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Abstract

In this paper we study the well-posedness (existence and uniqueness of solutions) of linear relay systems with respect to two di5erent
solution concepts, Filippov solutions and forward solutions. We derive necessary and su7cient conditions for well-posedness in the sense
of Filippov of linear systems of relative degree one and two in closed loop with relay feedback. To be precise, uniqueness of Filippov
(and also forward) solutions follows in this case if the 9rst non-zero Markov parameter is positive. By means of an example it is shown
that this intuitively clear condition is not true for systems with relative degree larger than two. The in;uence of the Zeno phenomenon
(an in9nite number of relay switching times in a 9nite length time interval) on well-posedness is highlighted and although linear relay
systems form a rather limited subclass of hybrid dynamical systems, the consequences of the presence of the Zeno behaviour is typical
for many other classes of non-smooth and hybrid systems.
? 2003 Elsevier Ltd. All rights reserved.

Keywords: Hybrid systems; Relay feedback systems; Well-posedness

1. Introduction

Relay systems are important as they are used in various
control problems like sliding mode control (Tsypkin, 1984;
Utkin, 1978; Filippov, 1988; Johansson, 1997; Johansson,
Rantzer, & BAstrCom, 1999c), and in idealised models of
(Coulomb) friction phenomena. Still quite some fundamen-
tal issues of such systems (even if the underlying system is
linear) are unclear and have received considerable attention
in recent years. Analysis of simulation methods of such sys-
tems (Mattson, 1996; Heemels, Camlibel, & Schumacher,
2000a), well-posedness, that is the existence and unique-
ness of solutions (Filippov, 1988; Lootsma, van der Schaft,
& Camlibel, 1999), existence of fast switches (Johansson,
1997; Johansson et al., 1999c) are partially explored prob-
lem areas within this context.
The focus of this paper is on so-called linear relay sys-

tems constituted by linear single input single output (SISO)
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systems of the form

ẋ(t) = Ax(t) + Bu(t); y(t) = Cx(t); (1)

in closed loop with the relay feedback

u(t) =−sgn(y(t)): (2)

Here x∈Rn, u; y∈R1 and the matrices A; B; C are of corre-
sponding dimensions and sgn is the relay function.
Although this class of systems has a somewhat small

scope, the mathematical di7culties within this class
are abundant, and are illustrative for other classes of
so-called hybrid systems, i.e. systems having mixed discrete
(logic/switching) and continuous (analog) dynamics. Such
systems are intensively studied recently (Pnueli & Sifakis
(guest Eds.), 1995; Antsaklis & Nerode (guest Eds.), 1998;
Morse, Pantelides, Sastry, & Schumacher (guest Eds.),
1999). Especially in this area the de9nition of a solution
concept and the basic question of existence and unique-
ness of trajectories is certainly non-trivial and of interest
(Lygeros, Johansson, Sastry, & Egerstedt, 1999; Johansson,
Egerstedt, Lygeros, & Sastry, 1999a). An important related
phenomenon that is typical for continuous-time hybrid dy-
namical systems is the occurrence of an in9nite number of
(relay) switches in a 9nite time interval, which is called
Zeno behaviour and causes many di7culties in analysis and
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simulation. Filippov (Filippov, 1988) already noticed the
in;uence of this phenomenon on uniqueness of solutions
to relay systems as he came up with an example containing
two relays in which the uniqueness of solutions does not
hold due to the presence of Zeno behaviour (see page 116 of
Filippov, 1988). Also one of his theorems (Theorem 2.10.4
in Filippov, 1988) excludes Zeno behaviour as one of the
conditions to assure uniqueness. However, such a condi-
tion is di7cult to verify a priori as results guaranteeing the
absence of Zeno behaviour are extremely rare (Johansson,
Lygeros, Sastry, and Egerstedt, 1999b). Therefore it is chal-
lenging and interesting to 9nd conditions excluding Zeno
trajectories and to discuss its e5ects within the context of
mathematical properties of models like well-posedness.
As might be conjectured given the form of the

relay-characteristic sgn, “positiveness” of the linear system
(1) in the sense that its 9rst non-zero Markov parameter is
positive is necessary and su7cient for existence and unique-
ness of solutions for arbitrary initial states. In Lootsma
et al. (1999) this conjecture is proven for so-called for-
ward solutions (see Theorem 1 below). However, for relay
systems, the Filippov concept seems more natural and the
associated uniqueness is of independent interest. Moreover,
uniqueness of Filippov solutions play also an important role
for proving consistency of a numerical simulation method
based on time-stepping (Heemels et al., 2000a) and the
Filippov solution concept has some favorable properties
that can be used for analysis purposes (see the Conclusions
section). However, the extension of the results obtained in
Lootsma et al. (1999) for (1)–(2) are not straightforward
as the Filippov solution concept is more general than the
forward solution concept; in Lootsma et al. (1999) a par-
ticular kind of Zeno behaviour has been excluded in the
solution concept by de9nition (left accumulations of relay
switching times are not allowed). The main results of this
paper show that the conjecture will hold only partially for
Filippov solutions; the “positivity” conditions derived in
(Lootsma et al., 1999) will be shown to be necessary and
su7cient for Filippov uniqueness for linear relay systems
for which the underlying linear system (1) has relative de-
gree one or two. However, by a counterexample of a triple
integrator in closed loop with negative relay feedback, it is
shown that the conditions are not su7cient in general and
the conjecture is therefore wrong. This example shows that
there is a clear relation between the well-posedness question
and the solution concept that is being used; for two solution
concepts the answer to the well-posedness question turns
out to be di5erent (even also for a third solution concept
used in Imura and van der Schaft (2000), see Remark 2
below). Hence, the solution concept and the well-posedness
question cannot be decoupled.
In this paper we consider only the case of single-input-

single-output (SISO) linear systems for which the two
well-known solution concepts given by Filippov’s convex
de9nition and Utkin’s equivalent control coincide. How-
ever, it is worth mentioning some other solution concepts

for systems with discontinuous right-hand side like the ones
presented in Gelig, Leonov, and Yakubovich (1978) and
Clarke, Ledyaev, Stern, and Wolenski (1998), which are not
equivalent to Filippov solutions. Another interesting line
of research is related to the question, if the solutions that
are generated by an ideal relay are approximations of the
system (1)–(2) where sgn is replaced by an non-ideal relay.
This question is beyond the scope of this paper, but see
e.g. Filippov (1988), Johansson et al. (1999b), Camlibel,
Cevik, Heemels, and Schumacher (2000) for a discussion
on this topic for various classes of hybrid systems.
The following notations and de9nitions are used in the pa-

per. A point �∈R is called a right-accumulation point of E,
if there exists a sequence {�i}i∈N such that �i ∈E and �i ¡ �
for all i and furthermore, limi→∞ �i=�. A left-accumulation
point is de9ned similarly by replacing “¡” by “¿.” An ac-
cumulation point of E is a left- or a right-accumulation point
of E.
The closure of a set S ⊂ Rn is denoted by clS.

2. Filippov solutions

Consider the following di5erential equation:

ẋ = f(x); (3)

where f :G → Rn, G ⊂ Rn, is a piece-wise smooth vec-
tor9eld undergoing (possible) jumps on a set M ⊂ G
of zero measure. In the simplest “convex” de9nition of
Filippov (Filippov, 1988) (which is the same as Utkin’s
equivalent control de9nition (Utkin, 1978) for system (1),
(2)) Eq. (3) is transformed into a di5erential inclusion
ẋ∈F(x), where for each x∈G the set F(x) is de9ned to be
the smallest convex closed set containing all the limit values
of the function f at x. To be precise, F(x) is the smallest
convex closed set containing

{z ∈Rn | there is {xn}n∈N with xn ∈G\M;

xn → x and z = lim
n→∞f(xn)}: (4)

De�nition 1. A Filippov solution of (3) on the interval I is
a solution of the di5erential inclusion

ẋ∈F(x); (5)

that is, an absolutely continuous function x(t) de9ned on I ,
for which ẋ(t)∈F(x(t)) almost everywhere on I .

Note that for system (1)–(2)M is the set {x∈Rn |Cx=0}
and F(x) = {Ax + B} for Cx¡ 0, F(x) = {Ax − B} for
Cx¿ 0 and F(x) = {Ax + B Su | Su∈ [− 1; 1]} when Cx = 0.
Suppose that F(x) is bounded on G. The obtained

set-valued function F(x) is upper semicontinuous
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(see Lemma 2.6.3 in Filippov, 1988) and hence, according
to Theorem 2.7.1 in Filippov (1988) for arbitrary initial
conditions from G the solution of the di5erential inclusion
(5) locally exists.
A solution (in the sense of Filippov) x(t; x0) with initial

condition x0 is said to be (locally) right unique if for each
two solutions x1(·; x0) and x2(·; x0) satisfying x1(0; x0) =
x0, x2(0; x0) = x0 there exists a t1 ¿ 0 such that x1(·; x0)
and x2(·; x0) coincide on [0; t1). A similar de9nition for
left uniqueness can be given. If a solution x(t; x0) is both
(locally) right and left unique, we will say that it is (locally)
unique (Filippov, 1988).
Here we mention some important properties of Filippov

solutions:

(1) Compactness of the set of solutions. The set of solu-
tions de9ned on �6 t6 �with initial conditions from a
given compact set is compact with respect to the C[�; �]
topology (see Theorem 2.7.3, Filippov, 1988).

(2) Continuous dependence on initial conditions. Unique-
ness of solutions implies continuous dependence on the
initial data (see Theorem 2.8.2, Filippov, 1988).

3. Forward solutions

The solution concept used in (Lootsma et al., 1999) stems
from hybrid dynamical systems (Pnueli & Sifakis (guest
Eds.), 1995; Antsaklis & Nerode (guest Eds.), 1998; Morse
et al., 1999) and more precisely from (linear) complemen-
tarity systems (LCS), (van der Schaft & Schumacher, 1996;
van der Schaft & Schumacher, 1998; Heemels, Schumacher,
& Weiland, 2000b; Heemels, Schumacher, & Weiland,
1999). The discrete part of the behaviour is related to the
idea that an ideal relay element is given by three modes
of operations (“discrete states”) corresponding to the three
branches:

A1. y(t)¿ 0, u(t) =−1,
A2. y(t)6 0, u(t) = 1,
A3. y(t) = 0, −16 u(t)6 1.

During the evolution of the system, the relay switches be-
tween these three modes, which have their own characteristic
laws of motion. In such hybrid systems the solutions are usu-
ally considered in the following “forward sense” (Lootsma
et al., 1999; Johansson et al., 1999a).

De�nition 2. Suppose that there is an �¿ 0 and a triple
(u; x; y) : [0; �) 
→ R× Rn × R satisfying for x0 ∈Rn

(1) (u; x; y) is analytic on [0; �);
(2) x(0) = x0;
(3) (1) is satis9ed on [0; �); and
(4) there exists an i∈{1; 2; 3} such that for all t ∈ [0; �) Ai

holds.

Fig. 1. An example of a left-accumulation point. A solution starts at
the point for which the switching instances (points where the trajectory
hits the t-axis) form a sequence with a left accumulation point. During
any arbitrarily small time period [0; �) the solution undergoes an in9nite
number of switchings.

Then x is called a local forward solution on [0; �) to (1)–(2)
with initial condition x0.

This means that a local forward solution satis9es the dy-
namics of one mode only on an interval of the form [0; �)
and does not account for the possibility of left accumulation
of the relay switching times (see Fig. 1). As a consequence,
solutions starting with an in9nite number of time instances
of leaving and reaching the switching surface y = 0 in (1),
(2) (as e.g. in the example in (Filippov, 1988, p. 116) and
the triple integrator example of Section 4) are excluded from
the de9nition of forward solutions. In Lootsma et al. (1999)
one proves existence and uniqueness of forward solutions
under suitable “positivity” conditions for the multiple relay
case. This result can be formulated for the single relay case
in terms of theMarkov parameters of the system (1), which
are de9ned by Hi := CAi−1B for i = 1; 2; : : : : The leading
Markov parameter is de9ned as the 9rst Markov parameter
that is non-vanishing, i.e. it is given by H� with

� := min{i = 1; 2; : : : |Hi �= 0} (6)

provided that not all Markov parameters are zero. We call
� the relative degree of the system (1).
The following result gives a necessary and su7cient con-

dition for uniqueness of forward solutions. The su7ciency
part follows from Lootsma et al. (1999), while the necessity
part is almost obvious for SISO systems.
It is worth mentioning, that according to the de9nition

the forward solution is de9ned only for positive (“forward”)
time and the de9nition is asymmetric in time (see also the
Conclusions section for time reversing of solutions).

Theorem 1 (Lootsma et al., 1999). Let the relay system
(1)–(2) be given. From any initial condition x0 there exists
a unique local forward solution if and only if the leading
Markov parameter H� is positive.

Proof. To prove the necessity part of this theorem one can
notice that for zero initial conditions there are three forward
solutions corresponding to the modes A1, A2 and A3 in case
H� is negative. Indeed, it is easily veri9ed that the solution
to ẋ = Ax + B with x(0) = 0 is real-analytic and satis9es
y(r)(0) = 0, r = 1; : : : ; � − 1 and y(�)(0) = H� ¡ 0, which
implies that y(t)6 0 for some interval of the form [0; �)
with �¿ 0. This means that there exists a non-zero forward
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(and Filippov) solution in mode A2. Similarly, it can be
shown that mode A1 produces a di5erent non-zero forward
solution.

Hence, uniqueness of forward solutions can be checked
simply by means of the calculation of the sign of the lead-
ing Markov parameter. In van der Schaft and Schumacher
(1999) it is observed in p. 110, that the conditions of Filip-
pov (see Section 2.10 in Filippov, 1988) have to be checked
on a point-by-point basis, while here the determination of
the leading Markov parameter su7ces. However, note that
the results of Filippov are applicable to general nonlinear
systems coupled to relays, while Theorem 1 is valid for lin-
ear relay systems only.
In principle we have restricted ourselves here to local for-

ward solutions, but they can be extended to obtain forward
solutions that evolve through several modes by concatena-
tion of the local solutions as de9ned here and thereby possi-
bly leading to global solutions, see Heemels et al. (2000b),
Lootsma et al. (1999) for details.

4. Filippov versus forward solution

However, there is an open question: how are the condi-
tions of Theorem 1 related to the uniqueness (left or right)
of the solutions of the closed loop system when the solutions
are understood in the sense of Filippov? As mentioned in the
introduction, a 9rst indication of a possible source causing
problems stems from an example constructed by Filippov
(Filippov, 1988, p. 116), which exhibits non-uniqueness of
Filippov solutions due to a speci9c type of Zeno behaviour
excluded in the forward solution concept. However, besides
the fact that Filippov’s example contains multiple relays, it
also does not satisfy the multiple relay “positivity” condi-
tions for well-posedness as given in Lootsma et al. (1999).
Hence, Filippov’s example is not a counterexample for the
conjecture that the conditions of Theorem 1 also su7ce for
uniqueness of Filippov solutions. To our best knowledge,
there is also no other example present in literature showing
that the “positivity” conditions are not su7cient for Filippov
uniqueness as well and this fact motivates our study.

4.1. Relative degree one

First, we consider the case of relative degree one. In this
case the right uniqueness of Filippov solutions indeed fol-
lows from the positivity of the 9rst Markov parameter.

Theorem 2. Consider a linear SISO system (1) of relative
degree one in closed loop with the feedback (2). Then the
Filippov solution is right unique for all initial conditions if
and only if the =rst Markov parameter CB is positive.

Proof. 1. ⇐. A linear SISO system of relative degree one
can be represented (possibly after a coordinate change) as

follows:

ẋ1 = ax1 + c�z + du;

ż = Fz + Dx1;

y = x1;

(7)

with x1; u; y∈R1, z ∈Rn−1 and matrices a; c; d; F; D are of
corresponding dimensions. This representation is used in
Utkin (1978) and a general case of nonlinear systems is
treated in Byrnes and Isidori (1991). The representation (7)
is usually referred to as the normal form. Since the 9rst
Markov parameter is positive, d= CB¿ 0.
The right uniqueness of all solutions for system

(7)–(2) follows from Theorem 2.10.1 (by observing that
( − !)(sgn( ) − sgn(!))¿ 0) and also from Theorem
2.10.2 in Filippov (1988).
2. ⇒. From Theorem 1 negativity of CB= d implies the

existence of multiple forward solutions (for each mode A1,
A2 and A3 one trajectory) starting in the origin. As local
forward solutions are also local Filippov solutions, the result
follows.

Note that CB=0 complies with relative degree larger than
one and no statements are provided in Theorem 2 for this
situation.

4.2. Relative degree two

The next result shows that uniqueness of Filippov so-
lutions is guaranteed if the 9rst Markov parameter is
positive in case of relative degree two. Consider the set
O := {x |Cx=0; CAx=0; |CA2x|=CAB}. Let "=Rn \O.

Theorem 3. Consider a linear SISO system (1) of relative
degree two in closed loop with the feedback (2). Then the
Filippov solution of (1)–(2) is unique for any initial condi-
tions from " if and only if the second Markov parameter
CAB is positive.

Proof. 1. ⇐. A linear SISO system of relative degree two
can be represented in the following normal form (Byrnes &
Isidori, 1991):

ẋ1 = x2;

ẋ2 = ax1 + bx2 + c�z + du;

ż = Fz + Dx1 + Hx2;

(8)

y = x1; (9)

where x1; x2; y; u∈R1, z ∈Rn−2 and a; b; c; d; F; D; H are of
corresponding dimensions. Since the second Markov pa-
rameter is positive, it holds that d = CAB¿ 0. We will
denote col(x1; x2; z) by x for brevity. In new coordinates
O= {x | x1 = 0; x2 = 0; |c�z|= d}.
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We start with the right uniqueness. If x10 �= 0 the unique-
ness follows from the standard uniqueness theorems as we
are at a non-zero distance away for the switching surface
Cx=0. If x10=0; x20= ẋ1(0; x0) �= 0 the trajectory intersects
the switching surface transversely and the uniqueness fol-
lows from Filippov’s argument (see 2.10 in Filippov, 1988).
So, the only case left to consider is x10 = x20 = 0. Addi-
tionally, if |c�z0|¿d, the trajectory intersects the switch-
ing surface transversely and the uniqueness again follows.
Consider 9rst the case where n¿ 3 (it is the zero dynamics
are non-trivial and z has dimension larger or equal to 1).
Then it is su7cient to prove right uniqueness for the initial
conditions x10 = 0; x20 = 0; |c�z0|¡d.
Observe that along any trajectory of the system (1)–(2)

it holds that (see Filippov, 1988, p. 155)

d
dt
|x1(t; x0)|= d

dh
|x1(t; x0) + hx2(t; x0)|

∣∣∣∣
h=0

= x2(t; x0) sgn x1(t; x0)

for almost all t¿ 0.
Consider the following Lipschitz-continuous function:

V (x1; x2; z) = d|x1| − x1c�z + 1
2x

2
2 : (10)

Given �∈ (0; d); &¿ 0, consider the set

"�;& = {(x1; x2; z)�‖c�z|6d− �; |c�Fz|6 &}:

On this set it follows that V (x1; x2; z)¿ �|x1| + x22=2¿ 0.
Then, in "�;& for almost all t¿ 0,

V̇ (x(t; x0))6 bx22 + �x1x2 + �x21 + &|x1|;

where �= |a− c�H |; � = |c�D|.
Using the inequalities

 216 | 1|;  1 26 ( 21 +  22)=26 (| 1|+  22)=2

which are valid for real  1;  2 with | 1|6 1, one can see that
if |x1|6 1 in the set "�;& it follows that

V̇ 6
(
b+

�
2

)
x22 +

(�
2
+ � + &

)
|x1|6 ((�; &)V

for some positive ((�; &). In other words, the absolutely con-
tinuous non-negative function of time

V (x1(t; x0); x2(t; x0); z(t; x0))e−((�;&)t

does not increase whenever the solution lies in the set of
the form "V ⊂ "�;&, "V := {x∈"�;& |V (x)6C; |x1|6 1}
for some positive C. Since V (0; 0; z) = 0 this means that if
x10 = 0; x2;0 = 0; z0 ∈"�;& then

V (x1(t; x0); x2(t; x0); z(t; x0)) = 0

for arbitrary non-negative t for which z ∈"�. Since �
can be arbitrarily small it means that on the set x1 = 0;

x2 = 0; |c�z|¡d a second order sliding mode occurs and
no solutions can leave the interval x1 = 0; x2 = 0; |c�z|¡d.
The evolution of the system on this set is determined by
a linear equation ż = Fz and hence the right uniqueness
follows.
Now we have to prove the right uniqueness for n=2 (no

zero dynamics). In this case the system equations have the
form

ẋ1 = x2;

ẋ2 = ax1 + bx2 + du;
(11)

y = x1: (12)

As mentioned above, for this system it is su7cient to prove
right uniqueness only for zero initial conditions. Considering
the positive de9nite function V = d|x1| + x22=2 and using
the previous argument we obtain the inequality V̇ 6 (V for
some (¿ 0 from which the right uniqueness of the zero
solution follows.
To prove the left uniqueness it su7ces to reverse the time

and to consider the behaviour of the solutions of the time–
reversed system, which also has a positive leading Markov
parameter and is consequently right unique as well!
2. ⇒. This implication follows from Theorem 1.

Note that in the proof of the theorem (to show the left
uniqueness of solutions) we use an argument based on time
reversal.
Note that in case the conditions of Theorem 2 or 3 hold, a

typical kind of Zeno behaviour (within the class of Filippov
solutions) can be excluded for the relay system (1)–(2).
Indeed, left accumulations of relay switching times do not
happen, as we know that the right unique Filippov solution
must be equal to the unique forward solution which has
the special property that left accumulations cannot occur.
Moreover, in the case of relative degree 2, we can even
exclude right accumulations of the switching times.

Remark 1. It is not di7cult to see that the arguments ap-
plied in the su7ciency parts of the previous results can
still be used for a7ne nonlinear control systems of rela-
tive degree one or two in a closed loop with negative relay
feedback written in the normal form (Byrnes & Isidori,
1991). In other words uniqueness of the Filippov solutions
can be deduced (at least locally in time) from the =rst-order
approximation of the nonlinear system which has a normal
form with relative degree one or two.

4.3. Relative degree three

Up to this point one may conjecture that a statement sim-
ilar to Theorem 1 is true for the Filippov solutions as well.
However, the following counterexample which is inspired
by Johansson (1997), Johansson et al. (1999b) proves that
this is not true in general.
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Consider the following system:

ẋ =




0 1 0

0 0 1

0 0 0


 x +




0

0

1


 u;

y = (1 0 0)x;

(13)

u=−sgn y; (14)

with x = (x1; x2; x3)�.
This system is a triple integrator in closed loop with neg-

ative relay feedback. System (13) has relative degree three
and its third Markov parameter is 1, so system (13)–(14)
has a unique forward solutions for arbitrary initial conditions
(Theorem 1). Our goal is to show that if one accepts Fil-
ippov’s concept of solutions, then there are in=nitely many
solutions of (13)–(14) starting at the origin.

Theorem 4. There are in=nitely many Filippov solutions
of system (13)–(14) starting at the origin.

The proof of this result is based on the following lemma
that is derived from Johansson (1997), Johansson et al.
(1999c). For the sake of completeness, the proof of the re-
sult is included.

Lemma 1. Any forward solution of the system (13)–(14)
starting at t = 0 in the set

" = {x | x1 = 0; x2 ¿ 0}
is right unique and undergoes an in=nite number of switches
with intervals between them of length t1; t2; : : : for which
the following estimate is true:

tk ¿ (
√
2 + 1)k−1t1: (15)

Proof. Assume that a trajectory of system (13), (14) passes
the switch plane " at t = 0 with

x(0; x0) = x0 = (0; x20; x30)� ∈":

Thus

sgn y(0+) = 1; u(0+) =−1:

Then, until the next switch,

x1(t; x0) = x20t + x30t2=2− t3=6;

x2(t; x0) = x20 + x30t − t2=2;

x3(t; x0) = x30 − t:

(16)

Note that a switch will occur and let t= t1 be the time instant
of the 9rst switch and let x′0 be the state at the switch (note
x′10 = 0 and x′20 ¡ 0). Since x1(t1; x0) = 0 one has

6x20 + 3x30t1 − t21 = 0: (17)

This equation can be always solved for positive t1. At t= t1

x′20 := x2(t1; x0) = x20 + x30t1 − t21 =2;

x′30 := x3(t1; x0) = x30 − t1:
(18)

Then, until the second switch which occurs at t = t1 + t2

x1(t; x′0) = x′20t + x′30t
2=2 + t3=6;

x2(t; x′0) = x′20 + x′30t + t2=2;

x3(t; x′0) = x′30 + t:

(19)

Again a new switch will occur at, say, time t1 + t2. Since
x1(t2; x′0) = 0 one has

6x′20 + 3x′30t2 + t22 = 0: (20)

As before, this equation is uniquely solvable for positive t2
since x′20 ¡ 0 and therefore, t2 ¡∞. Substituting (18) into
(20) yields

6(x20 + x30t1 − t21 =2) + 3(x30 − t1)t2 + t22 = 0: (21)

Eqs. (17) and (21) can be solved with respect to x20 and x30
which gives

x20 = t1
t22 − 2t1t2 − t21
6(t1 + t2)

:

However, as we assumed x20 ¿ 0, we must have that

t2 ¿ (
√
2 + 1)t1: (22)

A similar computation can be performed starting from an
initial condition in

"′ = {x | x1 = 0; x2 ¡ 0}:
Repeated evaluation of (22) now gives (15). Note that the
solutions starting from " are (locally) right unique in Filip-
pov’s sense as x10 =0, x20 ¿ 0 implies that y(t)¿ 0, u(t)=
−1 on (0; t1). Similar reasoning can be applied to x′10 = 0,
x′20 ¡ 0 to obtain (local) right uniqueness on [t1; t1+ t2]. Re-
peating the arguments leads to right uniqueness on [0;∞)
(note that there is no 9nite accumulation point of the relay
switching times).

Proof of Theorem 4. Given �¿ 0, consider the set

S0
� = {x∈R3 | x1 = 0; x2 ¿ 0; |x2|+ |x3|6 �}:
Given an arbitrary solution x(t; x0) with x0 ∈ S0

� and let
T (x0)¿ 0 be the time instant of the 9rst intersection of the
trajectory of x(t; x0) with the switching plane x1 = 0 for a
time instant larger than or equal to t=1, i.e. x1(T (x0); x0)=0.
Denote

tmax = sup
z∈S0

�

T (z):

By de9nition, tmax¿ 1. Moreover, we claim that tmax is
bounded. This fact follows from the proof of Lemma 1 (see
(17), (21)).
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Consider an arbitrary converging sequence {xi0},
i = 1; : : : ;∞, with xi0 ∈ S0

� , x
i
0 → 0 as i → ∞. Since the set

of Filippov solutions de9ned on the 9nite interval [0; tmax]
for the initial conditions from the compact set clS0

� is
compact, a subsequence of x(t; xi0) converges to a solution
 0(t) = x(t; Sx0), where x(t; Sx0) is some Filippov solution of
the closed loop system and Sx0 ∈ clS0

� (see Section 2). With-
out loss of generality, we may assume that the sequence
itself is convergent in the C[0; tmax]-topology. This implies
that

∀t ∈ [0; tmax] x(t; xi0) →  0(t) as i → ∞:

Since 0∈ clS0
� and x(0; xi0) = xi0 → 0 as i → ∞, it follows

that  0(0) = Sx0 = 0. Thus  0(t) is a Filippov solution of the
closed loop system starting at the origin.
Our goal is to show that for the sequence {xi0} of points

in R3 there is a sequence of times {qi}, 16 qi6 tmax such
that

lim inf
i→∞

‖x(qi; xi0)‖¿ 0: (23)

Observe that if (23) is true, then  0 �≡ 0 and hence, we
constructed a non-zero solution starting from the origin.
Given i, denote by tij the length of the intervals between

successive switches for the solution x(t; xi0). Denote by ni

the minimal number of switches for the solution x(t; xi0),
t ∈ [0; tmax] necessary to satisfy the following inequality:

q̃i :=
ni∑
j=1

tij¿ 1: (24)

By de9nition, q̃i6 tmax for all i.
Let r = 1 +

√
2. By virtue of Lemma 1, we have

tij ¡ tini

(
1
r

)ni−j

; j ¡ni

and hence from (24)

16
ni∑
j=1

tij ¡ tini
ni−1∑
j=0

r−j:

Thus

tini ¿

[
1∑ni−1

j=0 r−j

]
¿

[
1∑∞

j=0 r−j

]
= 2−

√
2:

This value is bounded away from zero for any i. From the
third equation of the closed loop system it follows that ẋ3=1
or ẋ3 =−1 in the interval [q̃i − tini ]. Hence there exists {qi}
with q̃i − tini 6 qi6 q̃i such that

lim inf
i→∞

|x3(qi; xi0)|¿ 0:

Hans Schumacher pointed out that if x(t) is a solution to
(13)–(14), then also the functions xa(t) := a−3x(at) will
be Filippov solutions for all a¿ 0. As we constructed a

non-zero solution from the origin which is not a ho-
mogeneous function of degree 3 (i.e. does not satisfy
a3x(t) = x(at), which can be seen from the explicit ex-
pressions in (16) and (19)), this immediately shows that
there are in9nitely many Filippov solutions starting in the
origin.
The constructed non-zero Filippov solutions with zero

initial state start with a left-accumulation point of relay
switching times and hence are not forward solutions as used
in Lootsma et al. (1999). Note that any small perturba-
tion of the zero initial condition immediately gives rise to
a solution moving away from the origin (see Lemma 1) in
which the switching times increase exponentially according
to (15).

Remark 2. Recently, in Imura and van der Schaft (2000)
it was proposed to utilize a new solution concept, called
extended CarathZeodory solution for systems of the form
(3) with discontinuous right-hand side. Loosely speaking,
extended CarathZeodory solutions are Filippov solutions
without sliding modes (as given by mode A3 in Section 3)
and without left accumulations of relay switching times.
For the following piece-wise linear bi-modal system:

mode 1 : ẋ = A1x if y = Cx¿ 0;

mode 2 : ẋ = A2x if y = Cx6 0;
(25)

with x∈Rn, y∈R1 and the matrices A1; A2 and C of cor-
responding dimensions, necessary and su7cient conditions
of the existence and uniqueness of CarathZeodory solutions
were found. Using the result of Imura and van der Schaft
(2000) one can check that for the reformulation of the triple
integrator example (13)–(14) in the form (25) with

A1 =




0 1 0 0

0 0 1 0

0 0 0 −1

0 0 0 0




;

A2 =




0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




; (26)

C = (1 0 0 0) (27)

has no solutions in the extended CarathZeodory sense starting
from (0; 0; 0; 1)�. At the same time, using the triple integra-
tor example, one can notice that there are in9nitely many
Filippov solutions and a unique forward solution starting
from the same initial conditions.
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5. Conclusions

In this paper we compared di5erent solution concepts
and the corresponding well-posedness results for a linear
time-invariant system coupled to an ideal relay, namely Fil-
ippov solutions and forward solutions. One advantage of the
forward solution concept is that it is immediately extendable
to broader classes of hybrid dynamical systems (e.g. linear
complementarity systems (van der Schaft & Schumacher,
1996, 1998; Heemels et al., 2000b, 1999) as it adopts a
multiple mode view on the dynamical behaviour, while the
Filippov solution does not. Another major advantage of the
forward solution is that the (available) well-posedness con-
ditions for linear relay systems (also for the multiple relay
case) are relatively easy to check. This is partly because the
possibility of left accumulations of relay switching times (a
particular kind of Zeno behaviour) is excluded. Based on a
simple observation that any LTI system in closed loop with
a relay feedback is related to a bimodal system, we brie;y
compared the well-posedness results for such systems also
in the extended CarathZeodory context.
In this paper we actually showed that if the underlying

linear system has relative degree one or two, the “positiv-
ity” conditions for forward well-posedness (Lootsma et al.,
1999) given by the positivity of the leading Markov pa-
rameter are still su7cient and even necessary for (right)
uniqueness of Filippov solutions. In particular, the exis-
tence of (left-)accumulation points of switching times can
be excluded a priori on the basis of these conditions, which
facilitates simulation and analysis of these systems. How-
ever, for higher relative degrees this is unfortunately not
the case as is proven by the triple integrator example. By
analogy, bimodal systems of an order at least four can have
multiple Filippov solutions with left-accumulation points,
one forward solution and no extended CarathZeodory solu-
tion. The system (13)–(14) (with one relay and of relative
degree three) demonstrates the following drawbacks of the
forward (and extended CarathZeodory) solutions:

(1) Reversing time. If x(t) is a forward solution to ẋ=f(x),
then the reversed-time trajectory x(−t) is not necessar-
ily a forward solution to ẋ =−f(x).

(2) Compactness of the set of solutions. The set of for-
ward solutions de9ned on �6 t6 � with initial con-
ditions from a given compact set is not compact with
respect to C[�; �] (uniform) topology and hence, with
respect to any weaker topology. This property immedi-
ately follows from the triple integrator example (13)–
(14) for which we proved the existence of multiple
Filippov solutions originating from the origin. At
the same time, Theorem 1 predicts the unique-
ness of the forward solutions. Then using com-
pactness property of the Filippov solutions (see
Section 2) it is possible to build a fundamen-
tal sequence of forward solutions converging in
C[�; �]-topology (and, therefore, in any weaker

topology) to a Filippov solution, which in turn is not a
forward solution since it starts from the origin and is
not identically zero.

(3) Continuous dependence on the initial conditions.
Uniqueness of a forward solution does not necessarily
imply continuous dependence on the initial data. This
property again follows from the example (13)–(14):
the unique forward solution (see Theorem 1) starting at
the origin does not depend continuously on the initial
conditions.

It is worth mentioning that in the Introduction to the
monograph (Filippov, 1988) discussing possible approaches
to de9ne a solution for discontinuous systems Filippov
claimed that compactness of the solutions is a mandatory
property for any possible solution concept. Unfortunately,
the forward and extended CarathZeodory solutions (and
also executions or runs of hybrid automata as de9ned in
Johansson et al. (1999a) do not possess this property due to
the absence of left-accumulation points. So, depending on
the solution concept you choose certain questions become
easier or harder to solve: for forward solutions it is rela-
tively easy to show well-posedness, but the three properties
mentioned above do not hold for forward solutions and
consequently, other analysis problems might become more
di7cult.
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