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Abstract— Purpose: A crucial aspect of quality assurance
in thermal therapy is periodic demonstration of the heating
performance of the device. Existing methods estimate the
specific absorption rate (SAR) from the temperature rise after
a short power pulse, which yields a biased estimate as thermal
diffusion broadens the apparent SAR pattern. To obtain an
unbiased estimate, we propose a robust frequency-domain
method that simultaneously identifies the SAR as well as the
thermal dynamics.
Methods: We propose a method consisting of periodic
modulation of the FUS power while recording the response
with MR thermometry (MRT). This approach enables unbiased
measurements of spatial Fourier coefficients that encode the
thermal response. These coefficients are substituted in a
generic thermal model to simultaneously estimate the SAR,
diffusivity, and damping. The method was tested using a
cylindrical phantom and a 3T clinical MR-HIFU system.
Three scenarios with varying modulation strategies are chosen
to challenge the method. The results are compared to the
well-known power pulse technique.
Results: The thermal diffusivity is estimated at 0.151 mm2s−1

with a standard deviation of 0.01 mm2s−1 between six
experiments. The SAR estimates are consistent between all
experiments and show an excellent signal-to-noise ratio (SNR)
compared to the well established power pulse method. The
frequency-domain method proved to be insensitive to B0-drift
and non steady-state initial temperature distributions.
Conclusion: The proposed frequency-domain estimation
method shows a high SNR and provided reproducible
estimates of the SAR and the corresponding thermal
diffusivity. The findings suggest that frequency-domain tools
can be highly effective at estimating the SAR from (biased)
MRT data acquired during periodic power modulation.
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I. INTRODUCTION

Hyperthermia treatments, where a tumor is heated to
temperatures ranging between 39 and 45 degrees Celsius
for a duration of 60–90 min, are shown to be an effective
adjuvant to conventional cancer therapies [1]. The effect
of the hyperthermia treatment depends on, amongst others,
the applied thermal dose and the increased perfusion. A
priori treatment modeling helps to support the hyperther-
mia treatment as it enables virtual studies to optimize the
outcome [2]. Naturally, these virtual studies require accurate
applicator and patient models. Additionally, as applicators
are becoming more spatially selective, obtaining accurate
models is becoming more relevant. For this reason, methods
to verify the accuracy of Radio-Frequency electromagnetic or
Focused Ultrasound (FUS) applicator models are essential.

A well-established method, which is incorporated in
ESHO QA protocols [3], [4], to estimate the Specific Ab-
sorption Rate (SAR) supplied by an applicator, utilizes a
short power pulse and monitors the temperature rise. For
sufficiently short time spans and small spatial SAR gradients,
the measured temperature rise indeed approximates the SAR
well [5]. However, the approximation deteriorates when
diffusion and perfusion effects start (significantly) affecting
the temperature distribution. As a result, there is a delicate
balance between the signal-to-noise ratio (SNR) of the esti-
mated SAR and the validity of the assumption that measured
temperature is proportional to the SAR. When the duration of
the power pulse is short, diffusion effects are small compared
to the temperature rise. However, the temperature increase
itself is also small. Extending the duration of the power
pulse increases the temperature further, but also increases the
effects from diffusion and perfusion. To complicate matters,
diffusion effects are typically dominant in the region of
interest, i.e., regions with large SAR gradients such as at
the focus of a FUS applicator.

Besides estimating the SAR for quality assurance pur-
poses, estimating the thermal (tissue) parameters is of interest
[5]–[11]. For example, thermal diffusivity (the ratio between
conductivity, density, and heat capacity) can be estimated
using an invasive “self-heated thermistor” and a temperature
sensor [6]. Here, at the first location, a constant temperature
is maintained by the thermistor. Then, at the second location,
a sensor measures the resulting steady-state temperature
increase. The thermal diffusivity is then estimated from the
temperature difference. However, this technique requires in-
vasive probes and is only applicable to small volumes. Other



diffusivity estimation methods utilize a sinusoidal thermal
excitation on the skin and estimates the tissue parameters by
extracting the amplitude and phase shifts of the measured
surface temperature [9], [12]. Besides point and surface
measurements, advances in Magnetic Resonance Thermom-
etry [13] (MRT) opened new opportunities to non-invasively
estimate the thermal conductivity and perfusion [7]. These
existing methods require that the spatial distribution of the
SAR is known a priori.

In this paper, we use frequency-domain system identifica-
tion techniques [14]–[17] to estimate the SAR distribution
and the thermal diffusivity of a phantom using a FUS
heating device (the phantom lacks perfusion, and, thus,
damping). Our method will explicitly account for the thermal
dynamics by estimating the coefficients in the Pennes’ Bio-
heat Equation [18] (PBE). To achieve this, we periodically
modulate the FUS power, which enables the use of advanced
frequency-domain tools, such as the Local Rational Method
[19] (LRM), to remove the influence of disturbances like
B0-drift in MRT and non steady-state initial temperature
distributions. We will verify the proposed method by compar-
ing the estimated SAR and thermal diffusivity between three
FUS scenarios where we vary the mean power, modulation
frequencies, and experiment duration.

II. THEORY

A. Thermal model

We consider a thermal model described by the heat equa-
tion with damping and a source [20], of which PBE is a
particular realization to model heat transport in patients [18]:

Ṫ (r, t) = α(r)∇2T (r, t) + d(r)T (r, t) + b(r)u(t). (1a)
The boundary conditions are

T (r, t) = TBC(r, t), for r on boundary. (1b)
Here, T (r, t) [◦C], TBC(r, t) [◦C], r ∈ R3 [m], t [s], α(r)
[m2s−1], d(r) [s−1], b(r) [◦CJ−1], u(t) [W] denote the
temperature, prescribed boundary temperature, position vec-
tor, time, heterogeneous thermal diffusivity, heterogeneous
damping (from perfusion), normalized power deposition pro-
file (NPDP), and scalar input power, respectively. In contrast
to the PBE, the left-hand side of (1a) is divided by the density
and specific heat capacity to obtain a unique parameteriza-
tion of the partial differential equation. Additionally, T (r, t)
denotes a temperature relative to a steady-state, e.g., room
temperature for a phantom, as this is a natural choice when
using relative temperature measurements. Through (1b), we
specify Dirichlet boundary conditions, where the boundary
temperature is described with TBC(r, t). While this may
seem strange at first, we will be using thermometry to
prescribe the boundary temperature. This isolates our model
from the complicated and unknown true boundary conditions
of the patient or phantom [15].

When considering temperature measurements using Proton
Resonance Frequency Shift (PRFS) thermometry [21], it
is natural to discretize (1a) and (1b) on a cartesian grid
in space. Hereto, we define a space of interior voxels at

locations {r1, . . . , rn} = DI ⊂ R3 and boundary voxels
{rn+1, . . . , rn+nBC

} = DBC ⊂ R3. We make the distinction
between interior and boundary voxels in order to incorporate
the boundary conditions in our modeling framework. To
translate the spatially discrete thermal dynamics to a state-
space framework, we stack the temperature at the discrete

spatial locations in a vector , i.e., z(t) =

[
zI(t)
zBC(t)

]
, with

zI(t) =

T (r1, t)
...

T (rn, t)

 , zBC(t) =

 T (rn+1, t)
...

T (rn+nBC
, t)

 . (2)

Similar to sampling the temperature on the discrete grid, we
stack the parameters α, d, and b at the discrete locations
ri ∈ DI in a vector θ ∈ R3n, i.e.,
θ = [α(r1) . . . α(rn) d(r1) . . . d(rn) b(r1) . . . b(rn)]>. (3)

We only estimate the coefficients at the interior voxels, as
the boundary voxels are used to provide boundary conditions
to our model. Using the newly introduced vectors z and θ,
we rewrite (1) in state-space form [22]

żI(t) = A(θ)z(t) +B(θ)u(t), (4)

where the matrix functions A : R3n → Rn×(n+nBC) and
B : R3n → Rn are given in Appendix I. Note that A(θ) is
non-square as it describes the evolution of the interior voxels
using both the interior and boundary voxels. While this
definition deviates from the typical definition in literature,
it is a natural choice for our problem, as we will see below.

We apply the Fourier transform to (4), yielding
jωZI(ω) = A(θ)Z(ω) +B(θ)U(ω), (5)

where j2 = −1, ω denotes the angular frequency, and
Z : R → Cn+nBC , and U : R → C denote the state vector
and input in the frequency domain, respectively. By applying
the Fourier transform to (4), we transformed a differential
equation to a complex-valued algebraic equation. As a result,
we can estimate θ by solving the algebraic equation for θ
given measurements Z(ω) and U(ω). Opposed to measuring
U(ω), we will obtain U(ω) by applying a Fast Fourier
Transform (FFT) to the prescribed FUS modulation power.

Remark: The SAR, measured in Wkg−1, is commonly
used to quantify the heat load applied to a patient. However,
our proposed method estimates, what we call, the normalized
power deposition profile (NPDP), measured in ◦CJ−1. This
choice is motivated by the observation that the SAR is not
uniquely identifiable without an additional measurement of
the specific heat capacity and FUS power. Nevertheless, the
SAR can be derived from the NPDP by multiplying it with
the specific heat capacity and the FUS power.

B. Measuring the frequency-domain

In this section, we will detail how Z(ω) is measured from
thermometry data. We will start by specifying requirements
for the thermometry, which is followed by the design of the
periodic power modulation and the post processing.

We consider temperature measurements using MRT at
regularly spaced intervals with sample time ts, i.e., we
measure at times tk = kts with k ∈ N. We collect



these measurements in a vector y(tk) ∈ Rn+nBC , which is
modeled as a combination of the true temperature and noise,
y(tk) = z(tk) + η(tk), ηi(tk) ∼ N (µ(ri, tk), σ(ri)). (6)

Here, η(tk) is assumed to be normally distributed with mean
µ(ri, tk), which denotes a slowly time-varying bias and
position dependent variance σ(ri). In PRFS thermometry, the
slowly time-varying measurement bias typically represents
the B0-drift.

Given a sequence of measurements at regularly spaced
intervals y(t1), y(t2), · · · , y(tN ), we introduce the Fourier
transformed measurement vector at discrete frequencies ωk ∈
Ω = 2π

tN
{0, 1, . . . , N2 } as Y (ωk) ∈ Cn, assuming N to be

even. However, Y (ωk) cannot be directly substituted into
(5) as a measurement of Z(ωk), as (5) models the thermal
dynamics in terms of the steady-state response and Y (ωk)
contains a combination of the transient response and the
steady-state response. The steady-state response is obtained
when the transient dynamics have decayed [10], [14] and
when there is no B0-drift. To alleviate this problem, we
correct Y (ωk) using the Local Rational Method [14], [19]
(LRM) to obtain Ȳ (ωk), which is a non-biased measurement
of Z(ωk), as explained next.

To apply the LRM, we assume that the measurements
Y (ωk) have the following structure: Y (ωk) = Z(ωk) +
YD(ωk) + YN (ωk), where YD and YN denote the transient
disturbances and the zero-mean circular complex normally
distributed noise. By decomposing the measurements like
this, YD(ωk) accounts for all transient phenomena, such as
B0-drift, non steady-state initial temperature distributions,
and non-periodic applicator power. To isolate Z(ωk) from
Y (ωk), we utilize two cornerstone properties of linear time-
invariant systems. First, when a linear time-invariant system
is excited with a periodic input at a certain frequency, the
steady-state response will be at the same frequency. Second,
the response to a superposition of inputs is a superposition of
the respective individual responses. Hereto, we choose u(t)
(the FUS power) as a random phase multi-sine at a limited
number of discrete frequencies ΩU ⊂ Ω,

u(t) =
∑

ωk∈ΩU

<(|Uk|ej(ωkt+∠Uk)), (7)

where Uk ∈ C denotes the complex-valued Fourier coeffi-
cient at ωk ∈ ΩU and | · | and ∠ denote the magnitude and
angle, respectively. The resulting frequency-domain repre-
sentation (for positive frequencies) of u(t) is then

U(ωk) =

{
Uk, if ωk ∈ ΩU ,

0, otherwise.
(8)

As expected, U(ωk) is only non-zero at the modulation
frequencies ΩU . The effect of this particular modulation
strategy is that the thermometry in the frequency-domain is
given by

Y (ωk) =

{
Z(ωk) + YD(ωk) + YN (ωk), if ωk ∈ ΩU ,

YD(ωk) + YN (ωk), otherwise.
(9)

Indeed, we expect to see the steady-state response only at the

modulation frequencies, while measurement noise and tran-
sient disturbances are spread over all frequencies. The key
insight exploited by the LRM is that we can estimate YD(ωk)
at ωk ∈ Ω (including at ΩU ) based on neighboring frequen-
cies that are not excited, see (9). Hereto, we estimate YD(ωk)
at ωk ∈ Ω by fitting a low order rational function through
Y (ωk) in the window Ωk,m = {ωk−m, · · · , ωk+m}\ΩU ,
i.e., YD(ωk) ≈

∑l
i=0 pi(ωk)ωi

k∑l
i=0 qi(ωk)ωi

k

, where l is the order of
the rational function and pi(ωk), qi(ωk) ∈ Cn+nBC are
the frequency-dependent vectors of polynomial coefficients.
These coefficients are computed, for each frequency ωk ∈ Ω,
by solving the optimization problem

arg min
p0,q0···pl,ql

∑
ωh∈Ωk,m

(
Y (ωh)−

∑l
i=0 pi(ωk)ωih∑l
i=0 qi(ωk)ωih

)2

. (10)

We solved (10) and computed YD(ωk) using the rkfit toolbox
[23]. After removing the transient YD(ωk) from Y (ωk), we
obtain

Ȳ (ωk) =

{
Z(ωk) + YN (ωk), if ωk ∈ ΩU ,

YN (ωk), otherwise.
(11)

Here, Ȳ (ωk) denotes a noisy measurement of the steady-state
response, which can be substituted into (5) for ωk ∈ ΩU in
order to estimate θ. Based on (11), we estimate the noise
variance of Ȳ (ωk) using the frequencies that are not excited
by the periodic modulation, i.e.,

diag(var(Ȳ (ωk))) ≈ 1

sk

∑
ωh∈Ωk,m

Ȳ (ωh), (12)

sk = card(Ωk,m)− 2(l + 1)− 1, (13)
where card(·) denotes the cardinality of a set. As we will
see in the next section, we use the measured forced steady-
state response and estimated noise variance to formulate the
maximum likelihood estimator for θ.

C. Errors in variables identification

In this section, we present the optimization method we
use to estimate θ from noisy LRM corrected measurements
Ȳ (ωk). Hereto, we start by defining an estimation error in
the frequency-domain based on (5),
e(ωk, θ) = A(θ)Ȳ (ωk) +B(θ)U(ωk)− jωkȲI(ωk), (14)

for ωk ∈ ΩU . Loosely speaking, e(ωk, θ) represents how
well the dynamics, that depend on the parameter vector θ,
match the measurements. A crucial property is that e(ωk, θ)
is linear in θ, which is immediate from A(θ) and B(θ) being
linear in θ (see Appendex I). Based on (14), we introduce
the Maximum Likelihood (ML) estimator for θ,

θ? = arg min
θ∈R3n

∑
ωk∈ΩU

eH(ωk, θ)C
−1(ωk, θ)e(ωk, θ), (15)

where θ? denotes the parameter estimate and C : Ω×R3n →
Rn×n denotes the covariance matrix of e(ωk, θ). The matrix
C is θ-dependent, as noise in Ȳ (ωk) is multiplied by A(θ)
and is given by
C(ωk, θ) = (A(θ)− jωkI)var(Ȳ (ωk))(A(θ)− jωkI)H.

(16)



TABLE I
EXPERIMENTAL DESIGN FOR THREE SCENARIOS.

Scenario A B C
Duration [min] 48 48 8
ΩU [rad−1] 2π

720{1, 3}
2π
720{10, 14} 2π

120
ΩU [mHz] {1.39, 4.17} {13.9, 19.4} 8.3
Mean power [W] 2 2 3.5
Quantity 2 1 3

We solve (15) using gradient descend, where the gradient is
replaced by the easier-to-compute pseudo gradient [24].

III. METHODS

A. Setup

The parameter estimation method was assessed using a
cylindrical phantom in a clinical MR-HIFU system (3T
Achieva, Philips Healthcare, Best, The Netherlands, and Son-
alleve V2 HIFU, Profound Medical, Mississauga, Canada),
see Figures 1 and 2 for a scan and schematic illustration of
the setup.

The phantom temperature was measured every 2.5 seconds
using PRFS thermometry, which consisted of seven sagittal
multi-shot EPI accelerated scans with a 112 × 112 recon-
struction matrix, an EPI acceleration factor of 9, voxel size
of 1.8 × 1.8 × 6 mm, and an effective echo time of 16 ms.
Six power modulation experiments, split into three scenarios,
were performed to challenge the proposed method across a
range of modulation frequencies, experiment duration, and
ultrasound powers, see Table I. Scenario A and C contain
two and three experiments, respectively, to demonstrate the
consistency under the same experimental conditions. All
experiments were performed in succession, allowing the
phantom to only partially cool down (approximately five to
ten minutes between experiments).

The proposed frequency domain method is compared to
the power pulse method. For this method, we start with a
baseline scan when the phantom is at room temperature.
Then, a 25 second pulse of 4 Watt is applied to the phantom.
At 25 seconds, a second scan is acquired to compute the
temperature with respect to the baseline. The NPDP is then
estimated by dividing the temperature rise over the time span
(25 seconds) and the applied power (4 Watt). Both scans are
the same multi-shot EPI scans as used for the frequency
domain method.

The FUS power modulation signals u(t), and their re-
spective spectra, are seen in Figure 3. Not all frequencies
in the u(t) spectrum are sufficiently excited to yield a good
SNR, see Figure 3. We discarded the excitation frequencies
(empty markers) for which the heating was not clearly visible
above the noise. Table I lists the excitation frequencies with
sufficient SNR.
Remark: The SNR can be improved by designing u(t)
such that corresponding spectrum concentrates all energy at
a few frequencies. This avoids discarding frequencies with
insufficient SNR.

B. Data post-processing

Image translation in the frequency encode direction, re-
sulting from a B0-drift, is corrected using the measured
phase of the central k-space voxel [25]. We only correct the
image translation resulting from the B0-drift, the bias that is
introduced in the thermometry is inherently corrected by the
LRM method, see Section II-B. Hereafter, in image-space,
the phase is unwrapped and scaled accordingly to obtain the
relative temperature measurements from PRFS thermometry
[21]. The combined domain of interior and boundary voxels
is chosen as the set of voxels with a standard deviation less
than 0.3◦C. The threshold was motivated by highly spatially
correlated noise around the edges of the phantom. The
boundary voxels are subsequently defined along the boundary
of the previously defined set (naturally, the boundary voxels
include the first and last slice of the thermometry). Based
on the interior and boundary voxels, a measurement vector
y(tk) according to (6) is constructed for all time-steps.

The frequency domain temperature measurement
{Y (ω1), · · · , Y (ωN/2)} is compensated for the non-
instantaneous (delayed) MRI scans, see Figure 4. The cor-
rection is given by {e−jτω1Y (ω1), · · · , e−jτωN/2Y (ωN/2)},
where τ = 0.75ts. The frequency domain input
{U(ω1), · · · , U(ωN/2)} is multiplied by a zero-order
hold as the signal is saved as opposed to being measured
in a band limited setting [14]. The correction is given by
sinc(ωk

2π ts)e
−j ωk

2 tsU(ωk) for ωk ∈ ΩU .
The LRM correction interpolates YD(ωk) over a window

of width 20 (excluding frequencies that are modulated), i.e.,
Ωk,10 = {ωk−10, · · ·ωk+10}\ΩU , with a first-order rational
function (l = 1) to obtain, Ȳ (ωk) and var(Ȳ (ωk)) for ωk ∈
ΩU according to (11) and (12), see Figure 6.

The following constraints are added to the optimization
problem. The damping is set to zero, i.e., d(ri) = 0 for
all ri ∈ DI , as the phantom lacks perfusion. The thermal
diffusivity cannot be (reliably) estimated in regions without
heating, for this reason, we constrain the diffusivity to be
constant over the interior voxels, i.e., α(ri) = α(rk) for all
ri, rk ∈ DI . Last, the optimization problem (15) is solved
using the frequencies in ΩU .

IV. RESULTS

Figure 3 (top) shows the FUS power modulation, u(t),
for each scenario. Figure 3 (bottom), shows the FUS power
modulation in the frequency-domain, U(ωk), for each sce-
nario. The filled markers denote the frequencies in ΩU , which
are used in the estimation algorithm. The empty markers
are discarded frequencies due to insufficient SNR. Figure 5
shows the PRFS thermometry at the focal point along the
transducer axis over time, for each experiment. The periodic
steady-state response is visible in the time series data, but it
is dominated by thermal transient dynamics and B0-drift.

Figure 6 (top) demonstrates the LRM at the focal point
on the transducer axis for experiment A1. Distinct “peaks”
at the FUS modulation frequencies ωk ∈ ΩU are clearly
seen. Additionally, the first-order rational function describes
YD(ωk) well at the frequencies not excited by the FUS power
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Fig. 1. MRI scan showing a sagittal slice of the phantom placed on top
of the FUS applicator. The position of the seven slices that are acquired
every 2.5 seconds are indicated by the yellow rectangles. The approximate
acoustic beam path is indicated by the red circular sector.

Ultrasound power

Phantom

FUS applicator

Transducer axis
PRFS thermometry

Fig. 2. Schematic overview of the experiment setup. Bottom left: the
modulated FUS power, which serves as the input to the system. Right: a
sagittal section of the phantom placed on top of the the FUS applicator. Top
left: the PRFS thermometry, which serves as the output of the system.

Fig. 3. Time and frequency-domain representation of u(t) for scenarios A
( ), B ( ), C ( ). For scenarios A and B, only part of the input
signal is shown. The filled markers in the frequency-domain indicate the
frequencies in ΩU and the empty markers denote the discarded frequencies
due to insufficient SNR

scan time

Fig. 4. Illustrating the effective measurement time concept for delayed
non-instantaneous measurements.

modulation. Figure 6 (bottom) illustrates the LRM method
in the time-domain. The time-domain response suggests that
the LRM successfully suppressed transient phenomena (such
as the B0-drift) and extracts the steady-state response from
the unprocessed thermometry.

Figure 7 illustrates the LRM and how the results can be
interpreted to estimate the thermal diffusivity and NPDP.
Figure 7 (left) shows the measured temperature on the central
slice with three colored arrows at different distances to the
transducer axis. The arrow colors correspond to the colors
in the time series. Figure 7 (middle) shows the measured
temperature over time at different distances from the trans-
ducer axis. The periodic response is clearly visible, as well
as a decreasing amplitude and delayed response with an
increasing distance from the transducer axis. Figure 7 (right)
shows the LRM corrected measurements where transient
phenomena are suppressed and noise is reduced. The change
in amplitude and phase shifts are used to separate diffusion
effects from direct heating.

Figure 8 shows the estimated NPDP (which is proportional
to the SAR) at slices two until six for experiment A1. Power
deposition is detected in all five slices. Additionally, in the
middle slice, a clear focus, including near and far field
heating, is observed. Recall that slices one and seven are
used as a boundary condition and no power deposition is
estimated in these slices. Figure 9 compares the estimated
NPDP at the central slice for scenarios A1, B1, C1, and the
power pulse method, respectively. The NPDP is consistent
between all scenarios. Additionally, the overall shape of the
estimated NPDP aligns well with the estimate resulting from
the power pulse method.

Table II lists the estimated thermal diffusivity and several
properties of the estimated NPDP. The standard deviation
of the estimated thermal diffusivity is 0.0088 [mm2s−1]
between all experiments from scenarios A, B, and C. When
focusing on the experiments from scenario C, the standard
deviation is 0.0012 [mm2s−1]. This drop in standard de-
viation could suggest that residual biases are a significant
factor in the quality of the resulting estimate. The peak power
deposition for all experiments is approximately 20% higher
compared to peak power deposition as estimated by the
power pulse method. This is expected as diffusion broadens
the apparent power deposition profile. The broadening of
the focus is also observed when comparing the TC25 and
TC50 (number of voxels with at least 25%, or 50%, of the
peak value) between the proposed method and the power
pulse method. Finally, the spatial standard deviation of the



NPDP is between 5-10 times lower for the proposed method,
compared to the power pulse method.

TABLE II
ESTIMATED THERMAL DIFFUSIVITY FOR EACH SCENARIO AND NOISE

STANDARD DEVIATION OF THE ESTIMATED NPDP.

Scenario A1 A2 B1
α [mm2s−1] 0.138 0.142 0.153

max(b) [◦CJ−1] 801 · 10−4 888 · 10−4 833 · 10−4

std(b) [◦CJ−1] 5.02 · 10−4 4.67 · 10−4 8.13 · 10−4

TC25 [voxel] 47 41 40
TC50 [voxel] 17 16 16

Scenario C1 C2 C3
α [mm2s−1] 0.157 0.159 0.157

max(b) [◦CJ−1] 972 · 10−4 900 · 10−4 855 · 10−4

std(b) [◦CJ−1] 9.62 · 10−4 9.83 · 10−4 9.69 · 10−4

TC25 [voxel] 79 91 90
TC50 [voxel] 20 20 20

Scenario Power pulse
max(b) [◦CJ−1] 719 · 10−4

std(b) [◦CJ−1] 48.1 · 10−4

TC25 [voxel] 142
TC50 [voxel] 28

Fig. 5. Temperature at the focal point along the transducer axis over time
(see blue arrow Figure 7). The different graphs correspond to experiments
A1 ( ), A2 ( ), B1 ( ), C1 ( ), C2 ( ), and C3 ( ), see
Table I for the definitions. The negative trend in the top plot is predominantly
caused by B0-drift. This drift is not explicitly corrected as the LRM method
is insensitive to slowly time-varying measurement biases.

V. DISCUSSION

In this section, we will discuss the accuracy and precision
of our estimated thermal diffusivity and NPDP. This is
followed by a brief discussion on experiment design and
future applications.

A. Notes on accuracy and precision
The discrepancy between the standard deviation when con-

sidering all experiments or just the experiments in scenario

Fig. 6. Visual demonstration of the LRM method for scenario A1.
Top: frequency-domain representation of the measurement, with Y (ωk)
( ) and the estimated transient YD(ωk) ( ). Bottom: uncorrected
measurement y(tk) ( ) and corrected measurement F−1(Ȳ (ω)) ( ),
where F−1 denotes the inverse Fourier transform. As expected, the LRM
corrected measurement automatically compensates for the strong drift by
focusing on the periodic excitation frequencies.

C, could suggest that biases contribute more to the error
compared to noise. We will discuss potential mechanisms
that can introduce a bias in our methodology.

LRM interpolation. A crucial step in the method is the
LRM correction, which suppresses non-periodic transients
from the thermometry. In doing so, it is assumed that the
transient disturbances are smooth in the frequency-domain
and can be locally described by a low order rational function
(first-order in our setting). Figure 6 shows that this is a
reasonable assumption, however, any interpolation error is
directly propagated through the estimation algorithm. Hence,
this process must be performed with care. Based on our
experience, interpolating the transient disturbances in the
frequency-domain is more difficult at lower frequencies due
to the larger curvature, see, e.g., Figure 6 (top). This effec-
tively limits the lowest possible power modulation frequency
(at least three or four periods must be measured for the LRM
to be successful).

Estimating the Laplacian. As seen in (14), the error
measure encodes the thermal dynamics through the matri-
ces A(θ) and B(θ). Loosely speaking, A(θ) is the linear
map that computes the Laplacian of the temperature field,
which is needed to estimate the amount of diffusion at all
discrete locations. As the feature size of the FUS applicator
is similar in size to the voxels (especially in the out of
plane direction), computing the Laplacian through finite
differences yields a biased result. Lower power modulation
frequencies or smaller voxel sizes are possible measures to
reduce this effect. Another interesting approach would be
to infer a spatially continuous temperature field from the
discrete measurements, using, e.g., Gaussian processes [15].
Such methods derive the Laplacian analytically and do not
suffer from the aforementioned limitations, provided that an



Fig. 7. Magnified temperature map of the focal region for experiment C1 (left). The measured temperature at the locations indicated by the corresponding
colored arrows (middle). The LRM corrected temperature transformed back into the time-domain for the corresponding locations (right).

Fig. 8. From left to right: the estimated NPDP in slices 2 to 6 for scenario A1.

Fig. 9. Estimated NPDP, from left to right: scenario A1 (duration: long; frequency: low; power: low), scenario B1 (duration: long; frequency: high; power:
low), scenario C1 (duration: short; frequency: medium; power: high), and the power pulse method.

underlying temperature field can be reconstructed from the
thermometry.

Measurement timing uncertainty. Phase shifts in the
periodic thermal response are used to differentiate diffusion
effects from the NPDP (see Figure 7). For this reason, un-
accounted phase shifts originating from timing uncertainties
can bias the results. To minimize this problem, we used short
scan times and estimated the effective measurement time τ ,
see Figure 4. However, the exact delay is difficult to estimate
as it varies over the volume and is a combination of MR
acquisition time and the delay between the commanded FUS
power and applied FUS power. Accurately synchronizing the
FUS power update intervals with the MR scans and time
stamping individual slices will reduce the uncertainty in the
(slice dependent) effective measurement time.

Band limited assumption. Band limited experimental
conditions are often assumed in the system identification
literature, i.e., it is assumed that there is no spectral content
above the Nyquist frequency [14]. Loosely speaking, the
band limited assumption guarantees that no high frequency
spectral content can alias onto the lower frequencies. This
condition is typically satisfied through the use of anti-alias
filters. However, it is not straightforward to implement such

filters for MRI scanners. To minimize the effect of aliasing, it
is preferred to externally measuring the FUS power, instead
of saving the commanded value. Besides measuring the ap-
plied FUS power, fast MR scans are crucial to reduce aliasing
effects in the thermometry. In general, thermal dynamics
are slow and naturally suppress high frequency excitations.
Hence, when the Nyquist frequency is sufficiently high, the
thermal dynamics themselves serve as an anti-alias filter.
Reducing aliasing effects is therefore the second reason,
besides reducing timing uncertainties, to use fast MR scans.

B. Experiment design

Expected SNR. Experiment duration, FUS power ampli-
tude, and excitation frequencies influence the noise standard
deviation of the estimated NPDP, as shown in Figure 9
and Table II. Generally speaking, increasing the experiment
duration boosts the SNR at the modulation frequencies,
which is an important benefit of the frequency-domain ap-
proach. This allows the frequency-domain estimation method
to work, even in settings with a bad SNR, given a sufficiently
long experiment duration. This is in contrast to the well-
established power pulse method, for which an increased
experiment duration results in a large bias. Another method



to increase the SNR is to use higher FUS power at the modu-
lation frequencies. As briefly mentioned, there are benefits in
reducing the acquisition time of a single MRI scan. However,
faster scans typically reduce the SNR for the respective scan.
Nevertheless, when considering a fixed experiment duration,
faster scans result in more measurements. As the expected
noise covariance in the frequency-domain is proportional to
the reciprocal of the number of scans, the lower SNR from
a faster scan is approximately compensated by the increase
in the number of scans. This relationship holds provided the
increasing noise variance for a single scan is approximately
inversely proportional to the scan time. Hence, faster scans
have the potential to minimally affect the expected SNR for
a fixed experiment duration while increasing the Nyquist
frequency and reducing biases.

FUS modulation frequency. An important aspect for
the estimation quality is the design of the input signal,
i.e., choosing the excitation frequencies and their respective
amplitudes. It has been shown that each parameter (e.g., the
NPDP and thermal diffusivity) has a varying sensitivity at
different frequencies [17]. As a result, choosing the FUS
modulation frequencies can have an impact on the quality
of the parameter estimate. An important trade-off is that
higher modulation frequencies typically yield a lower SNR
as thermal systems attenuate high frequencies, see, e.g., the
differences between scenarios A and B in Figure 5. On
the other hand, low modulation frequencies can result in
longer experiment duration, as at least three or four periods
must be measured. Hence, the desired experiment duration
implicitly limits the lowest modulation frequency. Clearly,
optimal experiment design to obtain the desired estimation
accuracy is an interesting topic for further research.

C. Future applications

Besides quality assurance, in vivo applications are of
interest for future research. In vivo estimates of the power
deposition profile, thermal diffusivity and damping could,
for example, enable personalized treatments. However, ex-
tending the method to an in vivo setting introduces addi-
tional challenges. For example, motion during identification
violates the assumptions of the linear time-invariant model
(1). It is expected that sensitivity to motion is particularly
high for FUS applicators due to the small size of the focal
region. Applying the method in a setting with heterogeneous
diffusivity and damping parameters is expected to increase
the variance of the parameter estimates. This motivates the
need for optimized periodic excitations and novel post-
processioning techniques to obtain the desired estimation
accuracy within a reasonable measurement time.

VI. CONCLUSION

In this paper, we presented a frequency-domain system
identification approach to identify thermal parameters such
as the thermal diffusivity, damping, and spatial power deposi-
tion profile. In particular, by transitioning from time-domain
to frequency-domain identification, in combination with a
periodic FUS modulation, we concentrate the signal power

at a few frequencies, resulting in a good SNR. Moreover,
by using advanced frequency-domain processing techniques,
e.g, the LRM, our method is insensitive to B0-drift and non
steady-state initial temperature distributions. Moreover, the
presented method explicitly accounts for measurement noise
and thermal dynamics including diffusion and perfusion.

We demonstrated the feasibility of the method by esti-
mating the thermal diffusivity and spatial power deposition
in a phantom using an MR-HIFU setup. We performed
six experiments based on three different scenarios, each
with different input signals and experiment duration. The
comparison to the power pulse method showed that our
method has a significant increase in SNR and an apparent
improvement in the estimated power deposition profile at the
focal point of the applicator. The thermal diffusivity was es-
timated with a standard deviation of 0.01 [mm2s−1] between
the six experiments. The spatial power deposition clearly
showed the near- and far-field heating and a well-defined
focus. Moreover, the spatial shape and magnitude of the
estimated power deposition profile is consistent between all
experiments, which further supports the expected accuracy
of the method.

Finally, we provide several rules of thumb that summarize
important aspects of experimental design:
• Number of periods: at least three or four.
• An integer number of periods must be measured
• Temperature must be measured at equidistant time in-

tervals
• Scans should be as fast as possible, provided the noise

increase is approximately proportional to the decrease
in scan time.

• SNR of the estimated NPDP is (approximately) propor-
tional to SAR

modulation frequency

√
number of scans

voxel noise .
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APPENDIX I
MATRIX FUNCTIONS A AND B

In this appendix, we present the definition of the matrices
A(θ) and B(θ) that is well-suited to large-scale systems,
such as, the three-dimensional heat equation. Hereto, we
directly define A(θ)Z(ω) and B(θ)U(ω).

First, we start by approximating the Laplacian of the tem-
perature field, i.e., ∇2T (ri, ω) for ri ∈ DI . We approximate

the Laplacian using finite differences,

∇2T (ri) ≈
T (ri + ∆rx)− 2T (ri) + T (ri −∆rx)

∆x2
(17)

+
T (ri + ∆ry)− 2T (ri) + T (ri −∆ry)

∆y2

+
T (ri + ∆rz)− 2T (ri) + T (ri −∆rz)

∆z2
.

Here, ∆rx, ∆ry , and ∆rz denote the distance to neighboring
voxel in the x, y, and z directions, respectively. Note that
we require r ∈ DBC to estimate the Laplacian at r ∈ DI .
Given the Laplacian of the temperature, A(θ)Z(ω) is given
by

A(θ)Z(ω) = diag


∇

2T (r1, ω)
...

∇2T (rn, ω)



α(r1)

...
α(rn)

 (18)

+ diag


T (r1, ω)

...
T (rn, ω)



d(r1)

...
d(rn)

 .
Second, B(θ)U(ω) is given by

B(θ)U(ω) =

b(r1)
...

b(rn)

U(ω). (19)

The Dirichlet boundary condition is captured by estimating
∇2T (ri, ω) on r ∈ DI using a finite difference scheme.
Indeed, we require all voxels in DI ∪ DBC to estimate the
Laplacian on DI .


