plant and the controller according to the actual system
needs and not the elapsed time since the last transmis-
sion instant as in traditional sampled-data control, so that
the desired control objective is achieved. A range of tech-
niques are nowadays available to design event-triggered
controllers. However, we generally have only very little in-
formation about the actual behavior of the transmission
instants and thus about the amount of transmissions be-
ing actually generated, though this is a key feature of the
design. In this article, we analyze the inter-event times, i.e.,
the times between two successive transmission instants,
when the plant is modeled as a two-dimensional linear time-
invariant system. The controller is a state-feedback law and
the triggering rule is the relative threshold policy, which is
allowed to be time-regularized. One of the main results in
this article is the explanation of the oscillatory behavior of
the inter-event times when the constant used to define the
threshold is small relative to 1, a phenomenon commonly
observed in simulations but never explained so far. More
generally, the presented results help to understand the
behavior of the inter-event times, instead of solely relying
on numerical simulations, and thereby can be exploited to
rigorously evaluate the performance of the considered trig-
gering condition in terms of (average) inter-transmission
times.
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I. INTRODUCTION

EVENT-TRIGGERED control is a transmission paradigm,
which consists in generating communications between the

plant and the controller using a state-dependent criterion that is
continuously monitored [22]. The basic idea is to adapt plant-
controller communication based on the current system needs and
not the time elapsed since the last transmission as in traditional
time-triggered control. Event-triggered control is relevant in
scenarios where the control system is subject to communication
or computation constraints, as in networked control systems or
embedded systems; see, e.g., [23], [25], and [50].

While various event-triggered control techniques are avail-
able in the literature, very little is known about the actual
behavior of the inter-event times, i.e., the time between two
successive transmission instants. This is problematic as the
inter-event times directly relate to the amount of transmissions
generated and is therefore of primary importance in view of
the raison d’être of event-triggered control. In most cases, the
analysis of the inter-event times only ensures the existence
of a dwell-time, sometimes also called “minimum inter-event
time,” that is a (uniform) strictly positive amount of time be-
tween any two successive transmissions. This property allows
avoiding the Zeno phenomenon and is required by practical
hardware limitations. Besides the existence of a dwell-time,
we generally do not know how the inter-event times behave.
Numerical simulations are thus often carried out to get an
idea of it. Exceptions exist though. The work in [46] provides
conditions under which the inter-event times approximately
converge to a constant value when the triggering rule satisfies
a homogeneity property and when zero-order hold devices are
used to implement the controller. This reference also analyzes
stability properties of the inter-event times assuming it exhibits a
periodic pattern. Similarly, conditions for the inter-event times
function to exhibit continuity and periodicity properties have
been very recently proposed in [38] for two-dimensional linear
time-invariant systems. The works [4], [10], and [11], which
rely on model predictive control techniques, provide analytical
guarantees regarding the average inter-event times. When the
plant dynamics evolve in continuous time and smart actuators
are available, properties on the inter-event times can be derived
when using model-based holding functions [34], as advocated
in [5] and [27] for fixed threshold policies, even in the presence
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of stochastic disturbances. Interestingly, in the absence of distur-
bances, model-based implementations [34] can lead to a single
transmission to stabilize the system in the ideal state-feedback
control case. Also, some schemes ensure that inter-event times
grow larger or converge to a constant as the solution converges
to the origin [24], [32], and [37, Sec. V.B] or as time grows [35].
Another recent relevant line of research is based on symbolic
abstractions; see, e.g., [18], [19], and [29]. The general idea is to
partition either the state space or the inter-event times and then to
construct an automaton that schedules transmissions with guar-
anteed properties on (the long-term behavior of) the inter-event
times. Lastly, it has to be noted that several works on event-
triggered control under bit-rate constraints and also on event-
triggered stochastic estimation analyze the inter-event times;
see, e.g., [28], [31], and [33] and, e.g., [21], [30], [45], and [48],
respectively.

Besides the aforementioned works, our understanding of the
inter-event times remains limited, while it is a key characteristic
of the event-triggered controlled system. Phenomena such as
when the inter-event time describes a periodic-like pattern,
which is often seen in simulations (see, e.g., [6, Fig. 3], [8, Fig.
3], [40, Fig. 4], [44, Fig. 1], and [49, Fig. 4]), remain unexplained.
Interestingly, inter-event time oscillations were observed in one
of the earliest works in the field: More than 20 years ago, in [7],
it was stated that “Several interesting phenomena have been
observed during the simulations. One example is limit cycles
in the actual sampling interval,” which is still not elucidated as
far as we know. More generally, understanding the behavior of
the inter-event times is essential to appreciate the features of the
considered triggering technique and to evaluate its performance
in terms of transmissions.

There is a simple reason for our limited understanding of
the inter-event times: The question is notoriously challenging
technically. In this article, we focus on plant dynamics given
by two-dimensional (2-D) continuous-time linear time-invariant
systems and we will see that the problem quickly becomes tech-
nically involved. The controller is a static state-feedback law im-
plemented using zero-order hold devices. The triggering rule is
the one in [42], which is one of the pillars of the literature that has
been used and extended in various contexts; see, e.g., [2], [13],
[15], [17], [40], and [47]. This triggering law relies on the con-
dition |x− x̂| ≥ σ|x|, where x is the current plant state, x̂ is the
plant state at the last transmission instant and σ ∈ R>0 is a tun-
able parameter. Our results also apply for a time-regularized ver-
sion of [42], in the sense that a given minimum time is enforced
between any two transmissions; see, e.g., [1], [9], [14], [16], [39],
[41], and [43]. This is relevant when we want to have a direct
control on the minimum inter-event time as well as for robustness
reasons; see [2], [8], [9], [12], and [14]. The idea of including
time-regularization is to check the condition above once T ≥ 0
units of times have elapsed since the last transmission instant: If
it is satisfied, a transmission between the plant and the controller
is triggered. We only talk of time-regularization when T > 0,
as, for T = 0, the “classical” relative triggering law of [42] is
obtained.

Our results require σ to be small relative to 1, which is
typically the case to ensure the stability of the origin of the
closed-loop system; see, e.g., [1], [14], [41], and [42]. We will
see that accurate results are obtained on examples even when
σ is taken close to its maximum admissible value ensuring
stability. We first establish key properties of the inter-event
time functions, which apply to the system of any dimension,

and not only two-dimensional ones. In particular, we provide
an expression of the inter-event time, which allows to derive
new lower and upper bounds; this result has its own interest
and could be exploited for scheduling purposes for instance.
We then specialize on 2-D systems and distinguish different
cases depending on the nature of the eigenvalues λ1 and λ2

of the state matrix of the continuous-time closed-loop system
in the absence of sampling. In summary, when λ1 and λ2 are
complex conjugates, we show that the inter-event times oscillate
with a period close to π

β , where β is the absolute value of the
imaginary parts of λ1 and λ2. This provides for the first time, as
far as we know, an explanation of the oscillatory nature of the
inter-event times. In addition, we demonstrate that the values
taken by the inter-event times over any time interval of length
longer than π

β are almost insensitive to the considered initial
condition. This result has important implications: Not only the
periodicity of inter-event times is explained and analyzed, but
this means that a single simulation over a time interval of length
π
β is enough to rigorously know the behavior of the inter-event
times for all initial conditions and all times. Compared to [46,
Sec. IV] where periodic patterns of the inter-transmission times
are mentioned, 1) we do prove the existence of such patterns,
instead of assuming it, 2) we provide an easy-to-compute ex-
pression of the period, and 3) we analyze the impact of the
initial conditions on the inter-event times, while [46] assumes
exact periodicity, which cannot occur in general as we show and
studies the stability properties of the inter-event times. On the
other hand, when λ1 and λ2 are real, the inter-event times either
converge to a neighborhood of max{ σ

|λ1| , T} as time tends to
infinity or lies in a neighborhood ofmax{ σ

|λ2| , T} for all positive
times. The only case that we do not treat is when λ1 = λ2

and the corresponding geometric multiplicity is equal to one
because significant technical difficulties arise in this case as we
explain. We conjecture that the inter-event times converge to
max{ σ

|λ1| , T} in this case, which is confirmed by simulations.
These results are consistent with [46, Prop. 1] where non-time
regularized homogeneous triggering rules are discussed. We go
further here as 1) we carefully analyze the impact of σ (and
T ) on the inter-event times, 2) prove that the inter-event times
are close to given values for all positive times in some cases,
instead of providing asymptotic properties only, and 3) address
time-regularization. Compared to [38], we provide constructive
and easy-to-compute estimates on the behavior of the inter-event
times, reveal the relationship between these properties and the
eigenvalues of the closed-loop state matrix, and analyze the
impact of the initial conditions on the inter-event times. The
provided simulation results confirm and show the strength of
the obtained theoretical guarantees.

Compared to the preliminary version of this work [36], the
main novelty is the time regularization of the triggering law
of [42], which is important as the relative threshold strategy
of [42] is known to be nonrobust [8] as mentioned above. We
also present several new results, including new lower and upper
bounds on the inter-event times (see Lemma 1), discussions
about the application or the extension of the results to other
classes of systems (see Section V), as well as new examples
including a nonlinear one (Section VI).

The remainder of the article is organized as follows. The
problem is formally stated in Section II. Then, key properties
of the inter-event time function are established in Section III.
The main results are given in Section IV. Discussions on the
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extension of the results are proposed in Section V. The results are
confronted to numerical simulations in Section VI. Section VII
provides conclusions. Finally, lengthy proofs are presented in
the Appendix.

Notation: Let R be the set of real numbers, R≥0 := [0,∞),
R>0 := (0,∞), R<0 := (−∞, 0), Z be the set of integers,
Z≥0 := {0, 1, 2, . . .}, and Z>0 := {1, 2, . . .}. Given a set E ⊆
Rn with n ∈ Z>0, we use E� to denote E\{0}. We denote
the set of unit norm vectors of Rn with n ∈ Z>0, as Sn,
i.e., Sn := {x ∈ Rn : |x| = 1} where | · | stands for the Eu-
clidean norm. The notation (x, y) stands for [x�, y�]�, where
x ∈ Rn and y ∈ Rm. For f : R≥0 → Rn right continuous and
t ≥ 0, we write f(t+) to denote limt′↓t f(t′). We use I to
denote the identity matrix of appropriate dimension according
to the context. For a matrix A ∈ Rn×n with n ∈ Z>0, we,
respectively, denote its maximum and minimum singular values
as ςmax(A) :=

√
λmax(A�A) and ςmin(A) :=

√
λmin(A�A),

where λmax(A
�A) and λmin(A

�A) are the maximal and the
minimal eigenvalues of A�A, respectively. The argument1 of
x = (x1, x2) ∈ R2,� is defined as

arg : R2,� → [−π, π]

x 
→ arg(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

arctan(x2

x1
), when x1 > 0

arctan(x2

x1
) + π,

when x1 < 0 and x2 ≥ 0
arctan(x2

x1
)− π,

when x1 < 0 and x2 < 0
π
2 , when x1 = 0 and x2 > 0
−π

2 , when x1= 0 and x2<0

.

By argument, we mean here the angle of the 2-D vector x,
which, without loss of generality, is treated as a complex number.

II. PROBLEM STATEMENT

Consider the plant model

ẋ = Ax+Bu (1)

where x ∈ Rn is the state with n ∈ Z>0, u ∈ Rm is the control
input with m ∈ Z>0, and (A,B) is stabilizable. We restrict n
to be equal to 2 later in Section IV. The control input u is given
by the feedback law

u = Kx (2)

where the matrix K ∈ Rm×n is such that A+BK is Hurwitz;
such a matrix does exist since (A,B) is stabilizable.

We study the scenario where controller (2) is implemented
on a digital platform and communicates with system (1) at
time instants ti, i ∈ I with I := {1, 2, . . . , N} ∩ Z≥0 with
N ∈ Z>0 ∪ {∞}; this will be clarified in Section III. Between
two successive transmission instants, the control input is held
constant using a zero-order hold device, and it is updated at
every ti, i ∈ I, which leads to

u = Kx̂ (3)

with x̂ being given by the solution to

˙̂x(t) = 0 for all t ∈ (ti, ti+1)
x̂(t+i ) = x(ti).

(4)

1Often, the argument is defined as arg(x) = arctan(x2
x1

), but this is only
true when x1 > 0.

We also introduce the clock variable δ ∈ R≥0 to measure the
time elapsed since the last transmission instant. This variable is
needed when the triggering law is time-regularized. Its dynamics
are given by

δ̇(t) = 1 for all t ∈ (ti, ti+1)
δ(t+i ) = 0.

(5)

The overall system is

ẋ(t) = Ax(t) +BKx̂(t)
˙̂x(t) = 0

δ̇(t) = 1

⎫⎬
⎭ for all t ∈ (ti, ti+1)

x(t+i ) = x(ti)
x̂(t+i ) = x(ti)
δ(t+i ) = 0

⎫⎬
⎭ for all i ∈ I.

(6)

To obtain a solution to (6) in the Carathéodory sense, for
each i ∈ I, the latter flows on [ti, ti+1) and experiences a jump
at ti+1, and so on. Also, by a solution, we mean a maximal
solution, i.e., one that cannot be extended.

The sequence of transmission instants ti, i ∈ I, is defined
implicitly by a state-dependent triggering rule. In particular, we
consider the law in [42], possibly time-regularized, to define
these instants as proposed in, e.g., [1], [14], and [16]. Hence, a
transmission occurs whenever

|x̂(t)− x(t)| ≥ σ|x(t)| and δ(t) ≥ T (7)

where σ > 0 and T ≥ 0 are design parameters. We only talk
of time-regularization when T > 0 as mentioned in Section I,
and we note that, when T = 0, the second condition in (7) is
always verified. The first inequality in (7) guarantees that the
error |x̂− x| induced by sampling is smaller than σ|x| as in [42],
after T units of times have elapsed since the last transmission;
otherwise, a transmission is triggered. On the other hand, the
inequality δ(t) ≥ T in (7) enforces a minimum time between
successive transmissions of at least T units of time, which we
design whenever T > 0. Constants σ and T are selected to
ensure that the origin of systems (6) and (7) is uniformly globally
exponentially stable, as formalized next.

Standing Assumption 1 (SA1): There exist d1 ≥ 1,
d2, σ

�, T � > 0 such that for all (σ, T ) ∈ (0, σ�)× [0, T �),
for all solutions (x, x̂, δ) to (6) and (7), and t ≥ 0,
|(x(t), x̂(t))| ≤ d1e

−d2t|(x(0), x̂(0))|. �
Various techniques are available in the literature to compute

the bounds σ� and T � to ensure SA1; see,2 e.g., [1], [14], [16],
[39], and [41]–[43].

We assume that t0 = 0, which means that the initial time t = 0
is a sampling time. We, therefore, concentrate on solutions to
(6) and (7) initialized at time 0 with initial state of the form
(x0, x0, 0) where x0 ∈ Rn since, after a sampling instant, x̂
is equal to x and δ to 0. The first inter-transmission time is
the time, greater than or equal to T , such that |x̂− x| is larger
than or equal to σ|x|. Since t0 = 0 and x(0) = x̂(0) = x0, this
time only depends on x0 and is parameterized by σ and T ; we,
therefore, denote it τσ,T (x0). The first inter-transmission time
is defined as, given x0

τσ,T (x0):= inf {η ≥ T : |x0 − φ(η;x0)| ≥ σ|φ(η;x0)|}
(8)

2Although the work in [42] does not consider time-regularized triggering
laws, SA1 does hold by taking T � = τ where τ is given in [42, Corollary IV.1].
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where φ(η;x0) denotes the solution3 to ẋ = Ax+BKx0 at
time η ≥ 0, initialized at time zero at state x0. By induc-
tion, we denote the ith inter-transmission time, with i ∈ I, as
τσ,T (x(ti)), which only depends on x(ti), as x(t+i ) = x̂(t+i ) =
x(ti) and δ(t+i ) = 0. The mathematical definition of τσ,T (x(ti))
is given by (8) by simply replacing x0 by4 x(ti). Noting that
x̂(t) = x(ti) for t ∈ (ti, ti+1) in view of (6), we can write
τσ,T (x(ti)) = τσ,T (x̂(t)).

Problem Statement: The objective is to analyze the properties
of τσ,T (x̂(·)) along solutions to the hybrid systems (6) and (7)
initialized at (x0, x0, 0) for some x0 ∈ Rn when n = 2 and for
σ small relative to 1. �

The only guarantee on the inter-event times we find in the
literature for the triggering condition (7) is the existence of a
minimum inter-event time. More precisely, when T = 0, we
know from [42] that there exists ε > 0 such that τσ,T (x0) ≥ ε
for any x0 ∈ Rn,�, and, when T > 0, τσ,T (x0) ≥ T for any
x0 ∈ Rn, which directly follows from (7). We aim at going
further in the analysis of the function τσ,T : We want to provide
analytical characterizations of the behavior of t 
→ τσ,T (x̂(t))
along the solutions to (6) and (7). In that way, we would be able
to rigorously quantify the amount of transmissions generated by
the triggering rule.

For this purpose, we view systems (6) and (7) as a family of
systems parameterized by σ and T , and the presented results
apply for small σ in (7), which we justify as follows. First, σ
typically needs to be small for the closed-loop system in (6) and
(7) to exhibit stability properties; see SA1. Second, our line of
analysis exploits properties of the limit case when σ → 0. This
allows us to derive simple and accurate properties on the inter-
event times, which are corroborated by numerical simulations
in Section VI even when σ is taken close to σ� defined in SA1.

The next section establishes preliminary instrumental prop-
erties of the map τσ,T .

III. PROPERTIES OF THE MAP τσ,T

We first need to make sure that τσ,T cannot be equal to ∞.
In other words, we want to guarantee that τσ,T (Rn) ⊆ [0,∞).
This is ensured by the next proposition.

Proposition 1: For any x0 ∈ Rn, σ ∈ (0, σ�), and T ∈
[0, T �) where σ� and T � come from SA1, τσ,T (x0)
∈ [0,∞). �

Proof: Let σ ∈ (0, σ�) and T ∈ [0, T �). We first note that
τσ,T (0) = T in view of (6), (7), and (8). To prove that τσ,T
takes finite values on Rn,�, we proceed by contradiction and we
suppose that there exists x0 ∈ Rn,� such that τσ,T (x0) = ∞.
This means that the solution (x, x̂, δ) to systems (6) and (7)
initialized at (x0, x0, 0) never jumps. By SA1, x(t) is defined for
all positive times and converges to zero as t tends to infinity. On
the other hand, |x̂(t)− x(t)| = |x0 − x(t)| < σ|x(t)| for any
t ≥ T since no jump occurs. By taking the limit as t→ ∞ on
both sides of the latter inequality, we obtain |x0| ≤ 0, which is
impossible since x0 �= 0. This proves the desired result. �

Proposition 1 implies that I = Z≥0 as introduced in
Section II, for any x0 ∈ Rn and any pair (σ, T ), which satisfies
SA1.

3We abandon in the following the notation φ to denote a solution and use,
instead, directly x (or x̂).

4We can still consider the time from η = T in (8) in this case, and not from
η = ti + T , as systems (6) and (7) are time-invariant and satisfy the semigroup
property.

Second, we state a homogeneity property of τσ,T , which is
established in [3, Th. 4.11 and Remark 4.12] for the case where
T = 0. The proof directly follows when T > 0 and is, therefore,
omitted.

Proposition 2: For any x0 ∈ Rn,�, μ ∈ R�, σ ∈ (0, σ�), and
T ∈ [0, T �), τσ,T (x0) = τσ,T (μx0). �

Proposition 2 states that τσ,T is constant along lines passing
through the origin, excluding the origin.

Third, we derive an approximate expression of τσ,T on Rn,�

for small σ. We distinguish two cases for this purpose whether,
given m > 0, the pairs (σ, T ) belong to the set
Sm(σ�, T �) :={(σ, T ) : σ∈(0, σ�), T ∈ [0,min {mσ, T �})}

(9)
or not. While the set Sm imposes no extra condition on σ
compared to SA1, it requires that, when σ is small, so is T
(which implies that T depends on σ). Note that when no time-
regularization mechanism is implemented, T = 0 and any pair
(σ, 0) belongs to Sm(σ�, T �). The next proposition provides
approximate expressions of τσ,T on Rn,� for small σ in the
general case first and then provides additional expressions when
the pairs (σ, T ) belong to Sm(σ�, T �) for a given m > 0.

Proposition 3: There exist r′ : Rn × (0, 1) → R, c′r > 0
and σ�′

1 ∈ (0,min{1, σ�}) such that for any σ ∈ (0, σ�′
1 ),

T ∈ [0, T �) and any x0 ∈ Rn,�, τσ,T (x0) = T + r′(x0, σ) and
|r′(x0, σ)| ≤ c′rσ. Moreover, for any fixed m > 0, there exist
r : Rn × (0, 1) → R, cr > 0 and σ�

1 ∈ (0,min{1, σ�}) such
that for any (σ, T ) ∈ Sm(σ�

1 , T
�), τσ,T (x0) = max{σ |x0|

|Acx0| +
r(x0, σ), T} and |r(x0, σ)| ≤ crσ

2, where Ac := A+BK. �
Proposition 3 states that τσ,T (x0) can be written as T plus a

term of the order of σ when (σ, T ) is selected as in SA1 and
σ is small compared to 1. This result implies that when T is
“big” compared to σ, we essentially have periodic sampling as
τσ,T (x0) is then well approximated by T for all x0 in this case
since r′(x0, σ), which is of the order ofσ, is negligible compared
to T . Because of that, we concentrate on the case where the pairs
(σ, T ) belong to Sm(σ�

1 , T
�) for a given fixed m > 0 in the

remainder of the article. In this case, Proposition 3 states that
τσ,T (x0) is well approximated by max{σ |x0|

|Acx0| , T} for small
σ > 0, for any x0 ∈ Rn,�, which is of the order of σ, while the
error term r(x0, σ) is of the order ofσ2. The fact that the constant
cr, which appears in the upper bound of the norm r(x0, σ), is
independent of x0 and (σ, T ) (but does depend onm), is crucial
in the following. We will see via examples in Section VI that
the forthcoming analytical guarantees on the inter-event times
may provide accurate estimations even when σ and T are taken
close to their respective maximal admissible values σ� and T �

according to SA1.
Interestingly, Proposition 3 can be used to derive a new lower

bound as well as an upper bound on τσ,T (x0), which have their
own interest.

Lemma 1: Given m > 0, for any (σ, T ) ∈ Sm(σ�
1 , T

�)
with T � from SA1 and σ�

1 from Proposition 3, and
any x0 ∈ Rn,�, τσ,T ≤ τσ,T (x0) ≤ τσ,T where τσ,T :=

max{ σ
ςmax(Ac)

− crσ
2, T}, τσ,T := max{ σ

ςmin(Ac)
+ crσ

2, T}
and cr as in Proposition 3. �

Proof: Let m > 0, x0 ∈ Rn,�, and (σ, T ) ∈ Sm(σ�
1 , T

�). In
view of Proposition 3, τσ,T (x0)=max{σ |x0|

|Acx0| +r(x0, σ), T}.

On the other hand, |x0|
|Acx0| ≤maxx′

0 �=0
|x′

0|
|Acx′

0| =maxx′
0 s.t. |x′

0|=1

|x′
0|

|Acx′
0| in view of Proposition 2, and, thus, |x0|

|Acx0| ≤ 1
ςmin(Ac)

.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on April 03,2023 at 17:33:31 UTC from IEEE Xplore.  Restrictions apply. 



916 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 2, FEBRUARY 2023

Consequently, since r(x0, σ) ≤ crσ
2, τσ,T (x0) ≤ τσ,T with

τσ,T defined in Lemma 1. We follow similar lines to derive
the lower bound inequality on τσ,T (x0) in Lemma 1. �

Lemma 1 provides a global lower-bound on the inter-
transmission times when σ is small. Compared to the exact ex-
pression of the (global) minimum inter-event time we find in [15,
Th. IV.1], which addresses non-time regularized triggering con-
ditions, i.e., T = 0, the bound in Lemma 1 is more conservative
a priori but easier to compute. Indeed, we can simply take it as
max{ σ

ςmax(Ac)
, T} as the term crσ

2 is negligible compared to
it for small σ. Lemma 1 also gives a global upper bound on the
inter-event times, for the first time as far as we know, which is
similarly well approximated bymax{ σ

ςmin(Ac)
, T}. Both bounds

of Lemma 1 may be very accurate and even exact, as illustrated
in Section VI-A.

Remark 1: To know lower and upper bounds on the inter-
event times may be precious in practice, as it provides guaran-
tees on the window of time at which the transmissions occur,
which can be used for scheduling purposes when the plant and
the controller communicate over a shared digital network for
instance. �

On the other hand, Proposition 3 and Lemma 1 apply for x0 ∈
Rn,�. The case where x0 = 0 was ignored as some of the above
expressions are not well defined in this case. Now, when x0 = 0
and T = 0, τσ,0(0) = 0, which means that an infinite number of
jumps occurs in finite time at the origin.5 This potential issue
is clarified when writing the overall system using the hybrid
formalism [20]; see [15] and [37, Sec. IV.B] for more details.
On the other hand, when T > 0, τσ,0(0) = T and this implies
that τσ,0(x̂(t)) = T for all t ≥ 0 in view of (6) and (7). In other
words, a solution initialized at state (0,0,0) at time 0 experiences
jumps every T units of time: We have periodic sampling. These
singularities invite us to discard the case where x0 is equal to
0 in the sequel. This is fine according to the next proposition,
which ensures the (x, x̂)-component of any solution to systems
(6) and (7) initialized at (x0, x0) with x0 �= 0 will never reach
(0,0). We can, therefore, indeed exclusively consider x and x̂ on
Rn,� in the rest of this study.

Proposition 4: Given m > 0, for any (σ, T ) ∈ Sm(σ�
1 , T

�),
any solution (x, x̂, δ) to systems (6) and (7) initialized at
(x0, x0, 0) with x0 ∈ Rn,� verifies x(t) �= 0 and x̂(t) �= 0 for
all t ≥ 0. �

Proof: The proof relies on the next claims, whose proofs are
given in the Appendix.

Claim 1: Given m > 0, there exists ρ > 0 such that for
any (σ, T ) ∈ Sm(σ�

1 , T
�), any solution (x, x̂, δ) to systems

(6) and (7) initialized at (x0, x0, 0) with x0 ∈ Rn,� verifies
|x̂(t)− x(t)| ≤ σρ|x(t)| for all t ≥ 0. �

Claim 2: Given m > 0, for any x0 ∈ Rn,�, the solution x
to ẋ = Ax+BKx0 initialized at x0 satisfies x(t) �= 0 for all
t ∈ [0, τσ,T (x0)]. �

The desired result follows by applying Claim 2 on each inter-
transmission interval since x is not affected by jumps in view of
(6) and (7) and x̂(t) = x(ti) �= 0 for any t ∈ [ti, ti+1) and any
i ∈ I. �

5We consider Carathéodory solutions in this article as mentioned in Section I,
which leads to a slight inconsistency because the solution initialized at the origin
is trivial, as it cannot flow. We, nevertheless, show in the following that we can
exclude the origin in the forthcoming analysis.

Remark 2: We recall that Proposition 4 applies in the absence
of exogenous perturbations; otherwise, it may not be true; see,
e.g., [8] and [12]. �

We end this section with a continuity-like property with
respect to time of τσ,T along the x-component of solutions to
(6) and (7).

Lemma 2: Given m > 0, there exist ccont,1, ccont,2 ≥ 0 such
that for any (σ, T ) ∈ Sm(σ�

1 , T
�) with σ�

1 from Proposition 3,
any x0 ∈ Rn,�, the x-component of the solution to (6) and (7)
initialized at (x0, x0, 0) verifies for any t, t′ ≥ 0, |τσ,T (x(t))−
τσ,T (x(t

′))| ≤ σccont,1|t− t′|+ σ2ccont,2. �
Lemma 2 implies that for close times, τσ,T (x) takes close

values. This result plays a key role in some of the forthcoming
proofs.

Remark 3: In Proposition 3 (and Lemmas 1 and 2) as well as
in the forthcoming statements, the results rely on the existence
of some upper bound on σ (σ�

1 in Proposition 3). Estimates of
these bounds can be derived from the proofs. However, these
estimates are typically subject to some conservatism and may
not be easy to compute, which is the reason why these are not
provided explicitly. �

IV. MAIN RESULTS

From now on,n = 2. We distinguish different cases according
to the type of eigenvalues ofAc = A+BK, which are denoted
by λ1 and λ2, under SA1. Note that the real parts of λ1 and λ2

are strictly negative; otherwise, SA1 would not hold.

A. When λ1 and λ2 are Complex Conjugates and
Nonreal

We write λ1 = λ + iβ and λ2 = λ − iβ where λ < 0 and
β > 0.

The next theorem explains the oscillatory behavior of the
inter-event times often observed in simulations; see Section I
for references.

Theorem 1: Givenm > 0, when λ1 and λ2 are nonreal, com-
plex conjugates, there exist σ�

complex ∈ (0, 1], ĉr > 0, ĉcomplex ≥
0 such that for any initial condition (x0, x0, 0) with x0 ∈ R2,�,
and any (σ, T ) ∈ Sm(σ�

complex, T
�), the corresponding solution

(x, x̂, δ) to (6) and (7) verifies the next property. For any

t ≥ 0, there exist θ̂(t) ∈
[
π

β
− ĉcomplexσ,

π

β
+ ĉcomplexσ

]
and

rcomplex(t, x0, σ) such that

τσ,T (x̂(t)) = τσ,T (x̂(t+ θ̂(t))) + rcomplex(t, x0, σ) (10)

and |rcomplex(t, x0, σ)| ≤ ĉrσ
2. �

Theorem 1 implies that the inter-event time function t 
→
τσ,T (x̂(t)) describes an “almost” periodic pattern of period π

β

for any initial condition (x0, x0, 0) with x0 ∈ R2,�, for small
enough σ > 0 and T > 0. Note that ĉcomplexσ, which is the order
of σ, is negligible with respect to π

β , as σ is taken small. Also,
rcomplex(t, x0, σ) is of the order of σ2 and is therefore negligible
with respect to τσ,T (x̂(t) + θ̂(t)), which is of the order of σ
according to Proposition 3. Theorem 1, thus, explains why
periodic patterns can arise when plotting the time evolution of
the inter-event times: because the eigenvalues ofAc are complex,
nonreal conjugates.
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The next natural question is whether the values taken by the
inter-event times depend on the value x0. The next theorem
ensures that this is not the case; more precisely, it ensures that
x0 has a negligible impact of the inter-event times.

Theorem 2: Givenm > 0, when λ1 and λ2 are nonreal, com-
plex conjugates, for any x0, x′0 ∈ R2,�, there exist cr,1, cr,2 >
0 such that for any (σ, T ) ∈ Sm(σ�

complex, T
�) with σ�

complex

from Theorem 1, the solutions (x, x̂, δ) and (x,′ x̂,′ δ′) to
(6) and (7) initialized at (x0, x0, 0) and (x0,

′ x0,′ 0), respec-
tively, are such that for any t ∈ [0, πβ + ĉcomplexσ], there exists
r̂complex(t, x0, x0,

′ σ) such that

τσ,T (x̂(t)) = τσ,T (x̂
′(t+ cr,1)) + r̂complex(t, x0, x0,

′ σ)
(11)

and |r̂complex(t, x0, x0,
′ σ)| ≤ cr,2σ

2. �
Only the time interval [0, πβ + ĉcomplexσ] is considered in

Theorem 2 as this suffices to study the values taken by the
inter-event times over any time interval of length π

β + ĉcomplexσ
in view of Theorem 1. Hence, Theorem 2 implies that changing
the initial condition x0 essentially leads to a phase shift cr,1
of the inter-event times. As a result, different initial conditions
essentially give the same inter-event times over any interval of
length of the order of π

β , for small enough σ > 0 and T > 0 as
cr,1 is of the order of σ and, thus, for all positive times in view
of Theorem 1. As a consequence, the amount of transmissions
is almost the same for any x0 ∈ R2,�.

We derive from the above results that a single simulation
for a single value of x0 ∈ R2,� over π

β units of time can be
run to accurately determine the inter-event times for all initial
conditions and all future times and, thus, to estimate the average
inter-transmission time. This average inter-transmission time is
defined as the limit of time t over the number of triggering
instants, which have occurred on the interval [0, t], as t goes
to infinity, like in [19] and [27]. This corresponds, for a given
solution (x, x̂, δ) to (6) and (7) initialized at (x0, x0, 0) with
x0 ∈ R2,�, to

τ avg
σ,T (x0) := lim

t→∞
t

N(t, x0)
(12)

where the number of triggering instants in the time window [0, t]
for t ≥ 0 is given by N(t, x0) := max{i ∈ Z≥0 : t ≥ ti} with
t0 = 0 being the initial time, and tk = tk−1 + τσ,T (x(tk−1)),
for any k ∈ Z>0, the kth inter-event time.

We thus have a rigorous, numerical way to estimate the
amount of transmissions generated by the event-triggered con-
troller in this case as τ avg

σ,T (x0) is well approximated by
π
β

1
N(π/β,x0)

in view of Theorem 1, and this value is essentially
the same for all initial conditions according to Theorem 2, which
can thus be evaluated by performing a single simulation as
illustrated in Section VI-B.

B. When λ1 and λ2 are Real and Distinct

We assume, without loss of generality, that λ1 > λ2. Proposi-
tion 2 reveals an important feature of the inter-event time func-
tion: It only depends on which line passing through the origin
the state x̂ lies and not on its actual value. To analyze τσ,T (x̂(t))
along the solutions to (6) and (7), we can therefore study the
argument of x̂(t) and then exploit the results of Section III. The
next proposition characterizes the (asymptotic) behavior of the
argument of x̂ along the solutions to (6) and (7).

Proposition 5: Given m > 0, when λ1 > λ2, there exist
cdistinct > 0 andσ�

distinct ∈ (0, 1] such that for any initial condition
(x0, x0, 0) with x0 ∈ R2,� and any (σ, T ) ∈ Sm(σ�

distinct, T
�),

the corresponding solution (x, x̂, δ) to (6) and (7) verifies one
of the following properties.

1) There exists v1, a nonzero eigenvec-
tor of Ac associated with λ1, such that
lim supt→∞ | arg(x̂(t))− arg(v1)| ≤ cdistinctσ.

2) There exists v2, a nonzero eigenvector of Ac associated
with λ2, such that | arg(x̂(t))− arg(v2)| ≤ cdistinctσ for
all t ≥ 0. �

Proposition 5 approximately recovers the properties of the
argument of the solutions for the continuous-time closed-loop
system in the absence of sampling ẋc = Acxc and xc(0) �= 0;
see [26, Ch. 2.1]. Indeed, when λ1 and λ2 are real and distinct, the
argument of xc converges to arg(v1) for v1 some nonzero eigen-
vector ofAc associated with λ1 when x0 is not in the eigenspace
associated with λ2. Otherwise, it is constant and equal to arg(v2)
at all times, with v2 being some nonzero eigenvector of Ac

associated with λ2. Similar results are recovered in Proposition
5 up to a perturbation of the order of σ due to sampling.

Properties of τσ,T (x̂) along solutions to (6) and (7) are estab-
lished in the next theorem.

Theorem 3: Givenm > 0, when λ1 > λ2, there exist c1, c2 >
0 and σ�

distinct ∈ (0, 1] such that for any initial condition
(x0, x0, 0) with x0 ∈ R2,�, and any (σ, T ) ∈ Sm(σ�

distinct, T
�),

the corresponding solution (x, x̂, δ) to (6) and (7) verifies one
of the following properties.

1) lim sup
t→∞

|τσ,T (x̂(t))−max

{
σ

|λ1| , T
}
| ≤ c1σ

2.

2) |τσ,T (x̂(t))−max

{
σ

|λ2| , T
}
| ≤ c2σ

2 for all t ≥ 0. �
Theorem 3 means that, when the eigenvalues of Ac are real

and distinct, the inter-event time of systems (6) and (7) either
tends to max{ σ

|λ1| , T} or it takes values close to max{ σ
|λ2| , T}

for all positive times, up to a perturbation of the order of σ2

in both cases, which is negligible for small σ > 0 (and T > 0)
as, again, the inter-event time is of the order of σ according to
Proposition 3. As a result, τ avg

σ,T in (12) is well approximated
either by max{ σ

|λ1| , T} or max{ σ
|λ2| , T}.

C. When λ1 and λ2 are Real, Equal, and of Geometric
Multiplicity Two

The next theorem follows from Proposition 3 and the proper-
ties of λ1 and λ2. Note that, in this case, Ac = λ1I.

Theorem 4: Givenm > 0, when λ1 = λ2 and their geometric
multiplicity is two, there exist cr > 0 and σ�

1 ∈ (0, 1] such that
for any initial condition (x0, x0, 0) with x0 ∈ R2,�, and any
(σ, T ) ∈ Sm(σ�

1 , T
�), the corresponding solution (x, x̂, δ) to (6)

and (7) verifies τσ,T (x̂(t)) = max

{
σ

|λ1| + r(x̂(t), σ), T

}
with

|r(x̂(t), σ)| ≤ crσ
2. �

Proof: Let m > 0, x0 ∈ R2,�, (σ, T ) ∈ Sm(σ�
1 , T

�), and
(x, x̂, δ) be the solution to (6) and (7) initialized at
(x0, x0, 0), and t ≥ 0. In view of Proposition 3, τσ,T (x̂(t)) =

max{σ |x̂(t)|
|Acx̂(t)| + r(x̂(t), σ), T}. Since λ1 = λ2 and their geo-

metric multiplicity is two, the associated eigenspace is R2; con-
sequently, Acx̂(t) = λ1x̂(t). Hence, τσ,T (x̂(t)) = max{ σ

|λ1| +
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r(x̂(t), σ), T}, which corresponds to the desired result as
r satisfies the properties stated in Theorem 4 in view of
Proposition 3. �

Theorem 4 ensures that, for any initial condition (x0, x0, 0)

with x0 ∈ R2,�, the inter-event times are close tomax
{

σ
|λ1| , T

}
for all positive times when λ1 = λ2 and their geometric multi-
plicity is two for small σ > 0 and T > 0. Hence, the considered
event-triggering rule essentially leads to periodic sampling,
when σ is small, and τ avg

σ,T in (12) is well approximated by
max{ σ

|λ1| , T} for all x0 ∈ R2,�. The proof of Theorem 4 does
not exploit the fact that the state x is of dimension two: The
results apply to systems of any dimension. Hence, when x is of
dimension n ∈ Z>0 and the eigenvalues λ1, . . . , λn of Ac are
equal and of geometric multiplicity n, A−BK = λ1I and the
same conclusions as in Theorem 4 apply. Also, function r and
constants cr, σ�

1 are the same as in Proposition 3, which explains
why the same notation is used.

When the geometric multiplicity of λ1 = λ2 is one, the ar-
guments used in the proof of Theorem 4 no longer apply and
significant technical difficulties arise, as explained in more detail
next.

V. DISCUSSIONS

A. When λ1 and λ2 are Real, Equal, and of Geometric
Multiplicity One

The results of Section IV elude the case where λ1 = λ2

and their geometric multiplicity is one. The reason is that the
argument of x̂ along the solutions to (6) and (7) only exhibits an
attractivity property in this case. As a result, the proof techniques
used for the other cases, which rely on robustness arguments, do
not apply. To see this, consider a nonzero solution z to ż = Jz

with J :=

(
λ1 1
0 λ1

)
like in the proof of Proposition 5; see

Section H. The argument of z either converges to 0 or to π;
see [26, Ch. 2.1]. This property is not an asymptotic stability
property, as in the case where λ1 �= λ2 (see the proof of Propo-
sition 5), but only a global attractivity property. If z2(0) > 0
is very small and z1(0) > 0 for instance, then the argument
of the corresponding solution will monotonically converge to
zero. However, if we change z2(0) so that it is very small
but negative, the argument will converge to π. As a result, a
small perturbation may destroy this convergence property, which
explains the difficulty encountered in this case.

We conjecture that the inter-event times approximately con-
verge to max{ σ

|λ1| , T} in this case, for any x0 ∈ R2,�, and
(σ, T ) ∈ Sm(σ�

1 , T
�), consistently with Theorem 3, and as also

seen in simulations in Section VI-A.

B. Nonlinear Systems

The results of Section IV apply mutatis mutandis to nonlinear
event-triggered control systems, whose linearization around the
origin is given by the considered linear model and triggering
rules. More precisely, the analytical guarantees of Section IV ap-
ply asymptotically in time for such nonlinear systems assuming
its origin is globally asymptotically stable and its linearization
around the origin verifies SA1 and the considered pairs (σ, T )
belong to Sm(σ�, T �) for some given m > 0. In particular, the
properties of the average inter-transmission times (12) presented

in Section IV do apply in this case, as this quantity is related to
the asymptotic behavior of the inter-event times. An illustration
is provided in Section VI-B.

C. Other System Dimension

When the system is scalar, it is commonly known that the trig-
gering rule in (7) leads to periodic sampling due to homogeneity
(see Proposition 2). As we could not find this result formally
stated in the literature, we formalize it in the next proposition.

Proposition 6: When n = 1, for any σ ∈ (0, σ�), T ∈
[0, T �), andx0 ∈ R� τσ,T (x0) = max

{
T, 1

A ln

(
A

1+σ+BK

A+BK

)}
when A �= 0, and τσ,T (x0) = max{T, σ

|BK| (1 + σ)} when
A = 0. �

Note that (σ, T ) does not need to belong to Sm(σ�, T �) for
some givenm > 0 in Proposition 6. When the system dimension
is larger than 2, the situation becomes much more complicated
and the proofs in Section IV need to undergo major changes,
unless Ac has a single eigenvalue of geometric multiplicity
equal to the state dimension, in which case Theorem 4 applies
as already mentioned. Still, we expect the key properties of
the inter-event times established in Section III, which apply to
systems of any dimension, to play an important role in future
extensions of the present results.

VI. NUMERICAL EXAMPLES

A. Linear Example in [42, Sec. V]

To illustrate the obtained theoretical results, we consider the
same linear system as in [42, Sec. V], namely

ẋ =

(
0 1
−2 3

)
x+

(
0
1

)
. (13)

The matrixK is designed such that the corresponding matrix
A+BK is Hurwitz, and three cases are considered depending
on the eigenvalues λ1, λ2 ofA+BK being 1) nonreal, complex
conjugates, 2) real and distinct, and 3) real and equal. To design
the triggering rule, we apply [1, Prop. 1]. As a result, SA1

is satisfied6 with σ� =
1√
μ

√
min λmin(A�

2A2 + (ε1 + ε2)I)

and7 T � =
1

Lr
arctan(r), where A2 := −Ac, L := |B2|, r :=√

μ

L2
− 1, and ε1, ε2, μ > 0 are obtained by solving [1, (16)]

with A1 := Ac, B1 = BK, B2 = −BK, and Cp = I.
For each of these cases, we have studied numerically the

impact of σ, T, and of the initial conditions on the inter-
event times.8 We first present a comparison of the estimated
lower and upper bounds on the inter-event times established in
Lemma 1 with the actual minimum and maximum values of the
inter-event times obtained in simulations, which we denote as
τmin and τmax, respectively. The estimated bounds are taken

6Strictly speaking, [1, Prop. 1] ensures that {(x, x̂, δ) : x = x̂ = 0} is uni-
formly globally asymptotically stable, but this property is actually exponential
due to the linearity of the flow dynamics.

7In this example, γ > L in all cases with the notation of [1], which explains
the expression of T �; see [1, (11)].

8In all the cases T > 0, simulation results for T = 0 are presented in [36,
Sec. V].
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TABLE I
GUARANTEED AND ESTIMATED MINIMUM AND MAXIMUM VALUES OF THE INTER-EVENT TIMES FOR THE EXAMPLE OF SECTION VI-A

Fig. 1. Inter-event times for different values of σ for the example
of Section VI-A when (λ1, λ2) = (−2 + j,−2− j): 0.0845 (blue), 0.04
(green), and 0.01 (yellow). The dotted lines represent the value of T for
each selection of σ. The mismatch is the error percentage between π
and the observed period.

Fig. 2. Inter-event times for the example of Section VI-A for different
values of x0 when (λ1, λ2) = (−2 + j,−2− j) : (1,1) (yellow), (1,−2)
(green), and (1,−1) (blue).

as τ̂σ,T := max{ σ
ςmax(Ac)

, T} and τ̂σ,T := max{ σ
ςmin(Ac)

, T},
respectively, as explained after Lemma 1. The values of τmin

and τmax were computed in simulations by taking 10 initial
conditions on the unit circle and extracting the minimum and
the maximum values of the inter-event times over the 10 runs.
The results are summarized in Table I. We observe that both the
estimated lower and the upper bounds are tight, actually exact
for the former, even when σ is close to the maximum allowed
value σ�, which is specified in the following for each case. We
now study the results of Section IV on simulations for each case.

Case 1): K = [−3 − 7], λ1 = −2 + j and λ2 = −2− j.
Thenσ� = 0.0844 andT � = 0.1153. We have selected different
values of σ, namely σ ∈ {0.01, 0.04, 0.084}, T =

σ

2
so that

(σ, T ) ∈ Sm(σ�, T �) with m = 1/2, with initial condition
(x0, x0, 0) and x0 = (1, 1). The obtained inter-event times are
depicted in Fig. 1. We observe a periodic-like behavior in each
case and that the “pseudo” period is getting closer to π

β = π as
σ decreases, in agreement with Theorem 1.

We have then selected σ = 0.03 and studied the inter-
event times for different initial conditions (x0, x0) with
x0 ∈ {(1, 1), (1,−2), (1,−1)}; see Fig. 2. The inter-event

Fig. 3. Inter-event times (solid lines) and value of
σ

|λ1| (dashed line)

for the example of Section VI-A when (λ1, λ2) = (−1,−2) for different
values of σ : 0.076 (blue), 0.03 (green), and 0.01 (yellow). The dotted
lines represent the value of T for each selection of σ. The mismatch is
the error percentage between the limit value of the inter-event times and
max{ σ

|λ1 | , T}.

times describe similar though slightly different patterns
of very similar periods, in agreement with Theorem 2.
Case 2): K = [0 − 6], λ1 = −1 and λ2 = −2. Then σ� =
0.0761 and T � = 0.1486. Fig. 3 shows the inter-event times

for σ ∈ {0.01, 0.03, 0.076} and T =
σ

2
, and the initial condi-

tion (x0, x0, 0) with x0 = (1, 1). According to Theorem 3, the
inter-event times converge to a value close to max{σ, T} = σ
as the time tends to infinity or is close to max{σ

2 , T} = σ
2 for all

positive times. We see that the inter-event times indeed converge
to a constant close to σ in all the cases considered in Fig. 3 and
that the mismatch between the limit value andσ is getting smaller
as we decrease σ, which is in agreement with the conclusions of
Theorem 3.

We might wonder whether there are solutions for which the

inter-event times are close to
σ

2
for all positive times, which is

allowed by Item 2) of Theorem 3. We have not been able to
find such solutions for this example, even when taking x0 in the
eigenspace associated with λ2.

Case 3): K = [−2 − 7], λ1 = λ2 = −2. Then σ� = 0.0818
and T � = 0.1228. Note that this case is not covered by our
analysis as the geometric multiplicity of the double eigenvalue is
one; see Section V-A. We have considered the initial condition
(x0, x0, 0) and x0 = (1, 1) and different values of σ, namely

σ ∈ {0.01, 0.04, 0.081}, T =
σ

3
; see Fig. 4. We observe that

the inter-event times converge in all cases to a constant, which
is in a neighborhood of σ as conjectured in Section V-A, and
that the mismatch reduces with σ like in case 2).

We have also varied the initial conditions forσ = 0.01. In par-
ticular, we have taken x0 = (1,−2), which is in the eigenspace
associated with λ1, and x0 = (1,−1.9) and x0 = (1,−2.1),
which are, loosely speaking, on both sides of the eigenspace
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Fig. 4. Inter-event times for different values of σ when λ1 = λ2 = −2:
0.085 (blue), 0.04 (green), and 0.01 (yellow). The dotted lines represent
the value of T for each selection of σ. The mismatch corresponds to
the error percentage between max{ σ

|λ1 | , T} and the limit value of the
inter-event times.

Fig. 5. Inter-event times for the example of Section VI-A for differ-
ent values of x0 when λ1 = λ2 = −2: (1,−2) (blue), (1,−2.1) (green),
and (1,−1.9) (yellow). The dashed line corresponds to the value
max{ σ

|λ1 | , T}, and the dotted line to T .

of λ1. Again, in all cases, the inter-event times converge to a
constant close to σ; see Fig. 5.

B. Nonlinear Single-Link Robot Arm in [1, Example 3]

We revisit [1, Example 3], which is nonlinear, in the light
of Sections IV and V-B. We thus consider a single-link robot
arm modeled as ẋ = Ax+ φ(x) +Bu where x = (x1, x2) ∈
R2, x1 is the angle, x2 is the rotational velocity, u ∈ R

is the input torque, A =

(
0 1
0 0

)
, B =

(
0
1

)
, and φ(x) =

(0,− sin(x1)). The designed state-feedback controller is given
by u = sin(x1) +Kx where K = (−2 − 2). We synthesize
the triggering rule as in [1, Sec. VI], which can be written in
the form of (7) in view of [1, Example 3]. As a consequence,
SA1 is satisfied in view of [1, Corollary 1] with σ� = 0.1929
and T � = 0.0898; note that the stability property is exponential
for the considered system.

The state matrix of the linearized continuous-time closed-
loop model around the origin is given by A+BK, whose
eigenvalues are λ1 = −1 + j and λ2 = −1− j. We have se-
lectedσ = 0.19 andT = 0.089. We have performed simulations
for three initial conditions of the form (x0, x0, 0) with x0 ∈
{(10, 0), (10, 10), (0, 10)}. The obtained inter-transmission
times are depicted in Fig. 6. We observe that these all ex-
hibit a periodic-like behavior and that the values taken over a
“period” are very similar for the different initial conditions in

Fig. 6. Inter-event times for the example of Section VI-B for different
values of x0: (10,10) (blue), (10,0) (green), and (0,10) (yellow). The
dotted line corresponds to T .

agreement with Section IV-A. In particular, we obtain for the
estimated values of τ avg

σ,T in (12) 0.1208, 0.1206, and 0.1199 for
x0 = (10, 0), (10, 10), and (0,10), respectively. These values are
similar, in agreement with the statements in Section V-B. The
observed period in simulation is around 2.9 in all cases, while
the theory predicts π: We, thus, have a mismatch of only 7.7%.
Note that these results have been obtained for σ and T close to
their maximum value σ� and T �, respectively, even though the
theory has been developed for small σ and T compared to 1.

VII. CONCLUSION

We have analyzed the inter-event times for two-dimensional
linear event-triggered control based on the relative threshold
technique of [42] with and without time regularization for small
parameter σ. We have shown that these times (approximately):
1) describe a periodic pattern, which is essentially independent
of the considered initial condition, when these eigenvalues are
nonreal, complex conjugates, and an estimation of the period
is provided; 2) converge to or lie for all positive times in a
neighborhood of given constants when the eigenvalues of the
state matrix of the closed-loop system in absence of sampling
are real and distinct, or real, equal, and of geometric multiplicity
two.

It would be interesting, in future work, to adapt and extend the
presented methodology to address other classes of control sys-
tems and triggering rules and to go beyond the two-dimensional
case.

APPENDIX

A. Technical Results

We first state the next claim, which essentially says that, given
m > 0, τσ,T is of the order of σ when (σ, T ) ∈ Sm(σ�

1 , T
�), and

which plays an instrumental role in the proof of Prop. 3.
Claim 3: Given m > 0, there exists c2 ∈ R≥0 such that for

any x0 ∈ Sn, and any (σ, T ) ∈ Sm(σ�
1 , T

�), τσ,T (x0) ≥ T im-
plies that τσ,T (x0) ≤ c2σ. �

Proof: Let m > 0, x0 ∈ Sn, and (σ, T ) ∈ Sm(σ�
1 , T

�). We
first consider the case where τσ,T (x0) > T . As a conse-
quence, |x(T )− x0| < σ|x(T )|; otherwise, we would have
τσ,T (x0) = T in view of (7), which is excluded here.
On the other hand, by the triangle inequality, |x(t)| ≤
|x0|+ |x(t)− x0|. Thus, as |x0| = 1, |x(t)− x0| < σ|x(t)| ≤
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σ|x0|+ σ|x(t)− x0| = σ + σ|x(t)− x0|, from which we de-
duce |x(t)− x0| ≤ σ

1−σ for t ∈ [T, τσ,T (x0)] since σ ∈ (0, 1).
Therefore, τσ,T (x0) is less than T plus the time it

takes for |x(t)− x0| to grow from |x(T )− x0| to
σ

1− σ
,

which we denote τ̃σ,T (x0). We now study τ̃σ,T (x0). Let
e := x− x0. In view of (6), ė = Ax+BKx0 = A(x−
x0) +Ax0 +BKx0 = Ae+Acx0 on [T, τσ,T (x0)). By in-

tegration, for t ∈ [T, τσ,T (x0)), e(t) = e(T ) +

∫ t

T

Ae(s)ds+∫ t

T

Acx0ds = e(T ) +

∫ t

T

Ae(s)ds+ (t− T )Acx0. We de-

duce from the last equality and the fact that |a− b| ≥ |a| − |b|
for any a, b ∈ Rn that

|e(t)| ≥ (t− T )|Acx0| −
∣∣∣e(T ) + ∫ t

T Ae(s)ds
∣∣∣

≥ (t− T )|Acx0| − |e(T )| − ∫ t

T |A||e(s)|ds.
(14)

Noting that |e(t)| ≤ σ

1− σ
for t ∈ [T, T + τ̃σ,T (x0)], we de-

rive that

|e(t)| ≥ (t− T )|Acx0| − σ
1−σ − ∫ t

T |A| σ
1−σds

= (t− T )
(|Acx0| − |A| σ

1−σ

)− σ
1−σ .

(15)

Let c := min{|Acx
′
0| : |x′0| = 1}. Since Ac is invertible

(being Hurwitz), c > 0. We derive from (15) |e(t)| ≥ (t−
T )

(
c− |A| σ

1− σ

)
− σ

1− σ
. For σ�

1 sufficiently small, c−

|A| σ

1− σ
≥ 1

2
c as σ ∈ (0, σ�

1). Thus

|e(t)| ≥ (t− T ) 12c− σ
1−σ . (16)

The lower bound in (16) is equal to
σ

1− σ
when t−

T = 4c−1 σ

1− σ
and this quantity upper bounds τ̃σ,T (x0) in

view of (16). Hence, τ̃σ,T (x0) ≤ 4c−1 σ

1− σ
. We deduce that

τσ,T (x0) ≤ T + 4c−1 σ

1− σ
; hence, since T ≤ mσ as (σ, T ) ∈

Sm(σ�
1 , T

�), there exists c2 ∈ R≥0 such that τσ,T (x0) ≤ c2σ for
σ�
1 sufficiently small, as σ ∈ (0, σ�

1).
When τσ,T (x0) = T , τσ,T (x0) ≤ mσ as (σ, T ) ∈

Sm(σ�
1 , T

�), and the desired result holds with
c2 = m. �

The next lemma will also be used in the sequel.
Lemma 3: For any a, b, c ∈ R≥0, |max{a, c} −

max{b, c}| ≤ |a− b|. �
Proof: Let a, b, c ∈ R≥0. We distinguish several cases.

If max{a, c} = c and max{b, c} = c, then max{a, c} −
max{b, c} = 0. If max{a, c} = a and max{b, c} = b, then
|max{a, c} −max{b, c}| = |a− b|. If max{a, c} = a and
max{b, c} = c, then |max{a, c} −max{b, c}| = a− c ≤ a−
b. If max{a, c} = c and max{b, c} = b, then |max{a, c} −
max{b, c}| = b− c ≤ b− a. �

B. Proof of Proposition 3

Let m > 0, x0 ∈ Rn,�, and m > 0. In view of Proposition
2, it suffices to prove the desired result for |x0| = 1. Hence,

consider x0 ∈ Rn with |x0| = 1, i.e., x0 ∈ Sn, σ ∈ (0, σ�
1)with

σ�
1 ∈ (0, 1] specified in the following and T ∈ [0, T �).
We start by proving the result for (σ, T ) ∈ Sm(σ�

1 , T
�).

The Taylor expansion of the solution t 
→ x(t) to ẋ =
Ax+BKx0 initialized at x0 at t = 0 and evaluated at t =
τσ,T (x0) is x(τσ,T (x0)) = x0 + τσ,T (x0)(Ax0 +BKx0) +
τσ,T (x0)rx(x0, σ), where rx : Rn × (0, 1) → R is such that9

|rx(x0, σ)| ≤ cxτσ,T (x0) with cx > 0 independent of x0 and σ.
Since Ac = A+BK

x(τσ,T (x0)) = x0 + τσ,T (x0)Acx0 + τσ,T (x0)rx(x0, σ).
(17)

Consider the case where τσ,T (x0) > T . Hence, by defini-
tion of τσ,T (x0), |x(τσ,T (x0))− x0| = σ|x(τσ,T (x0))|. Conse-
quently, in view of (17)

|τσ,T (x0) (Acx0 + rx(x0, σ))| =
σ |x0 + τσ,T (x0)Acx0 + τσ,T (x0)rx(x0, σ)| .

(18)
We have |Acx0 + rx(x0, σ)| �= 0. Indeed, otherwise, we

would have from (18) that 0 = σ|x0|, and, thus, x0 =
0, which is excluded here as x0 ∈ Sn. Hence, in view

of (18), we can write τσ,T (x0) = σ
∣∣∣ x0

|Acx0 + rx(x0, σ)
∣∣∣ +

τσ,T (x0)
Acx0 + rx(x0, σ)

|Acx0 + rx(x0, σ)| |. This implies that

⎧⎪⎪⎨
⎪⎪⎩
τσ,T (x0) ≤ σ

|x0|
|Acx0 + rx(x0, σ)| + στσ,T (x0)

τσ,T (x0) ≥ σ
|x0|

|Acx0 + rx(x0, σ)| − στσ,T (x0)
. (19)

Since σ ∈ (0, 1) as σ ∈ (0, σ�
1) and σ�

1 ≤ 1, these inequalities
are equivalent to10⎧⎪⎪⎨

⎪⎪⎩
τσ,T (x0) ≤ σ

1− σ

|x0|
|Acx0 + rx(x0, σ)|

τσ,T (x0) ≥ σ

1 + σ

|x0|
|Acx0 + rx(x0, σ)|

. (20)

To obtain the desired result, we are going to exploit the fact
that τσ,T (x0) is of the order of σ. This is not obvious from (20)
because of the term rx(x0, σ), which depends on τσ,T (x0), in
the denominator of the right-hand sides.

Returning to (20), we temporarily concentrate on the first
inequality, which gives

|Acx0 + rx(x0, σ)| τσ,T (x0) ≤ σ

1− σ
|x0|. (21)

As (|Acx0| − |rx(x0, σ)|)τσ,T (x0) ≤
∣∣∣Acx0 + rx(x0, σ)

∣∣∣
τσ,T (x0)

(|Acx0| − |rx(x0, σ)|) τσ,T (x0) ≤ σ

1− σ
|x0|. (22)

9The existence of such a function as rx follows from the expression of the
remainder of the Taylor expansion ofx(τσ,T (x0)), which can be upper bounded
by a uniform constant cx times τσ,T (x0) as |x0| = 1 and |x(t)| ≤ d1 for any
t ≥ 0 in view of SA1 and the fact that |x0| = 1.

10We could replace |x0| by 1 in (20), but we do not do so to obtain a, what
we believe, simpler and clearer expression in Proposition 3.
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Since |rx(x0, σ)| ≤ cxτσ(x0) and τσ,T (x0) ≤ c2σ according
to Claim 3, (22) implies that

|Acx0|τσ,T (x0)− cxc
2
2σ

2 ≤ σ

1− σ
|x0|

|Acx0|τσ,T (x0) ≤ σ

1− σ
|x0|+ cxc

2
2σ

2.
(23)

In view of the Taylor expansion of σ 
→ σ
1−σ around the origin

and since |Acx0| �= 0 as x0 �= 0 andAc is invertible, we deduce
from the above inequality that, for σ�

1 sufficiently small as σ ∈
(0, σ�

1)

τσ,T (x0) ≤ σ
|x0|

|Acx0| + cσ2 (24)

with c ≥ 0 independent of σ and x0.
By following similar lines, we derive from the second inequal-

ity in (20) that

τσ,T (x0) ≥ σ
|x0|

|Acx0| − cσ2 (25)

with c ≥ 0 independent of σ and x0. Consequently, in

view of (24) and (25), τσ,T (x0) = σ
|x0|

|Acx0| + r(x0, σ) with

|r(x0, σ)| ≤ crσ
2 and cr > 0 independent of x0 and σ. Since

τσ,T (x0) > T , τσ,T (x0) = max

{
σ

|x0|
|Acx0| + r(x0, σ), T

}
.

So far, we have been addressing the case where τσ,T (x0) >
T . Note that this case covers the scenario where T = 0,
as τσ,T (x0) > 0 = T according to [42]. We now focus on
the case where τσ,T (x0) = T and |x(T )− x0| ≥ σ|x(T )|. Let
t� ≤ T be the first time instant in [0, T ] such that |x(t�)−
x0| = σ|x(t�)|. We derive from the above developments that

t� = σ
|x0|

|Acx0| + r(x0, σ) for all σ ∈ (0, σ�
1) and small enough

σ�
1 . Since t� ≤ T , σ

|x0|
|Acx0| + r(x0, σ) ≤ T and τσ,T (x0) =

max

{
σ

|x0|
|Acx0| + r(x0, σ), T

}
, which completes the proof of

Proposition 3.
For general pairs (σ, T ) ∈ (0, σ�′

1 )× [0, T �) (not necessar-
ily in Sm(σ�

1 , T
�)), either τσ,T (x0) = T or, in view of the

proof of Claim 3, τσ,T (x0) ∈
(
T, T + c−1 σ

1− σ

)
. Therefore,

τσ,T (x0) = T + r′(x0, σ) for some r′ : Rn × (0, 1) → R satis-
fying |r′(x0, σ)| ≤ c′rσ with c′r > 0 independent of x0 and σ,
for small enough σ�′

1 .

C. Proof of Claim 1

Let m > 0, x0 ∈ Rn,�, (σ, T ) ∈ Sm(σ�
1 , T

�), and t ≥ 0. We
either have |x̂(t)− x(t)| ≤ σ|x(t)| or δ(t) ≤ T in view of (7).
When |x̂(t)− x(t)| ≤ σ|x(t)|, the desired result holds. On the
other hand, by following similar arguments as in the proof of [42,
Th. III.1, p. 1682], we derive that11 |x̂(t)− x(t)| ≤ Lt

1−Lt |x(t)|

11There is a typo in the expression of φ(τ, 0) in [42, p. 1682]; it should be
φ(τ, 0) = τL

1−τL and not − τL
1−τL .

where L := max{|Ac|, |BK|}. The map s 
→ Ls
1−Ls is increas-

ing and well defined on [0, T ] ⊂ [0, 1
L ) for σ�

1 sufficiently small,
as σ ∈ (0, σ�

1), L > 0 asAc is Hurwitz and is independent of σ,

and T of the order of σ as (σ, T ) ∈ Sm(σ�
1 , T

�) so that T <
1

L
.

Hence, as σ ∈ (0, σ�
1), there exists ρ′ > 0 independent of σ

such that |x̂(t)− x(t)| ≤ LT

1− LT
|x(t)| ≤ Lmσ

1− Lmσ
|x(t)| ≤

ρ′σ|x(t)|. The desired result holds by taking ρ := max{1, ρ′}.

D. Proof of Claim 2

Let m > 0. We proceed by contradiction and suppose that
there exist x0 ∈ Rn,� and t̄ ∈ [0, τσ,T (x0)] such that the so-
lution x to ẋ = Ax+BKx0 initialized at x0 satisfies x(t̄) =
0. In view of Claim 1, |x0 − x(t̄)| ≤ ρσ|x(t̄)| = 0 since t̄ ∈
[0, τσ,T (x0)]. Hence, x(t̄) = x0, but x(t̄) = 0 while x0 �= 0. We
have obtained a contradiction, which proves the claim.

E. Proof of Lemma 2

Let m > 0, (σ, T ) ∈ Sm(σ�
1 , T

�) with σ�
1 from

Proposition 3, x0 ∈ Rn,�, and (x, x̂, δ) be the so-
lution to (6) and (7) initialized at (x0, x0, 0). Let
t, t′ ≥ 0, according to Proposition 3, τσ,T (x(t))−
τσ,T (x(t

′)) = max

{
σ

|x(t)|
|Acx(t)| + r(x(t)), σ), T

}
−

max

{
σ

|x(t′)|
|Acx(t′)| + r(x(t′), σ), T

}
. In view of the

properties of r stated in Proposition 3 and using Lemma
3 given in Appendix A with a = σ |x(t)|

|Acx(t)| + r(x(t), σ),

b = σ |x(t′)|
|Acx(t′)| + r(x(t′) and c = T , we derive

|τσ,T (x(t))− τσ,T (x(t
′))| ≤ σ

∣∣∣∣ |x(t)|
|Acx(t)| −

|x(t′)|
|Acx(t′)|

∣∣∣∣
+2crσ

2

(26)
where cr > 0. The function t 
→ |x(t)|

|Acx(t)| is continuously differ-
entiable on R≥0 as x never cancels according to Proposition 4
and Ac is invertible, being Hurwitz. Hence

d

dt

|x(t)|
|Acx(t)| =

ẋ(t)�x(t)
|x(t)| |Acx(t)| − |x(t)| ẋ(t)�A�

cAcx(t)
|Acx(t)|

|Acx(t)|2 .

(27)
SinceAc is invertible, there exist
1, 
2 > 0 independent of

t, x0, σ such that 
1|x(t)| ≤ |Acx(t)| ≤ 
2|x(t)|. Therefore

∣∣∣∣ ddt |x(t)|
|Acx(t)|

∣∣∣∣ ≤
|ẋ(t)||x(t)|

|x(t)| 
2|x(t)|+ |x(t)| |ẋ(t)||A�
cAc||x(t)|

�1|x(t)|

2

1|x(t)|2
=


2|ẋ(t)|

2

1|x(t)|
+

|A�
c Ac||ẋ(t)|

3

1|x(t)|
.

(28)
We have ẋ(t) = Acx(t) +BK(x(ti)− x(t)) and |x(ti)−

x(t)| ≤ σρ|x(t)| in view of Claim 1 where ti is such that t ∈
[ti, ti+1); hence, |ẋ(t)| ≤ (|Ac|+ ρσ|BK|)|x(t)| ≤ (|Ac|+
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ρ|BK|)|x(t)| as σ ∈ (0, 1). Consequently∣∣∣∣ ddt |x(t)|
|Acx(t)|

∣∣∣∣ ≤
(

2


2
1

+
|A�

c Ac|

3

1

)
(|Ac|+ ρ|BK|)

=: ccont,1.
(29)

Note that ccont,1 is independent of t, x0, and σ. This im-
plies, by application of the mean value theorem, that, in view
of (26), |τσ,T (x(t))− τσ,T (x(t

′))| ≤ σccont,1|t− t′|+ ccont,2σ
2

with ccont,2 := 2ĉr.

F. Proof of Theorem 1

We first derive properties of τσ,T (x), which differs from the
inter-event time function τσ,T (x̂), along solutions to (6) and (7).
We then exploit these properties to derive the desired result on
τσ,T (x̂) in Theorem 1.

Proposition 7: Given m > 0, when λ1 and λ2 are nonreal,
complex conjugates, there exist ccomplex > 0 andσ�

complex ∈ (0, 1]

such that for any initial condition (x0, x0, 0) with x0 ∈ R2,�,
and any (σ, T ) ∈ Sm(σ�

complex, T
�), the corresponding solution

(x, x̂, δ) to (6) and (7) verifies the next property. For any t ≥
0, there exists θ(t) ∈

[
π

β
− ccomplexσ,

π

β
+ ccomplexσ

]
such that

τσ,T (x(t)) = τσ,T (x(t+ θ(t))). �
The proof of Proposition 7 is given in Appendix K.
Let m > 0, x0 ∈ R2,�, (σ, T ) ∈ Sm(σ�

complex, T
�), and

(x, x̂, δ) be the solution to (6) and (7) initialized at (x0, x0, 0),
and t ≥ 0. There exists i ∈ Z≥0 such that t ∈ [ti, ti+1). Hence,
x̂(t) = x(ti) in view of (6) and (7) and

τσ,T (x̂(t)) = τσ,T (x(ti)). (30)

According to Proposition 7, there exists θ(ti) ∈[
π

β
− ccomplexσ,

π

β
+ ccomplexσ

]
such that τσ(x(ti)) = τσ(x(ti)

+ θ(ti)). Therefore

τσ,T (x̂(t)) = τσ,T (x(ti + θ(ti))). (31)

Let θ̂(t) := ti − t+ θ(ti) so that t+ θ̂(t) = ti + θ(ti) and
thus

τσ,T (x̂(t)) = τσ,T (x(t+ θ̂(t))). (32)

By adding and subtracting τσ,T (x̂(t+ θ̂(t))), we obtain

τσ,T (x̂(t)) = τσ,T (x̂(t+ θ̂(t))) + τσ,T (x(t+ θ̂(t)))

−τσ,T (x̂(t+ θ̂(t))).
(33)

We note that θ̂(t) ≤ θ(ti) as ti ≤ t. Hence, θ̂(t) ≤ π
β +

ccomplexσ as θ(ti) ≤ π
β + ccomplexσ. On the other hand,

as t ≤ ti+1 and θ(ti) ≥ π
β − ccomplexσ, θ̂(t) ≥ ti − ti+1 +

π
β − ccomplexσ = −τσ,T (x(ti)) + π

β − ccomplexσ. According to

Proposition 3, τσ,T (x(ti)) = max
{
σ |x(ti)|

|Acx(ti)| + r(x0, σ), T
}

≤ max{υ,m}σ + crσ
2 where υ := maxz∈S2

|z|
|Acz| > 0, as

|r(x0, σ)| ≤ crσ
2. Since σ < 1, max{υ,m}σ + crσ

2 ≤
c̃complexσ with c̃complex = max{υ,m}+ cr > 0. As a

result, θ̂(t) ≥ π
β − ccomplexσ − c̃complexσ. Denoting ĉcomplex :=

ccomplex + c̃complex, we have proved that

θ̂(t) ∈
[
π

β
− ĉcomplexσ,

π

β
+ ĉcomplexσ

]
. (34)

Returning to (33), we now concentrate on the term τσ,T (x(t+
θ(t)))− τσ,T (x̂(t+ θ(t))). Denoting i′ the element of Z≥0

such that t+ θ̂(t) ∈ [ti′ , ti′+1), we have τσ,T (x(t+ θ(t)))−
τσ,T (x̂(t+ θ(t))) = τσ,T (x(t+ θ(t)))− τσ,T (x(ti′)). By ap-
plication of Lemma 2, we derive that |τσ,T (x(t+ θ(t)))−
τσ,T (x(ti′))| ≤ σccont,1|t+ θ̂(t)− t′i|+ σ2ccont,2. By definition
of θ̂(t), t+ θ̂(t)− t′i = ti + θ(ti)− ti′ and, since ti + θ(ti) ≤
ti′+1, |t+ θ̂(t)− t′i| ≤ ti′+1 − ti′ = τσ,T (x(t

′
i)). By following

similar lines as above, we derive that τσ(x(ti′)) ≤ υσwithυ > 0
independent of t, σ, x0. As a result

|τσ,T (x(t+θ(t)))− τσ,T (x̂(t+θ(t))| ≤ σ2ccont,1υ + σ2ccont,2

= ĉrσ
2

(35)
with ĉr := ccont,1υ + ccont,2. Therefore, τσ,T (x(t+ θ(t)))−
τσ,T (x̂(t+ θ(t)) = rcomplex(t, x0, σ) with |rcomplex(t, x0, σ)| ≤
ĉrσ

2. As a consequence, in view of (33), τσ,T (x̂(t)) =

τσ,T (x̂(t+ θ̂(t))) + rcomplex(t, x0, σ). The last equation to-
gether with (34) ensures that the desired result holds. �

G Proof of Theorem 2

Let m > 0, x0, x′0 ∈ R2,�, and (σ, T ) ∈ Sm(σ�
complex, T

�).
We denote by (x, x̂, δ) and (x,′ x̂,′ δ′) the solutions to (6) and
(7) initialized at (x0, x0, 0) and (x0,

′ x0,′ 0), respectively. We
define for any t ≥ 0, z(t) =M−1x(t) and z′(t) =M−1x′(t)
as in the proof of Proposition 7 given in Appendix K. Let
cr,1 := 1

β (arg(z
′(0))− arg(z(0)) and t ∈ [0, πβ + ĉcomplexσ].

We first show that there exists c̃r,2(t, x0, x0,′ σ), c̃r,2(t) for
short, such that{

τσ,T (x(t)) = τσ,T (x
′(t+ cr,1 + c̃r,2(t)))

|c̃r,2(t)| ≤ 2
β (

π
β + ĉcomplexσ)ccomplexσ

(36)

where ccomplex comes from the proof of Proposition 7. In view of
(the proof of) Proposition 7, the range of τσ,T (x(·)) is equal to
the range of τσ,T (x′(·)) and there exists c̃r,2(t) such that the first
inequality in (36) holds. We now need to prove that |c̃r,2(t)| ≤
2
β (

π
β + ĉcomplexσ)ccomplexσ. We exploit for this purpose the fact

that (36) is equivalent to

arg(z(t)) = arg(z′(t+ cr,1 + c̃r,2(t))) (37)

by Proposition 2. In view of (46) in Appendix K, arg(z(t)) =
arg(z(0))− βt+ ν(t)ccomplexσ where |ν(t)| ≤ π

β + ĉcomplexσ.
Consequently, arg(z(t)) = arg(z(0))−β(t+ cr,1+c̃r,2(t)) +
ν(t)ccomplexσ + β(cr,1 + c̃r,2(t)). By definition of cr,1 and
the fact that arg(z′(t+ cr,1 + c̃r,2(t))) = arg(z′(0))− β(t+
cr,1 + c̃r,2(t)) + ν ′(t+ cr,1 + c̃r,2(t))ccomplexσ with |ν ′(t+
cr,1 + c̃r,2(t))| ≤ π

β + ĉcomplexσ

arg(z(t)) = arg(z′(t+ cr,1 + c̃r,2(t)) + βc̃r,2(t)
+(ν(t)− ν ′(t+ cr,1 + c̃r,2(t)))ccomplexσ.

(38)
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Since arg(z(t)) = arg(z′(t+ cr,1 + c̃r,2(t)) and by the
properties of ν(t) and ν ′(t+ cr,1 + cr,2(t)), we derive that
|c̃r,2(t)| ≤ 2

β (
π
β + ĉcomplexσ)ccomplexσ. We have thus proved

(36).
Second, τσ,T (x̂(t)) = τσ,T (x(ti)) with i ∈ I such that

t ∈ [ti, ti+1). We derive from (36) that τσ,T (x̂(t)) =
τσ,T (x

′(ti + cr,1 + c̃r,2(ti))). Let j ∈ I be such that ti +
cr,1 + c̃r,2(ti) ∈ [tj ,

′ t′j+1), τσ,T (x̂(t)) = τσ,T (x
′(ti + cr,1 +

c̃r,2(ti))) + τσ,T (x
′(t′j))− τσ,T (x

′(t′j)) = τσ,T (x̂
′(ti + cr,1 +

c̃r,2(ti))) + τσ,T (x
′(ti + cr,1 + c̃r,2(ti)))− τσ,T (x

′(t′j)). We
derive, by proceeding like in the end of the proof of Theorem
1, that |τσ,T (x′(ti + cr,1 + c̃r,2(ti)))− τσ,T (x

′(t′j))| ≤ ĉrσ
2.

Consequently, |τσ,T (x̂(t))− τσ,T (x̂
′(ti + cr,1 + c̃r,2(ti)))| ≤

ĉrσ
2.

Finally, by Lemma 2, we derive that |τσ,T (x̂(t))−
τσ,T (x̂

′(ti + cr,1))| ≤ ĉrσ
2 + |τσ,T (x̂′(ti + cr,1+c̃r,2(ti)))−

τσ,T (x̂
′(ti + cr,1))| ≤ ĉrσ

2 + σccont,1|c̃r,2(ti)| + σ2ccont,2 ≤
ĉrσ

2+σ2ccont,1
2
β (

π
β +ĉcomplexσ)ccomplex+σ

2ccont,2 as |c̃r,2(t)|
≤ 2

β (
π
β + ĉcomplexσ)ccomplexσ, from which we obtain the desired

result.

H. Proof of Proposition 5

Let m > 0, x0 ∈ R2,�, (σ, T ) ∈ Sm(σ�
distinct, T

�) with
σ�

distinct ∈ (0, σ�
1 ] specified in the following. We write matrix

Ac in a Jordan form. Let M = [w1, w2], where w1 and w2

are nonzero eigenvectors of Ac associated with λ1 and λ2,
respectively, z = (z1, z2) :=M−1x and ẑ :=M−1x̂. Hence,

on flows ż = Jz + ε where J :=
(

λ1 0
0 λ2

)
and ε = (ε1, ε2) :=

M−1BKM(ẑ − z). Equivalently, ż1 = λ1z1 + ε1 and ż2 =
λ2z2 + ε2. Note that |ε| ≤ σρ|z| for some ρ > 0 independent
of σ, whenever |x̂− x| ≤ ρσ|x|, which holds along solutions to
(6) and (7) in view of Claim 1.

We are going to study the variation of Δ1(z) :=
z22
|z|2 for

any z = (z1, z2) ∈ R2,�, which is equal to sin(arg(z))2,
along the solutions to ż = Jz + ε; recall that z �= 0 so
that Δ1(z) is well defined. The obtained properties will
allow us to derive that Items 1) and 2) of Proposition 5
hold. Let z ∈ R2,� and ε ∈ R2 be such that |ε| ≤ σρ|z|. It

holds that 〈∇Δ1(z), Jz + ε〉 = 1

|z|4 (2z2(λ2z2 + ε2)|z|2 −
2z22(λ1z

2
1 + z1ε1 + λ2z

2
2 + z2ε2)). We obtain by adding and

subtracting λ2z
2
1 in the second term inside the brackets above

〈∇Δ1(z), Jz + ε〉 = 1
|z|4 (2z2(λ2z2 + ε2)|z|2 − 2z22(λ1z

2
1 −

λ2z
2
1 + λ2z

2
1 + z1ε1 + λ2z

2
2 + z2ε2))=

1
|z|4 (−2(λ1−λ2)z

2
1z

2
2

−2ε1z1z
2
2 +ε2(2z2|z|2 − 2z32)). Since |ε| ≤ ρσ|z|, there

exists ρ1 > 0 independent of σ such that | 1
|z|4 (−2ε1z1z

2
2 +

ε2(2z2|z|2 − 2z32))| ≤ ρ1σ. Consequently

〈∇Δ1(z), Jz + ε〉 ≤ −2(λ1 − λ2)z
2
1z

2
2

|z|4 + ρ1σ. (39)

We have
z21z

2
2

|z|4 = cos(arg(z))2 sin(arg(z))2 = (1−
sin(arg(z))2) sin(arg(z))2 = (1−Δ1(z))Δ1(z). Therefore

〈∇Δ1(z), Jz + ε〉 ≤ −2(λ1− λ2)(1−Δ1(z))Δ1(z) +ρ1σ.
(40)

Let ζ(σ) := 1− 2σ
ρ1

λ1 − λ2
. We note that ζ(σ) < 1

as λ1 > λ2. Also ζ(σ) >
1

2
for σ�

distinct small enough,

as σ ∈ (0, σ�
distinct). Hence, ζ(σ) ∈

(
1

2
, 1

)
. Furthermore,

ρ1σ

(λ1 − λ2)(1− ζ(σ))
=

1

2
< ζ(σ). Consequently, for any

Δ1(z) ∈ [
ρ1σ

(λ1 − λ2)(1− ζ(σ))
, ζ(σ)]

〈∇Δ1(z), Jz + ε〉 ≤ −(λ1 − λ2)(1− ζ(σ))Δ1(z). (41)

Systems (6) and (7) in the coordinates (z, ẑ, δ) be-
come (ż, ˙̂z, δ̇) = (Jz + ε, 0, 1) for all t ∈ (ti, ti+1) and
(z(t+i ), ẑ(t

+
i ), δ(t

+
i )) = (z(ti), z(ti), 0). Consider a solution

(z, ẑ, δ) initialized at (z0, z0, 0) ∈ R2,�, where z0 =M−1x0.
If Δ1(z)(0) ≤ ζ(σ), we derive from (41) using standard Lya-

punov techniques and the fact thatΔ1(z) is not affected by jumps

that lim sup
t→∞

Δ1(z(t)) ≤ ρ1σ

(λ1 − λ2)(1− ζ(σ))
. This means that

either lim sup
t→∞

| arg(z(t))| ≤ cz,argσ or lim sup
t→∞

| arg(z(t)) +
π| ≤ cz,argσ for some constant cz,arg > 0 independent of σ and
z0 sinceΔ1(z) = sin(arg(z))2. This implies that, in the original
coordinates (x, x̂), there exists a nonzero eigenvector v1 (±w1)
associated with λ1 such that lim sup

t→∞
| arg(x(t))− arg(v1)| ≤

cargσ for some carg > 0 independent of σ and x0. On the other
hand, if Δ1(z(0)) ∈ (ζ(σ), 1], there are two options: 1) there
exists t > 0 such thatΔ1(z(t)) ≤ ζ(σ); 2)Δ1(z(t)) ∈ (ζ(σ), 1]
for all t ≥ 0. In case 1), we deduce from the reasoning above that
there exists a nonzero eigenvector v1 associated with λ1 such that
lim sup
t→∞

| arg(x(t))− arg(v1)| ≤ cargσ. In case 2), Δ1(z(t)) ∈
(ζ(σ), 1] = (1− 2σ ρ1

λ1−λ2
, 1] for all t ≥ 0, which means that

| arg(z(t))± π
2 | ≤ c′distinctσ for all t ≥ 0 with c′distinct > 0 in-

dependent of σ and x0. Returning to the original coordinates,
this means that there exists a nonzero eigenvector v2 (±w2)
associated with λ2 such that | arg(x(t))− arg(v2)| ≤ cdistinctσ
for all t ≥ 0. Since x̂(t) = x(ti) for any t ∈ [ti, ti+1) and the
sequence ti, i ∈ Z≥0, is unbounded according to Propositions
1 and 3, we deduce from the properties established in this
paragraph that the desired result holds.

I. Proof of Theorem 3

Let m > 0, x0 ∈ R2,�, and (σ, T ) ∈ Sm(σ�
distinct, T

�).
Let t ≥ 0 and consider (x, x̂, δ) the solution to systems
(6) and (7) initialized at (x0, x0, 0). In view of Pro-

position 3, τσ,T (x̂(t)) = max

{
σ

|x̂(t)|
|Acx̂(t)| + r(x̂(t), σ), T

}
=

max

{
σ|Ac

x̂(t)

|x̂(t)| |
−1 + r(x̂(t), σ), T

}
, recall that we

have x̂(t) �= 0 according to Proposition 4. In polar
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coordinates, the above equation becomes τσ,T (x̂(t)) =
max{σ|Ac(cos(arg(x̂(t))), sin(arg(x̂(t))))|−1 + r(x̂(t), σ),
T}. Suppose Item 1) of Proposition 5 holds, and let
v1 be the corresponding unit eigenvector of Ac asso-
ciated with λ1. Consider the case where τσ,T (x̂(t)) =
σ|Ac(cos(arg(x̂(t))), sin(arg(x̂(t))))|−1 + r(x̂(t), σ). It
holds that

|v1|
|Acv1| = |Ac (cos(arg(v1)), sin(arg(v1)))|−1 . (42)

Thus, τσ,T (x̂(t))−σ |v1|
|Acv1|=r(x̂(t), σ)+σ

∣∣∣Ac(cos(arg(x̂

(t))), sin(arg(x̂(t))))
∣∣∣−1

− σ|Ac(cos(arg(v1)), sin(arg(v1)))|−1.

Noting that z 
→ |Acz|−1 is Lipschitz with some constant
� ≥ 0 on the compact set S2, and since |r(z, σ)| ≤ crσ

2

for any z ∈ R2 according to Proposition 3, we deduce that

|τσ,T (x̂(t))−σ |v1|
|Acv1| | ≤ σ�

∣∣∣(cos(arg(x̂(t))), sin(arg(x̂(t))))
−(cos(arg(v1)), sin(arg(v1)))

∣∣∣+ crσ
2. Exploiting the global

Lipschitz properties of the cosine and sine functions, we have∣∣∣∣τσ,T (x̂(t))−σ |v1|
|Acv1|

∣∣∣∣ ≤ 2σ� |arg(x̂(t))− arg(v1)|+ crσ
2.

(43)
By applying Lemma 3 given in the Appendix with

a = σ|Ac(cos(arg(x̂(t))), sin(arg(x̂(t))))|−1 + r(x̂(t), σ),

b = σ
|v1|

|Acv1| and c = T , we derive that, when τσ,T (x̂(t)) =

max

{
σ
∣∣∣Ac(cos(arg(x̂(t))), sin(arg(x̂(t))))

∣∣∣−1

+ r(x̂(t), σ), T

}
,

|τσ,T (x̂(t))−max

{
σ

|v1|
|Acv1| , T

}
| ≤ 2σ�| arg(x̂(t))−arg(v1)|

+crσ
2. As a result, we obtain by invoking Item 1) of Proposition

5 and the fact that
1

|λ1| =
|v1|

|Acv1| as v1 is an eigenvector for λ1

lim sup
t→∞

∣∣∣∣τσ,T (x̂(t))−max

{
σ

|λ1| , T
}∣∣∣∣ ≤ 2�cdistinctσ

2 + crσ
2

(44)
and we conclude that Item 1) of Theorem 3 holds with c1 =
2�cdistinct + cr in this case.

Similar arguments apply when Item 2) of Proposition 5 is
verified, which leads to the satisfaction of Item 2) of Theorem 3.

J. Proof of Proposition 6

Let x0 ∈ R�, σ ∈ (0, σ�), and T ∈ [0, T �). We
first assume that A �= 0. Consider the case where
τσ,T (x0) > T . Hence, |x(τσ,T (x0))− x0| = σ|x(τσ,T (x0))|
in view of (7). Since x(τσ,T (x0)) = eAτσ,T (x0)x0 +∫ τσ,T (x0)

0

eA(τσ,T (x0)−s)BKx0ds = eAτσ,T (x0)x0 −A−1(1−
eAτσ,T (x0))BKx0 and x0 ∈ R�, we have at t = τσ,T (x0),
|eAτσ,T (x0) −A−1(1− eAτσ,T (x0))BK − 1| = σ|eAτσ,T (x0) −
A−1(1− eAτσ,T (x0))BK|. By squaring the last inequality and
introducing ψ := eAτσ,T (x0) −A−1(1− eAτσ,T (x0))BK,
we obtain a second-order polynomial in ψ, namely

(1− σ2)ψ2 − 2ψ + 1 = 0. This equation has two strictly

positive roots, denoted as ψ− :=
1

1 + σ
< ψ+ :=

1

1− σ
. Since

|x(T )− x0| < σ|x(τσ,T (T ))|, necessarily ψ = ψ−. By solving

ψ = ψ−, i.e., eAτσ,T (x0) −A−1(1− eAτσ,T (x0))BK =
1

1 + σ
,

we derive that τσ,T (x0) = 1
A ln(

A
1+σ+BK

A+BK ), which is strictly
greater than T ; this is the case here.

When τσ,T (x0) = T , this means that |x(T )− x0| ≥ σ|x(T )|,
which implies that ψ ≥ ψ−, which is equivalent to τσ,T (x0) ≥
1
A ln(

A
1+σ+BK

1+BK ). Hence, τσ,T (x0) = max{T, 1
A ln(

A
1+σ+BK

A+BK )}.
We follow similar lines as above when A = 0 to obtain the

expression of the inter-event time in Proposition 6.

K. Proof of Proposition 7

Let m > 0, x0 ∈ R2,�, and (σ, T ) ∈ Sm(σ�
complex, T

�) with
σ�

complex ∈ (0, σ�
1 ] specified in the following. We write matrixAc

in the real Jordan form. Let M = [w1, w2] where w1 ± iw2 are
nonzero eigenvectors of Ac associated with the pair of complex
conjugates eigenvalues λ ± iβ, respectively, z = (z1, z2) :=
M−1x and ẑ :=M−1x̂. Hence, systems (6) and (7) become

ż = Jz + ε
˙̂z = 0

δ̇ = 1

⎫⎬
⎭ for all t ∈ (ti, ti+1),

⎧⎨
⎩
z(t+i ) = z(ti)
ẑ(t+i ) = z(ti)
δ(t+i ) = 0

(45)

where J :=
(

λ β
−β λ

)
and ε = (ε1, ε2) =M−1BKM(ẑ − z) as

in the proof of Proposition 5.
The inter-event time function at time t becomes in these

coordinates τ̃σ,T (ẑ(t)) with τ̃σ,T (z0) := inf{η ≥ T : |Mz0 −
Mφ̃(η, z0)| ≥ σ|Mφ̃(η, z0)|}, where φ̃(η; z0) is the solution to
ż = Jz +M−1BKM(z0 − z) at time η ≥ 0, initialized at z0.
Hence, for the solutions (x, x̂, δ) and (z, ẑ, δ) to (6) and (7)
and (45) initialized at (x0, x0, 0) and (z0, z0, 0), respectively,
τσ,T (x(t)) = τ̃σ,T (z(t)) for all t ≥ 0. Moreover, there exists
ρ3 > 0, independent of σ, such that |ε(t)| ≤ σρ3|z(t)| in view
of Claim 1 and the definition of z.

We investigate the argument of the z-component of the
solution to (45) initialized at (z0, z0, 0), where z0 =M−1x0. In
view of its definition in Section I, the argument function is differ-
entiable everywhere except on R<0 × {0}, which is of Lebesgue
measure zero. On the other hand, the set {t ≥ 0 : z(t) ∈ R<0

×{0}} is also of Lebesgue measure zero. Indeed, suppose
there exists t∗ ≥ 0 such that z1(t∗) < 0 and z2(t∗) = 0. Then
ż2(t

∗) = λz2(t
∗)− βz1(t

∗) + ε2(t
∗) = −βz1(t∗) + ε2(t

∗).
Suppose ż2(t

∗) = 0 to obtain a contradiction. This means
that βz1(t∗) = ε2(t

∗), which implies that β|z1(t∗)| = |ε2(t∗)|,
but |ε2(t∗)| ≤ ρ3σ|z(t∗)| = ρ3σ|z1(t∗)|. Hence, we derive
β|z1(t∗)| ≤ ρ3σ|z1(t∗)|, which is impossible as z1(t∗) �= 0, in
view of Proposition 4, when taking σ�

complex and thus σ small
enough. We conclude that the set {t ≥ 0 : z(t) ∈ R<0 × {0}}
is of Lebesgue measure zero. Consequently, for almost all t ≥ 0,
d
dt arg(z(t)) =

1
|z(t)|2 (z1(t)(λz2(t)− βz1(t) + ε2(t))−

z2(t)(λz1(t) + βz2(t) + ε1(t))) =
1

|z(t)|2 (−β|z(t)|2 +
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z1(t)ε2(t)− z2(t)ε1(t)), and

d

dt
arg(z(t)) = −β + rcomplex(z(t), ε(t)) (46)

where rcomplex(z, ε) :=
1

|z|2 (z1ε2 − z2ε1). Since |ε| ≤ σρ3|z|,
by Cauchy–Schwarz inequality, there exists ccomplex > 0 such
that |rcomplex(z(t), ε(t))| ≤ ccomplexσ for any t ≥ 0.

Equation (46) and the properties of rcomplex imply that
z describes spirals “converging” to the origin in the phase
portrait and that it spends at most π

β−ccomplexσ
and at least

π
β+ccomplexσ

units of time to successively intersect twice any
given line passing through the origin. The inter-event time
function τ̃σ,T satisfies the same homogeneity12 as τσ,T
stated in Proposition 2. Consequently, for any t ≥ 0, there
exists θ(t) ∈ [ π

β+ccomplexσ
, π
β−ccomplexσ

] such that τ̃σ,T (z(t)) =

τ̃σ,T (z(t+ θ(t))). In view of the Taylor series ofσ 
→ π
β+ccomplexσ

and σ 
→ π
β−ccomplexσ

, as σ ∈ (0, σ�
complex) and σ�

complex is taken

small, there exists ccomplex > 0 independent of (σ, x0) such that
[ π
β+ccomplexσ

, π
β−ccomplexσ

] ⊆ [πβ − ccomplexσ,
π
β + ccomplexσ]. There-

fore, since τσ(x(t)) = τ̃σ,T (z(t)) for any t ≥ 0, where z and x
are components of the solutions to (45) and (6) and (7) initialized
at (M−1x0,M

−1x0, 0) and (x0, x0, 0), respectively, the desired
result follows.
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