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a b s t r a c t

Reducing the computation time of model predictive control (MPC) is important, especially for systems
constrained by many state constraints. In this paper, we propose a new online constraint removal
framework for linear systems, for which we coin the term constraint-adaptive MPC (ca-MPC). In so-
called exact ca-MPC, we adapt the imposed constraints by removing, at each time-step, a subset of
the state constraints in order to reduce the computational complexity of the receding-horizon optimal
control problem, while ensuring that the closed-loop behavior is identical to that of the original MPC
law. We also propose an approximate ca-MPC scheme in which a further reduction of computation
time can be accomplished by a tradeoff with closed-loop performance, while still preserving recursive
feasibility, stability, and constraint satisfaction properties. The online constraint removal exploits fast
backward and forward reachability computations combined with optimality properties.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Model predictive control (MPC) is a successful control tech-
ology adopted in many application fields (Mayne, 2014; Mayne,
awlings, Rao, & Scokaert, 2000), and is based on recursively
olving a finite-horizon optimization problem online. Solving an
ptimization problem at each time-step can prohibit the real-
ime feasibility of the controller for computationally complex
cenarios. This is particularly the case in applications requiring
he control of systems with many state constraints, which is the
etting studied in this paper.
Efforts to improve the computational aspects of MPC are com-

onplace in the literature with, amongst others, explicit MPC,
odel reduction, and tailored numerical solvers as prominent
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examples, see, e.g., Arnström, Bemporad, and Axehill (2022), Be-
mporad, Borrelli, and Morari (2002), Bemporad, Oliveri, Poggi,
and Storace (2011), Frison and Diehl (2020), Genuit, Lu, and
Heemels (2012), Hovland, Willcox, and Gravdahl (2006), Jerez,
Kerrigan, and Constantinides (2011) and Rawlings, Mayne, and
Diehl (2019). In particular, constraint removal techniques were
developed to accelerate MPC for systems subject to many con-
straints.

Constraint removal techniques can be roughly separated into
offline (Ardakani & Bouffard, 2015; Paulraj & Sumathi, 2010;
Roald & Molzahn, 2019), and online methods (Jost & Mönnig-
mann, 2013; Jost, Pannocchia, & Mönnigmann, 2015). Although of
interest, offline methods can be prohibitively complex to compute
and do not always enable real-time MPC, as constraints can only
be removed if they are redundant for all feasible states. The fact
that offline methods do not depend on and thus cannot exploit
the current state information might make them less effective than
online constraint removal techniques.

In contrast, online techniques can exploit knowledge of the
current state and possibly even more. As a result, online tech-
niques have the potential to remove considerably more con-
straints compared to offline methods. For example, in Jost and
Mönnigmann (2013) so-called regions of activity for each con-
straint are (approximately) computed that are based on the initial
state for the MPC problem. Loosely speaking, the region of ac-
tivity represents the set of initial states for which the particular

constraint in consideration is active at the minimizer of the MPC

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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roblem. The online complexity of this method is reported to
cale linearly in the number of constraints. However, approximat-
ng the region of activity can become intractable in scenarios with
any constraints, as for each constraint either an ellipsoidal or
ypercube outer approximation must be computed that depends
n all other constraints. Alternatively, in Jost et al. (2015), a
yapunov-based approach is proposed, assuming the cost func-
ion of the MPC problem is a Lyapunov function. Here, for each
nequality constraint, the cost function is minimized assuming
he particular inequality is active in the sense of equality. This
eads to the minimum cost function value for which the particular
onstraint can be active. Next, when the MPC control law is
unning, the value of the Lyapunov function for the current state
s compared to the pre-computed values for all constraints. If
his value for the current state is lower than the corresponding
alue for an inequality constraint, it can be removed permanently
rom the MPC problem. Interestingly, both the method based on
he regions of activity and the method using a Lyapunov cost
unction are complementary to the framework we will present
n this paper.

In this work, we will present a new online constraint re-
oval framework for linear systems, called constraint-adaptive
PC (ca-MPC). We present both exact and approximate ca-MPC
trategies. Crucially, in exact ca-MPC, the closed-loop behavior of
he resulting accelerated MPC feedback law is identical to that of
he original MPC feedback law. In approximate ca-MPC a further
eduction of computation time can be accomplished compared to
xact ca-MPC due to a tradeoff with closed-loop performance (as
he closed-loop behavior is no longer identical in approximate ca-
PC). However, in approximate ca-MPC crucial properties such
s recursive feasibility, stability, and constraint satisfaction can
e preserved by design. Both strategies exploit system-theoretic
roperties, such as reachability and optimality, in a computa-
ionally effective manner. The method presented in this paper
xtends our preliminary work in Nouwens, de Jager, Paulides,
nd Heemels (2021a, 2021b) in which only initial ideas were pre-
ented (without any technical proofs). The current work formal-
zes these initial ideas in a complete framework and specifies also
he technical underlying results and their rigorous proofs. A new
umerical case study, extending the earlier one, is provided as
ell, which shows a two-order reduction in computational time
f the ca-MPC scheme compared to the original MPC scheme,
hile still having identical closed-loop behavior. We also show
ow the preliminary results of Nouwens et al. (2021a) can be seen
s a special case, approximate ca-MPC (see Section 5).

. System and MPC setup

In this paper, we consider plants that can be described by a
iscrete-time linear time-invariant (LTI) system

k+1 = Axk + Buk, (1)

although several ideas also apply to nonlinear and time-varying
plants, see, e.g., Nouwens et al. (2021a). In (1), xk ∈ Rn and
k ∈ Rm denote the plant states and the inputs, respectively,

at discrete time k ∈ N. Furthermore, A ∈ Rn×n and B ∈ Rn×m.
he system (1) is subject to polyhedral state and input constraints
iven for k ∈ N by

xk ∈ X := {x ∈ Rn
| c jx ≤ bj, for j ∈ N[1,nx]}, (2a)

k ∈ U := {u ∈ Rm
| g ju ≤ hj, for j ∈ N[1,nu]}. (2b)

ere, X and U are assumed to be non-empty polyhedral sets with
j ∈ R1×n, g j ∈ R1×m, bj ∈ R, and hj ∈ R. In this paper, we
tudy systems that are constrained by many state constraints,
.e., n ≫ 1.
x

2

.1. MPC setup

Based on the system dynamics (1) and constraints (2), a com-
on MPC setup, given state xk at time k ∈ N, is

minimize
Xk, Uk

J(X k,U k), (3a)

subject to X k = Φxk + ΓU k, (3b)

X k ∈ X :=
N∏
i=1

Xi, (3c)

U k ∈ U := UN , (3d)

where

J(X k,U k) := ℓT (xN|k)+
N−1∑
i=0

ℓ(xi|k, ui|k), (3e)

X k := [x⊤1|k · · · x
⊤

N|k]
⊤,U k := [u⊤0|k · · · u

⊤

N−1|k]
⊤, (3f)

Xi := {x ∈ Rn
| c i,jx ≤ bi,j, for j ∈ N[1,nxi ]}, (3g)

Φ =

⎡⎣ A
A2

...
AN

⎤⎦ , Γ :=

⎡⎣ B 0 ··· 0
AB B ··· 0
...

...
...

...
AN−1B AN−2B ··· B

⎤⎦ . (3h)

Here, ℓ, ℓT , xi|k, ui|k, and Xi denote the stage cost, the terminal
cost, the predicted state, the predicted input, and the state con-
straint set at predicted time i ∈ N[1,N] := {1, 2, . . . ,N} made at
time k ∈ N, respectively. The state constraints depend on i for
generality and to facilitate compact notation using the Cartesian
product. Typically, Xi is chosen as Xi = X ⊂ Rn for i ∈ N[1,N−1]
and XN = XT ⊆ X, where XT denotes a suitable controlled
invariant terminal set (Mayne et al., 2000). The i|k subscript is
used to denote the ith prediction at time k.

For the optimization problem (3), we denote the set of feasible
input sequences parameterized by xk as

Uf (xk) := {U k ∈ U | (3b), (3c)}, (4)

and the set of feasible states by Xf := {x ∈ X | Uf (x) ̸= ∅}.
Under suitable assumptions on ℓ, ℓT , U , and X , e.g., ℓ and ℓT being
continuous and X being closed and U being compact (Mayne
et al., 2000), a minimizer of (3) exists for all xk ∈ Xf and we
denote by U ⋆

k := [u
⋆⊤
0|k · · · u

⋆⊤
N−1|k]

⊤ a particular one at time k ∈ N
for state xk, i.e.,

U ⋆
k ∈ U⋆(xk) := argmin

Uk∈Uf (xk)
J̄(xk,U k), (5)

where J̄(xk,U k) := J(Φxk + ΓU k,U k). The set of all optimal
predicted state sequences corresponding to U⋆(xk) is denoted by

X ⋆(xk) := Φxk + ΓU⋆(xk), (6)

where a particular one is given by X⋆
k = Φxk + ΓU ⋆

k ∈ X ⋆(xk).
Using a receding horizon implementation, the MPC problem (3)
is turned into a feedback law KMPC : Xf → U by applying the first
computed input in U ⋆

k on the real plant (1), i.e., uk := KMPC(xk) :=
u⋆
0|k, k ∈ N.

2.2. Reduced MPC problem

To address the problem of removing redundant state con-
straints from (3), we introduce the reduced MPC problem, where
the original constraints set X is replaced by a (state-dependent)
reduced constraint set denoted by X red(A(xk)) =

∏N
i=1 X

red
i

(Ai(xk)), leading to
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minimize
Xk, Uk

J(X k,U k), (7a)

ubject to (3b), (3d), (7b)

X k ∈ X red(A(xk)). (7c)

he reduced constraint set X red(A(xk)) is described by an index-
et A(xk) =

∏N
i=1 Ai(xk), such that

red
i (Ai) := {x ∈ Rn

| c i,jx ≤ bi,j, for j ∈ Ai}. (8)

Clearly, X red is defined by a subset of the constraints in X .
Moreover, observe that the index set A(xk) depends on xk. Hence,
our ca-MPC scheme requires the specification of the set-valued
mapping Ai : Xf ⇒ N[1,nxi ] for i ∈ N[1,N]. A formal problem
formulation will be given in Section 3. We use the notation ⇒
to indicate the set-valuedness of the maps of Ai in the sense that
Ai(xk) ⊆ N[1,nxi ] for i ∈ N[1,N].

The reduced MPC problem (7) with the reduced constraint sets
(8) gives rise to the set of minimizers

U red⋆(xk,A(xk)) := argmin
Uk∈Ured

f (xk,A(xk))
J̄(xk,U k), (9a)

red
f (xk,A(xk)) := {U k ∈ U | (7b)–(7c)}, (9b)

Xred
f := {x ∈ X | U red

f (xk,A(xk)) ̸= ∅}. (9c)

gain, similar to the original MPC problem, we introduce the set
f ‘‘optimal’’ state trajectories
red⋆(xk,A(xk)) := Φxk + ΓU red⋆(xk,A(xk)). (10)

.3. Preliminaries and notation

Given a set V ⊂ Rn, we denote the affine transformation of
V with matrix M ∈ Rm×n and vector b ∈ Rm by MV + b :=
Mv + b ∈ Rm

| v ∈ V}. We define an ellipsoidal set E(L, q) :=
x ∈ Rn

| ∥L(x − q)∥2 ≤ 1}, where L ∈ Rn×n, q ∈ Rn, with
v∥22 :=

∑n
i=1 v2

i for v ∈ Rn. To project from sets defined for
tate (or input) trajectories to individual state vectors (or input
ectors), we introduce the projection Pi of a set V ⊆ RNn as

i(V) := {vi ∈ Rn
|∃vj ∈ Rn, j ∈ N[1,N]\{i} (11)

s.t. [v⊤1 · · · v⊤N ]
⊤
∈ V},

here i ∈ N[1,N], assuming N is clear from the context. We define
he normal cone of a set V ⊂ Rd at v ∈ V as NV (v) := {p ∈ Rd

|
⊤(y − v) ≤ 0 for all y ∈ V}.

. Exact constraint-adaptive MPC

We now introduce exact ca-MPC, in which the term ‘‘exact’’
efers to the property that the closed-loop system will not be
hanged when replacing (3) by the reduced MPC problem (7).

efinition 1. A ca-MPC scheme based on (7) for given reduced
onstraint mappings Ai : Xf ⇒ N[1,nxi ], i ∈ N[1,N], is called exact, if
f = Xred

f and the set of minimizers of the reduced MPC problem
7) is the same as for the original MPC problem (3) for all xk ∈ Xf ,
.e.,
⋆(xk) = U red⋆(xk,A(xk)). (12)

As the minimizers are identical, exact ca-MPC trivially inherits
ll performance, stability, and constraint satisfaction properties
rom the original MPC problem.

The main problem considered in this paper can now be formu-
ated as follows: Construct computationally tractable set-valued
appings A : X ⇒ N , with the number of constraints
i f [1,nxi ]

3

card(Ai(xk)) ≪ nxi (if possible) for i ∈ N[1,N] for all xk ∈ Xf ,
such that, the resulting ca-MPC scheme is exact in the sense of
Definition 1.

By creating simpler MPC problems, ca-MPC can accelerate
both interior-point and active-set solvers. For interior-point
methods, ca-MPC straightforwardly reduces the complexity of
each Newton step, thereby accelerating the optimization prob-
lem. Additionally, ca-MPC is also a natural extension to active-set
solvers, as the working and inactive constraint sets are already
dynamically updated. By removing constraints a priori, determin-
ing which constraint has to be added to the working set is easier,
as there are fewer constraints to evaluate.

The key concept of exact ca-MPC is inspired by the follow-
ing basic observation. A ca-MPC scheme based on (7) for given
mappings A, is exact if and only if

X red⋆(xk,A(xk)) ⊆ X , (13)

for all xk ∈ Xf . Indeed, when the optimal set of state trajectories
satisfy all state constraints, we obtain the same set of minimizers.
However, note that (13) is not suitable as a direct tool to design
appropriate set-valued mappings A, as (13) cannot be used in

constructive manner. To overcome this, we build upon the
ollowing theorem using outer approximations of X red⋆(xk,A(xk))
by a set M(xk) (not depending on A).

Theorem 1. Consider the original and reduced MPC optimization
problem (3) and (7), respectively, with Ai : Xf ⇒ N[1,nxi ] and
M : Xf ⇒ RNn. If for all xk ∈ Xf ,

X red⋆(xk,A(xk)) ⊆M(xk), (C1)

M(xk) ∩ X red(A(xk)) ⊆ X , (C2)

then Xf = Xred
f and the ca-MPC scheme (7) is exact.

Proof. Let xk ∈ Xf be given. First, observe

Uf (xk) ⊆ U red
f (xk,A(xk)), (14)

hich is immediate as (7) uses a subset of the constraints of (3).
ence, Xf ⊆ Xred

f and for all xk ∈ Xf

min
Uk∈Uf (xk)

J̄(xk,U k) ≥ min
Uk∈Ured

f (xk,A(xk))
J̄(xk,U k). (15)

ext, to show (12), take xk ∈ Xred
f , for which each

U red⋆
k ∈ U red⋆(xk,A(xk)) (16)

atisfies U red⋆
k ∈ U by (7c) and X red⋆

k ∈ X by combining (7b),
C1), and (C2). Hence, we obtain U red⋆(xk,A(xk)) ∈ Uf (xk), and by
xtension, Xred

f ⊆ Xf . Therefore, we have, Xred
f = Xf and

min
Uk∈Uf (xk)

J̄(xk,U k) = min
Uk∈Ured

f (xk,A(xk))
J̄(xk,U k). (17)

Combining (15), (16), and (17) leads now to (12). □

The main takeaway from Theorem 1 is that we concentrate
the A-dependence in X red(A(xk)). The way we apply Theorem 1
is to first construct an A-independent set M(xk) satisfying (C1),
for all possible choices of A. Once, this M(xk) is available, we can
select, in the second step, the indices in A(xk) such that (C2) is
satisfied. Intuitively, when M satisfies (C1), then, its elements
indicate which state constraints can be violated. Therefore, by
adding these state constraint indices to A, we ensure that these
‘‘at-risk’’ constraints are not violated. As a result, the optimal state
trajectory X red⋆(xk,A(xk)) will satisfy all state constraints, and,

hence, we obtain an exact ca-MPC scheme.
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An important observation is that a smaller M has the potential
to remove more constraints, see (C2). However, M still has to
satisfy (C1). To this end, a useful extension to Theorem 1, is
to utilize additional information besides the initial state, see,
e.g., Sections 4.2 and 4.3. For example, we can exclude certain
state constraints from the removal process in order to find a
smaller M. To this end, we introduce a set of fixed constraints
given by F(xk) :=

∏N
i=1 Fi(xk), where the index set A must satisfy

(xk) ⊆ A(xk). We will omit the dependence of M on F , as it will
e clear from context.
Besides introducing fixed constraints to exclude constraints

rom the removal process, it is useful to construct A in a sub-
ractive manner. By doing so, we can be conservative in removing
onstraints without losing exactness, but this will provide many
omputational benefits. To make this concrete, we parameterize
as

i(xk) = N[1,nxi ]\Ii(xk), i ∈ N[1,N], (18)

here Ii : Xf ⇒ N[1,nxi ], with I(xk) ∩ Fi(xk) = ∅ for all xk ∈ Xf ,
denotes the set of removed constraints from the MPC problem.
We also define the compact notation I(xk) :=

∏N
i=1 Ii(xk).

Lemma 2. Consider the original and reduced MPC problems (3)
and (7), respectively, and let Fi : Xf ⇒ N[1,nxi ] and M : Xf ⇒ RNn

atisfying (C1) be given. Let the set-valued mapping Ii : Xf ⇒

[1,nxi ]
, with Ii(xk) ∩ Fi(xk) = ∅, i ∈ N[1,N], capture the removed

tate constraints, i.e., Ai(xk) = N[1,nxi ]\Ii(xk), i ∈ N[1,N]. If for all
k ∈ Xf

(xk) ∩ X red(I(xk)) =M(xk). (C3)

hen, the resulting ca-MPC scheme is exact.

roof. To show (C2), we start with the inclusion X ∩M(xk) ⊆ X .
ince Ai ∪ Ii = N[1,nxi ], i ∈ N[1,N], we obtain X red(A(xk)) ∩
red(I(xk)) ∩ M(xk) ⊆ X . Exploiting (C3) gives X red(A(xk)) ∩
(xk) ⊆ X , which is equivalent to (C2). □

The result of Lemma 2 is instrumental as it provides a com-
utationally efficient method to remove constraints from the
educed MPC problem. For example, (C3) can be evaluated for
ach constraint independently. As a result, we can also consider
rojections of M, i.e.,

i(M(xk)) ∩ Xred
i (Ii(xk)) = Pi(M(xk)), (19)

or all i ∈ N[1,N], is equivalent to (C3). This observation will lead
o an efficient ca-MPC implementation, as we will see in the next
ection.

. Proposed exact ca-MPC implementation

In this section, we will make the exact ca-MPC scheme con-
rete by introducing three sets M(1), M(2), and M(3) to construct

as M(1)
∩M(2)

∩M(3). Hereafter, we will provide a concrete
utline on how M is used to compute the mapping A.

.1. Forward reachable set

As all state trajectories start at xk and satisfy the system
ynamics and input constraints, we can use the input-constrained
orward reachable set to construct M(1)(xk). To this end, we in-
roduce the input-constrained forward reachable set −→H (xk,U) :=

N
i=1
−→
H i(xk,U) ⊂ RNn, which can be computed by the recursion

→
H i+1(xk,U) :=A

−→
H i(xk,U)+ BU, (20a)

−→
H 0(xk,U) ={xk}. (20b)
4

o compute the state-dependent forward reachable set in a real-
ime setting we define M(1)(xk) as

(1)(xk) =
N∏
i=1

E(L i,1, qi,1)+ Aixk, (21)

where the ellipsoidal set satisfies E(L i,1, qi,1) ⊃
−→
H i(0,U), which

can be computed using Halder (2018), Henk (2012). The con-
struction (21) solves two problems. First, note that the forward
reachable set can be decomposed as

−→
H i(xk,U) = Aixk+

−→
H i(0,U)

for linear systems. Hence, we can compute the forward reachable
set once offline for a zero initial state, and shift the result by the
free state response Aixk. Second, we use ellipsoids that have a
fixed complexity to outer approximate the true forward reachable
set, which can be arbitrarily complex.

4.2. Backward reachable set

Given the forward reachable set, a natural extension is to ex-
ploit backward reachability too. Indeed, when we choose F(xk) =

N−1
i=1 ∅ × N[1,nxN ], all optimal state trajectories that can result

from (7) must end in the terminal set. To this end, we introduce
the input- and terminal-state-constrained backward reachable set
for (1) and (2b), i.e.,←−H (XN ,U) :=

∏N
i=1
←−
H i(XN ,U) ⊂ RNn, which

can be computed using the recursion
←−
H i−1(XN ,U) :={x ∈ Rn

| Ax+ Bu ∈ ←−H i(XN ,U)

for some u ∈ U}, i ∈ N[2,N] (22a)
←−
H N (XN ,U) =XN . (22b)

Note that the backwards reachable set is not state-dependent but
can be prohibitively complex, similar to the forward reachable
set. Hereto, we define M(2) as

M(2)(xk) =
N∏
i=1

E(L i,2, qi,2), (23)

where E(L i,2, qi,2) ⊆
←−
H i(XN ,U) to manage online complexity.

4.3. First-order optimality set

The third set, M(3), exploits the optimization based nature of
MPC. For example, a feasible solution to (3) upper bounds the
cost function, thereby bounding the minimizer (Nouwens et al.,
2021b). One method to obtain a feasible solution, is by extending
the minimizer U ⋆

k−1 obtained at time k− 1 (as is common when
using terminal set and cost methods, see Mayne et al. (2000)). In
this section, we introduce a more advanced notion of this concept
by exploiting the property that optimal state trajectories satisfy
first-order optimality conditions, which, in combination with a
feasible solution to (3), yields a smaller set.

We start by formalizing the first-order optimality conditions
that optimal input trajectories satisfy, under differentiability of J̄
with respect to U ,

−∇U J̄(xk,U k) ∈ NUred
f (xk,A(xk))

(U ⋆), (24)

where NUred
f (xk,A(xk))

(U ⋆) denotes the normal cone of U red
f

(xk,A(xk)) at U ⋆, as is commonly seen in stationary conditions
for optimization problems (Nocedal & Wright, 2006, Sec. 12.7).
Observe that (24) is not a constructive condition to design M(3),
as it uses A and U ⋆ in its definition. To get around this issue,
we introduce the set of input trajectories for which a convex
constraint set exists, such that, first-order optimality conditions
can be satisfied given a feasible input trajectory Ũ k ∈ Uf (xk), see
Fig. 1. Note that the set of all convex sets that include the feasible
input trajectory is guaranteed to include U red(x ,A(x )). Hereto,
f k k
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Fig. 1. Two illustrations of (25) for a quadratic cost function at different points
U . The dashed lines denote level sets of the cost function and q(xk) denotes the
nconstrained minimizer, where ∇U J̄(xk, q(xk)) = 0. Note that J is significantly

smaller than the level set of J̄ at Ũ . Left: U ∈ J , as there exists a set S such
that NS includes −∇U J̄ . In fact, U is the minimizer. Right: U /∈ J , as there
does not exist a set S such that −∇U J̄ ∈ NS . As expected, we observe that the
minimizer for S satisfies U ⋆

∈ J .

we define J (xk, Ũ k) ⊂ RNm,

J (xk, Ũ k) :={U ∈ RNm
| ∃convex S ⊆ RNm, (25)

s.t. U , Ũ k ∈ S, and −∇U J̄(xk,U k) ∈ NS(U )}.

Given (25), we obtain M(3)(xk) = Φxk + ΓJ (xk, Ũ k).
While (25) seems complex at first sight, it has an elegant

solution for quadratic cost functions. To show this, we specify
a quadratic cost function J as in (3e) with ℓ(x, u) = x⊤Qx +
u⊤Ru, ℓT (x) = x⊤Px, where Q and P denote positive semi-
definite matrices and R is positive definite. When substituting the
quadratic cost and system dynamics into (3e), it is easy to see that
an equivalent formulation for the cost is

J̄(xk,U k) = ∥G(U k − q(xk))∥22 + r(xk) (26)

with G ∈ RNm×Nm and linear maps q : Xf → RNm, r : Xf → R that
depend on the system dynamics, the current state, and Q , P, R.
Observe that q(xk) denotes the unconstrained minimizer of the
MPC problem, which is the unique solution to ∇U J̄(xk, q(xk)) = 0.
Using (26), J (xk, Ũ k) is given by the ellipsoid

J (xk, Ũ k) = {U ∈ RNm
| (27)

∥G
(
U −

1
2
(Ũ k + q(xk))

)
∥2 ≤

1
2
∥G(Ũ k − q(xk))∥2}.

he proof of this result is provided in Appendix A, and a schematic
llustration is in Fig. 1.

.4. Integration into an exact ca-MPC scheme

Now we will present how the sets M(i), i = {1, 2, 3}, are used
o construct an exact ca-MPC scheme. Recall that M(2) requires
(xk) =

∏N−1
i=1 ∅ × N[1,nxN ] and M(3) requires availability of an

˜ k ∈ Uf (xk). As M is defined as the intersection of ellipsoids, we
tilize (C3) to construct I(xk) as

Ii(xk) = I(1)i (xk) ∪ I(2)i (xk) ∪ I(3)i (xk), (28a)
(l)
i (xk) = {j ∈ N[1,nxi ]\Fi(xk) | ∥c i,jL−1i,l ∥2 ≤ |bi,j − c i,jqi,l|}, (28b)

here E(L i,l, qi,l) = Pi(M(l)(xk)). Observe that for each l ∈
1, 2, 3}, it holds that

i(M(l)(xk)) ∩ Xi(I
(l)
i (xk)) = Pi(M(l)(xk)). (29)

ence, (28) implies (C3). The derivation of (28b) is given in Ap-
endix B. Crucially, L i,l is not state-dependent (up to a constant),
herefore, ∥c i,jL−1i,l ∥2 can be pre-computed (up to a constant) for
ll i, j, l. As a result, the ellipsoidal description of M allows for the
5

computationally efficient construction of I(xk) using (28). In fact,
(28b) only requires one inner product, a scalar absolute value, and
a comparison.

For the remainder of this section, we present an overview
of the integrated ca-MPC scheme in Algorithm 1. In Algorithm
1, we use ← to denote ‘‘compute using’’. First, in lines 1–5, in
an offline setting, we pre-compute the forward and backward
reachable sets and corresponding ellipsoidal outer approxima-
tions. Second, in an online setting, we start by computing the
first-order optimality set in line 8 based on the measured state xk
and generated feasible input sequence Ũ k. Next, in lines 9–13, we
perform the constraint removal using the forward and backward
reachable sets and first-order optimality set. Finally, we compute
the minimizer of the resulting reduced MPC problem (line 14) and
apply uk = ured⋆

0|k to the plant (line 15).

Algorithm 1 Implementation of exact ca-MPC
1: k = 0, N ∈ N
2:
−→
H i(0,U)← (20), i ∈ N[1,N]

3:
←−
H i(XN ,U)← (22), i ∈ N[1,N−1]

4: L i,1, qi,1 ←
−→
H i(0,U), s.t. (20), i ∈ N[1,N]

5: L i,2, qi,2 ←
←−
H i(XN ,U), s.t. (22), i ∈ N[1,N−1]

6: while true do
7: Measure xk ∈ Xf

8: J (xk, Ũ k)← (25) with Ũ k ∈ Uf (xk)
9: for i = 1, 2, · · · ,N − 1 do

10: I(1)i ← (28) with E(L i,1, qi,1)+ Aixk
11: I(2)i ← (28) with E(L i,2, qi,2)
12: I(3)i ← (28) with Pi(ΓJ (xk, Ũ k))+ Aixk
13: Ai ← N[1,nxi ]\(I

(1)
i ∪ I(2)i ∪ I(3)i )

4: U red⋆
k ← (9a)

5: Apply control input uk ← ured⋆
0|k

6: k← k+ 1

5. Approximate ca-MPC

The exact ca-MPC method introduced in Sections 3 and 4 is
highly effective in the sense that the online complexity of com-
puting A(xk) is low, while significant reductions in the number
f constraints can be achieved. A relaxation, approximate ca-MPC,
ims to remove even more constraints from the MPC problem.
pproximate ca-MPC will maintain the constraint satisfaction
and stability), but will no longer be exact.

Based on (C2), we observe that shrinking M can result in the
emoval of more state constraints. One way to realize this, is
y designing a smaller M that satisfies (C1). Hereto, we impose
dditional input constraints that allow us to design a tighter M.
o this end, we augment the original MPC problem (3) with
he input constraint U k ∈ Ũ k + δUN , where Ũ k ∈ Uf (xk)
is a feasible input sequence, and δU ⊂ Rm with 0 ∈ δU
is a set limiting the input sequence U k to be ‘‘close’’ to Ũ k.
By constraining the minimizer to be close to a feasible input
trajectory, we obtain ‘‘smaller’’ forward and backward reachable
sets that can lead to the removal of more constraints from the
MPC problem. We will consider a particular choice of Ũ k, namely,
Ũ k = [u⋆⊤

1|k−1 · · · u⋆⊤
N−1|k−1 ũ⊤(x⋆

N|k−1)]
⊤, where ũ : XN → U

denotes an auxiliary feedback law that renders XN positively
invariant, i.e., Ax + Bũ(x) ∈ XN for all x ∈ XN . The MPC problem
corresponding to this new setup is given by

minimize
Xk, Uk

J(X k,U k), (30a)

subject to (3b), (3d) (30b)

U ∈ U ∩ (Ũ + δUN ). (30c)
k k
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Fig. 2. Illustration of the state constraints Xi , i ∈ N[1,N−1] ( ), the terminal
et XN ( ), and the origin ( ).

Note that depending on ũ : XN → U, the closed-loop stability
f (30) can be unchanged with respect to (3), as the standard
tability proof based on a terminal set and cost (Mayne et al.,
000), is still applicable. Interestingly, the approximate ca-MPC
cheme is exact with respect to (30), but not (3), hence, its
roperties can be analyzed using (30). Last, note that the size
f δU is a tuning knob (and can even depend on time k and
rediction step i) that can trade-off potential performance loss to
ncreased constraint removal, and thus computational benefits.

. Numerical example

We will use a double integrator system

k+1 =
[
1 0.1
0 1

]
xk +

[
0.005
0.1

]
uk, (31)

s the two-dimensional state allows for convenient visualization.
he input constraints are U = {u ∈ R | |u| ≤ 1}. To obtain

an example with a large number of linear state constraints as
in (3), we approximate two quadratic constraints with linear
inequalities, i.e.,

i :={x | (v1,j − d)⊤P1(x− d) ≤ 1, j ∈ N[1,nv ]} (32)

∩{x | (v2,j − d)⊤P2(x− d) ≤ 1, j ∈ N[1,nv ]},

for i ∈ N[1,N−1], d = [2.15 0]⊤, and

P1 =
[
0.14 0.17
0.17 0.97

]
, P2 =

[
0.20 0.05
0.05 0.21

]
, (33a)

(v1,j − d)⊤P1(v1,j − d) = 1, (33b)

(v2,j − d)⊤P2(v2,j − d) = 1, j ∈ N[1,nv ]. (33c)

he points v1,j, v2,j, j ∈ N[1,nv ], are chosen on the boundary of
the respective ellipses, which will result in a tangent inequality
constraint at v1,j and v2,j, respectively. Note that all constraints
re non-redundant, i.e., the removal of each constraint changes
he set. Moreover, the number of state constraints will be nxi =

nv , i ∈ N[1,N−1] (for the results in Figs. 6 and 7 we picked
v = 330, which results in 660 state constraints for i ∈ N[1,N−1]).

The terminal set XN ⊆ X1 is chosen to be positively invariant for
the control law uk = K Txk = −[0.01 0.01]xk. An illustration of
the state constraints, including the terminal set, is shown in Fig. 2.
When choosing N = 12, the total number of state constraints in
this example is

∑N
i=1 nxi = 2(N − 1)nv + nxN = 7468.

We define the MPC cost function as ℓ(x, u) = x⊤Qx +
u⊤Ru, ℓT (x) = x⊤Px using Q =

[
1 0
0 1

]
, P =

[
1 0
0 1

]
, R = 1.

Both the first-order optimality set and the approximate ca-MPC
scheme use the feasible input sequence, Ũ k =

[u⋆⊤
1|k−1 · · · u

⋆⊤
N−1|k−1 (K Tx⋆

N|k−1)
⊤
]
⊤. The last component needed for

the approximate ca-MPC scheme is the additional input constraint,
which we take as δU := {u ∈ R | |u| ≤ 0.3}.

The two-dimensional state of (31) allows for the visualization
of M(l)(xk) for l ∈ {1, 2, 3}, see Figs. 3–5. Note that forward
and backward reachable set are approximated using the outer
 m

6

Fig. 3. Illustration of the outer ellipsoidal approximations of the forward
reachable sets E(L i,1, qi,1) + Aixk for i = 4 ( ), i = 8 ( ), i = 12 ( ),
starting from xk ( ). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Illustration of the outer ellipsoidal approximations of the backward
reachable sets E(L i,2, qi,2) for i = 4 ( ), i = 8 ( ), i = 12 ( ), starting
from the XN ( ).

Fig. 5. Illustration of the first-order optimality sets Pi(ΓJ (xk, Ũ k)) + Aixk for
i = 4 ( ), i = 8 ( ), i = 12 ( ) for two initial states xk ( ). The
llipsoids shrink when xk approaches the origin, i.e., Ũ k approaches q(xk).

öwner-John ellipsoid of (20) and (22), respectively. These of-
line ca-MPC computations required approximately 30 s for this
xample.
Simulation results: we initialize (31) at x0 = −[4 0.4]⊤ and

et the MPC, exact ca-MPC, and the approximate ca-MPC scheme
egulate the state to the origin. The quadratic programs are solved
sing both a primal–dual interior-point method from the Matlab
PC toolbox and the DAQP active-set solver (Arnström et al.,
022). The resulting state trajectories are shown in Fig. 6. First
f all, none of the schemes violated the state constraints, as
xpected. Second, as also expected, the exact ca-MPC scheme
as an indistinguishable closed-loop trajectory compared to the
riginal MPC solution, while, the approximate ca-MPC scheme did
esult in a different closed-loop trajectory. In Fig. 7, the compu-
ation time and the number of reduced constraints over time for
oth ca-MPC schemes and solvers are shown. Both exact and ap-
roximate ca-MPC schemes, when solved using an interior-point
olver, are approximately 100–1000 times faster to compute com-
ared to the original MPC problem. In addition, a smaller, but
ignificant computation time improvement is observed for active-
et solvers. Last, we breakdown the exact ca-MPC computation
ime and compare it to the original MPC problem for a range of
tate constraints by adjusting nv in (32) (total constraints vary
etween 1200 and 45600). In Fig. 8, a consistent two-order of
agnitude improvement in computational time is observed for
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Fig. 6. Closed-loop trajectories for the original MPC ( ), exact ca-MPC ( ),
nd approximate ca-MPC ( ).

Fig. 7. The percentage of state constraints and computation time for exact
ca-MPC ( ) and approximate ca-MPC ( ) relative to the original MPC
eedback law for both an interior-point and active-set solver.

xact ca-MPC when using an interior-point solver. A smaller, but
onsistent, two to ten times improvement in computational time
s observed when using an active-set solver.

emark 1. While the double-integrator is convenient for illus-
rating all aspects of the ca-MPC scheme due to its 2-dimensional
isualization possibilities, the interested reader is referred for a
igher-dimensional example to Nouwens et al. (2021b), due to
pace limitations. In Nouwens et al. (2021b) a similar ca-MPC
cheme is applied to a discretized thermal PDE with a temper-
ture upper bound on the (discrete) spatial domain. This leads
o a discrete-time LTI model with 2000 states. Here, a similar
wo-order of magnitude improvement in computational time was
bserved for an MPC setup with 20,000 constraints.

. Conclusions

In this paper, we presented an efficient online constraint re-
oval framework for accelerating MPC for linear systems us-

ng system-theoretic insights. A crucial aspect of our proposed
ethod is that the closed-loop behavior and thus properties of

he reduced MPC feedback law, such as stability, performance,
nd constraint satisfaction, remain unchanged when compared
o the original MPC feedback law. We achieve this by exploit-
ng computationally efficient bounds on the optimal state tra-
ectory that indicate which constraints can be removed from
 t

7

Fig. 8. Maximum computation time of the original MPC ( ) and exact
ca-MPC scheme ( ) for each solver with an increasing number of state
constraints. The computation time of exact ca-MPC is split in computing A
( ) and the resulting QP ( ). Note that the QP time for the interior-point
solver is virtually equal to the total time.

the MPC problem. In particular, we showed that the forward
and backward reachable sets and a first-order optimality set
are computationally efficient and powerful tools to remove state
constraints from the MPC problem. Additionally, we presented
an extension, called approximate ca-MPC, that is able to trade-
off closed-loop performance with the computational complexity
of the resulting reduced MPC problem, while still maintaining
constraint satisfaction and stability.

The results from a numerical example show that the resulting
constraint removal scheme can achieve computational speed ups
of two-orders of magnitude, without loss of closed-loop perfor-
mance. An alternative example with a similar ca-MPC using a
thermal system described by a PDE is presented in Nouwens
et al. (2021b), where a comparable two-orders of magnitude
improvement was observed as well. Moreover, many of the con-
ceptual ideas that we exploited to get to our constraint-adaptive
MPC framework can be extended to nonlinear and time-varying
systems as well, see also Nouwens et al. (2021a) for first steps.

Appendix A. Proof of Eq. (27)

Lemma 3. Given a point w̃ ∈ W, where W ⊆ Rn is compact
and convex, then w⋆

:= argmin
w∈W

∥L(w − q)∥22 satisfies w⋆
∈ {w |

−(w− q)⊤L⊤L(w̃− w) ≤ 0}.

roof. First-order optimality requires −2L⊤L(w⋆
− q) ∈ NW(w⋆)

Nocedal & Wright, 2006, Sec 12.7). Since w̃, w⋆
∈ W, the normal

one is bounded by NW(w⋆) ⊆ {p | p(w̃ − w⋆) ≤ 0}. Hence, the
inimizer must satisfy −2L⊤L(w⋆

− q) ∈ {p | p(w̃ − w⋆) ≤ 0}.
quivalently, we obtain −(w⋆

− q)⊤L⊤L(w̃− w⋆) ≤ 0. □

Rewriting the result using the center of the ellipse 1
2 (w̃ + q),

gives w⋆
∈ {w | ∥L(w − 1

2 (w̃ + q))∥2 ≤ 1
2∥L(w̃ − q)∥2}, which is

he same result as used in (27).
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ppendix B. Equivalence of (29) and (28b)

When considering individual constraints (29) becomes

(L, q) ∩ {x ∈ Rn
| cx ≤ b} = E(L, q), (B.1)

ote that E(L, q) ∩ {x ∈ Rn
| cx ≤ b} ̸= ∅, due to feasibility of

he MPC. Hence, (B.1) is implied if the intersection between the
llipsoid and hyperplane {x ∈ Rn

| cx = b} is either empty or a
single element.

We map the ellipsoid to a unit ball on the origin using x =
+ L−1w. Substituting the mapping into the hyperplane cx = b

yields cL−1w = b − cq. The distance from the hyperplane to the
origin is then |b−cq|

∥cL−1∥2
. The hyperplane intersects the ellipse when

|b−cq|
∥cL−1∥2

≤ 1. Hence, ∥cL−1∥2 ≤ |b− cq| implies (B.1), which is
(28b).
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