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Abstract- In this pa er three rrcently proposed pmcedms 
for the identification oPPiece-Wise AntoRepssive exogenuus 
(PWARX) models are comsared. Onantitative measures for 
the qualil) n l  the ohuir idmidels~aw propo\&. llcin cinr 
dimensional rumples speritir behavion of the metho& am- 
puinted out. An e\prrimrntnl rrninplr is  runcidercd &, well. 

I. INTRODUCT~ON 
In this paper we study three recently proposed procedures 

for the black-box identification of discrete time hybrid 
systems in piecewise affine (PWA) form. More precisely, 
the studied procedures identify piecewise ARX (PWARX) 
models, which are a hybrid generalization of the classical 
ARX models. PWARX models are obtained when the 
regressor space is parfitioned into a finite number of convex 
polyhedral regions and a single ARX model is valid over 
each region. 

We compare the clustering-based procedure [I], the 
greedy procedure [Z] and the algebraic procedure [31, 141. 
These identification algorithms are briefly summarized in 
section 111. A formal analysis of the properties of the greedy 
and algebraic procedures is not available. Some features of 
the clustering-based procedure have been analyzed theoret- 
ically in [5]. However, the study of specific cases can help 
to better understand properties of the methods in practical 
situations. In order to compare the procedures and asses the 
quality of obtained models we propose several quantitative 
measures in section 111. 

11. PROBLEM STATEMENT 

Ail the procedures considered identify piece-wise ARX 
(PWARX) models of the form: 

~ ( k )  = f M k ) )  + e @ ) ,  (1) 

where e (k )  is the noise term and the piece-wise affine 
(PWA) map f(.) is defined as: 

[z' l]S1 i f z E X l ,  

[z' 11.9, i f z t X , .  
f (z) = (2 )  

In (2) x ( k )  is a vector of regressors defined as 

(3) z ( k )  a [y(k - 1) y(k - 2) . . . y(k - n,) 
u ( k - l ) u ( k - 2 )  . . .  u(k -nb) ] ' ,  

where k is the time index and y , u  t R are the outputs 
and the in uts of the system, respectively. For i = 1 , .  . . s, 
Si E Rn+Pis  a parameter vector (PV) with n = n, + nb. 
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The bounded regressor space X is partitioned in s convex 
polyhedral regions {X;}g,, i.e. 

U X,  = X c Rn and Xi n Xj  = 0 ,  (4) 
i=l 

with i # j. 
The general identification problem reads as follows: 

given the dataset N = { ( z ( k ) , y ( k ) ) } F z 1  reconstruct the 
PWA map f(.)- i.e. determine the PVs {Si};=, and the 
polyhedral partitions {&};=,. Apart from the identification 
data each procedure requires some tuning parameters which 
will define the structure of the identified models. For all the 
procedures, the orders of ARX models nar nb need to be 
provided beforehand. The number of submodels s should 
be given, but some methods determine it automatically. 

Identification of PWARX-models is a challenging proh- 
lem since it involves the estimation of both the PVs {Si}:=, 
and the regions of the regressor space {Xi}:=l on the basis 
of the available dataset N. In case that regions of the 
regressor space are known a priori the problem complexity 
reduces to that of a linear system identification problem, 
since the datapoints can be classified to corresponding data 
subsets {3i}bl. and a linear system identification method 
can be applied to each of these subsets of N 111. 

111. THE COMPARED PROCEDURES 

In this section we briefly discuss the clustering-based 
procedure [I] ,  the greedy procedure [2] and the algebraic 
procedure [3], [4]. The hasic steps that each method per- 
forms are: estimation of the PVs {S i }%, ,  classification of 
the datapoints and estimation of the corresponding regions 

The first two steps are performed in a different way 
by each procedure, as discussed in the sequel, while the 
estimation of the regions can he done in the same way 
for all methods. The hasic idea is as follows. Having the 
data points that are attributed to sets .'F; and Fj, we are 
looking for a separating hyperplane in the regressor space 
X described by: 

where ACr,j is a vector, and mjj is a scalar, so that for 
each ~ ( k )  E X,, h f i p ( k )  5 mij ,  and for each z ( k )  E X j  
M:,x(k) > mij. If such a hyperplane can not he found 
(i.e. the dataset is not linearly separable) we are interested 
in a generalized separating hyperplane which minimizes the 
number of misclassified datapoints. The method we use 
for estimating the separating hyperplanes in this paper is 
Multicategory Robust Linear Programming (MRLP). This 
method can solve the classification problem with more than 
two data classes. For a detailed discussion on MRLP see 
161. 
A. Clustering-bused pmcedure 

The clustering-based procedure [l] is based on the ratio- 
nale that data points close to each other in regressor space 
are likely to belong to the same prutition and the same ARX 
model. The main steps of the procedure are: 

I X d L .  
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For each data pair (z(k), y(k)) a local dataset (LD) Ck 
is built containing its c - 1 nearest datapoints' in the 
regressor space X. LDs that only contain data points 
belonging to a single subsystem are referred to as pure 
LDs, while LDs containing data generated by different 
subsystems are called mired LDs. 
Calculate 0;' for each LD using least squares on 
Ck and compute the mean m k  of Ck. Each datapoint 
( ~ ( k ) ;  y l k )  is thereby mapped onto the feature vectors 
<k = [(@k y, 74.1'. 
Cluster points {&}& in s clusters 'Di by minimizing 
a suitable cost function 
Since the mapping of the datapints onto the feature 
space is bijective, the data subsets can be 
built using the clusters {'Di}:=l. The PVs {Si}!=, are 
estimated from data subsets Fi by least squares. 

The parameters s and c are the tuning knobs of this 
procedure. 

B. Greedy pmcedure 

In the greedy procedure [21 a hound 6 > 0 on the 
prediction error is selected. Each data pair (z(S),y(k)) 
should satisfy 

I y(k) - ip'(k)& 15 6, Vk = 1,. . . ~ N, (6)  

for some 8,. where p(k) = [z'(k) 11'. The system of 
inequalities (6) is in general infeasible for a single PV 8, 
hence, it should he split in the minimal number of feasible 
subsystems S, and corresponding PVs {Si},"=, should be 
determined. Unfortunately, the problem of splitting (6 )  into 
a minimal numher of feasible systems is NP-hard. The main 
steps of the procedure are: . A suboptimal version of a MIN-PFS algorithm pro- 

posed in [7] is used to partition the infeasible system 
(6) into S feasible subsystems. - A refinement algorithm is repeatedly applied- to the 
previously found set of parameter vectors {Si}&, and 
data subsets {Fi};=,. Submodels are merged if their 
parameter vectors are 'similar'. The similarity measure 
between Si and 0, is defined as, 

and they are considered similar if L Y ~ - , ~ -  < a. The 
subset Fz will he discarded in case the cardinality of 
subset F% with respect to the cardinality of N is less 
then the hound 0. The refinement steps are repeated 
until the parameter updates between iteration t and t t l  
becomes negligible, i.e. until the termination condition: 

is satisfied. 
Datapoints that do not satisfy (6) for any of the estimated 
parameter vectors are not classified and will be marked 
as infeusible. Datapoints satisfying (6) for more than one 
estimated parameter vector will he marked as undeciduble. 

The tuning parameters of this procedure are a, p, y 
and 6. These parameters implicitly determine the estimated 
number of subs stems S ,  returned by the procedure for a 
given dataset ,d 

'according IO the Euclidean distance 

C. Algebraic procedure 
The method proposed in [3], [4] approaches the problem 

of identifying a PWARX model as an algebraic geometric 
problem. In the noiseless case ( e  = 0) the data pair 
( z ( k ) ,  y(k)) satisfies the equality 

y(k) - ip'(k)& = 0 (9) 

for a suitably chosen PV S i .  Hence, the equality 

U ( Y ( k )  - V'(k)Qz) = 0,  (10) 
*=I 

always holds. 
In [3] it is shown that in the noiseless case the number 

of subsystems s can be determined as a rank of a suitably 
constructed matrix L,. In the noisy case the rank of the 
matrix L, is considered to be I' if U ~ + ~ / U ~  < E ,  where ut 
is the i-th singular value of L,. 
The algorithm to compute PVs {S,}&=, from the sys- 

tem of equations (IO) is described in the paper [4]. This 
procedure involves finding the roots of the second order 
polynomial, that in the noisy case may become complex- 
valued. Hence, the procedure may terminate without yield- 
ing the model. Data pairs (z (k) ,y(k) )  are attributed to the 
submodel X satisfying the rule: 

The only Nning parameter of the procedure is e. 

D. Quality measures 
Since our aim is to compare the procedures, some quan- 

titative measures for the quality of the identification results 
are introduced. These measures will capture the accuracy of 
the estimated PVs and the accuracy of the estimated 
partitions {&};=,. 

When the model that generated the data is known, one 
can measure the accuracy of the identified PV through the 
quantity: 

where MI*,  mI2, MI*. mI2 are the coefficients of the 
separating hyperplanes, defined in (5). of the original and 
reconstructed model, respectively. 

An overall quality measure which is also applicable when 
the generating model is not known is provided by the sum 
of squared residuals (one step ahead prediction errors): 
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whzre the set Fi contains the datapoints classified to 
submodel i and the sum of squared nsiduals (SSR) of 
submodel i is defined as: 

SSRF. = 1 (y(k) - [z(k)' l]f4)2. 
4 k ) t X  

The value of the estimated model is considered acceptable if 
6: is small andlor near the expected noise of the identified 
system. 

Models with good one-step ahead prediction propemes 
may perform pwrly in simulation. To measure the model 
performance in simulation we propose to use the averaged 
Sum of the Squared simulation Errors (SSE,i,J, 

l N  
SE,, = __ 1 (y(k) - Q(k))'~ (1.5) 

k=n+l 

where Q(k I\ the output of the simulation obtained by 
building z)k)from the real inputs and previously estimated 
outputs. The idea behind (15) is that poorly estimated 
regions may increase the simulation error, since these poor 
estimates may lead to wrong choices of the next submodel. 

When doing experimental identification r?: and SSE,, 
are useful for selecting acceptable models from a set of 
identified models obtained by using the procedures with 
different tuning parameters and estimates of the system 
orders. 

N - n  

Iv .  INTERSECTING HYPERPLANES 

In the previous section we have highlighted that the pro- 
cedures use different approaches for parameter estimation 
and classification of the datapoints. The clustering-based 
procedure assumes that certain geometrical properties are 
present in the data set, while the greedy and algebraic 
procedure do not use this assumption. This may lead to 
wrong estimates of the separating hyperplanes. Namely, if 
the hyperplanes.over the regressor space defined by PVs 
9, and 9 .  intersect over X,, datapoints may be wrongly 
attributed to the data subset Ft. In order to illustrate this 
problem we consider an example where the PVs of the 
real system virtually intersect over the regressor s ace X. 
Consider the PWARX model y(k) = f ( z ( k ) ) + e ( k y  where 
f is defined as: 

We generated regressors whose 80% is uniformly dis- 
tributed over the regressor space X = [-2.5, 2.51 and 
the remaining 20% over [0.85, 1.151, so that the virtual 
intersection is excited thoroughly. A normally disaibuted 
noise e with wro mean and variance a: = 0.005 is added 
to f ( z ( k ) ) .  The results are plotted in the figures 1 and 2.  

From figure I it is seen that the clustel.ing-based proce- 
dure, as expected, does not experience problems with the 
intersecting PVs. Both the PVs and separating point are 
estimated accurately. 

The greedy procedure is used with an e m r  hound of 
6 = sae, where ae is the standard deviation of the noise 
e. The result of the greedy procedure depicted in figure 1 
shows that the datapoints within the error hound 6 for both 
estimated PVs are not classified since they are considered 
undecidable. Figure 2 shows the result for the greedy 

and the noise e is normally distributed, with zero mean 
and variance a," = 0.01. To generate the dataset for 
identification values of z are obtained by uniform sampling 
in the interval [-lo, 101. The dataset is depicted in figure 
3. 
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Fig. 3. Dataset for the one-dimensional model 

When z ( k )  = y ( k -  1) the time series generated by (17) 
has the following for": 

where fk(.) denotes k-times iterated function f over it's 
ar&ument. Hence, for ii,, = l , 6 b  = 0 the data pairs have 
the form (z, f(z)a, for A, = 2, i L b d  data pairs take the 
form ((f(z), z), f- (z)), and for pome Ea, 6 b  = 0 data pair 
has the form ((f".-', . . .  z); f".). Since the model (17) 
does not depend on input U, when iib > 0 the regressor 
pan that depends on the input was filled with random values 
uniformly distributed in the interval [-lo, 101. Identification 
procedures were subsequently applied to regressors formed 
in this way. Note that for overestimated model orders, the 
correct model is obtained by setting to zeroes the entries 
in Oi, Mij,mij on positions corresponding to superfluous 
elements in the regressor. 

We did not manage to identify the model using algebraic 
procedure when the model orders were Overestimated, he- 
cause the procedure returned complex numbers for param- 
eter values. Figure 4 shows the values of the criterion 8: 
on the logarithmic scale, for models with different model 
orders identified by the clustering-based and the greedy 
procedure, respectively. 

From figure 4 it is seen that the clustering procedure 
identifies the model with 6: value close to the noise in 
the system for true system orders, but that the perfonnance 
rapidly deteriorates when the model order is overestimated. 
The problem with the overestimated order lies in the as- 
sumption that datapoints close to each other in the regressor 
space belong to the same subsystem. When overestimating 
the order of the model regressor is extended with elements 
which do not contain relevant infomtion for the estimation 
of the subsystems, but change the distance between the 
regressors. If the true distance is denoted b do, the distance 
between the extended regressors is d; ,= do+dz, where d: is 
due to the added elements, and contains no useful informa- 
tion. Depending on the true and overestimated model orders 
d, can easily he of the same or higher order of magnitude 
as do. 

In figure 4 we see that the greedy procedure generates 
uz's which remains approximately constant. This can be 
explained by the pre-selected error hound 6. Hence, the 
value of r: depends on the chosen value for 6. However, 
overestimation of the model orders has other consequences 
for the procedure. In figure 4 we see that the number of 

i 

'modulo the error term e 
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Fig. 4. upper left  5: for the clustering procedure with s = 2 md 
e = 20 upper right: 6: for the greedy procedure with 6 = 0.3, a = 0.15, 
4 = 0.10 md y = 1. lower: number of infeasible datapoints for the 
greedy procedure with 6 = 0.3, a = 0.15, p = 0.10 and y = 1. l o r 5  

p in t s  which are marked as infeasible by the procedure 
grows rapidly when overestimating model orders. The first 
step of the procedure (suboptimal partitioning of the infeasi- 
ble system of inequalities (6)) results in the large number of 
subsystems with small cardinality, which are then rejected 
by the refinement algorithm, and permanently marked as 
infeasible. It is hard to analytically explain the effects that 
occur when overestimating the system order in each of 
the procedures. However, when using these algorithms for 
systems with unknown orders, the observed behaviors may 
provide useful guidelines. In fact, by running the procedures 
for several order estimates and looking at values of U: for 
the clustering procedure and at the number of infeasible 
datapoints for the greedy procedure can help in choosing 
the acceptable estimate of the system orders. 

VI. EFFECTS OF NOISE 

In this section we study effects of noise e on the 
identification procedures. The first issue of interest is the 
effect that different realizations of noise with the same 
statistical properties have on the identification results. The 
second issue is how statistical properties of noise influence 
identification results. 

To shed some light on these issues we designed an 
experiment with the PWARX model of section V (see 
(17)). For this model we generated a noiseless dataset of 
100 datapoints. The procedures are applied 100 times on 
this dataset, after adding a different realization of normally 
distributed noise with zero mean and variance r: to the 
outputs y(k). For each identified model the index A, is 
computed. In this way an approximate distribution of A, for 
each r," can he consmcted. One such distribution obtained 
for the clustering-based procedure in given in figure 5 .  For 
each such distribution we computed its mean and variance, 
and plotted them in figure 6 as functions of U," for all three 
procedures. 

From figure 6 we can conclude that the clustering pro- 
cedure is the most robust with respect to noise. This c m  
be amibuted to the number of steps that are taken to 
make the procedure more robust as discussed in [ I ] .  The 
greedy procedure is somewhat less robust to noise than 
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Fig. 5. A proximate distribution of Ae over 100 runs using the 
clustering-\ased procedure with c = 10 and different realizations 
of noise with L T ~  = 0.075. 
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I "1 . . . . .  ! ; . . . : .  . . ; ~  .... : ...... 1 ,: I ........ . M' ." ': 
.[ 

Fig. 6. Means (left) and variances (right) of the As distributions 
for seved variances of noise c; 

the clustering procedure. From the plot of variances we 
see that the results of the greedy procedure show higher 
dependance on the realization of noise, in comparison to 
the clustering procedure. From the figures we see that the 
algebraic procedure performs poorly, in comparison to the 
other two procedures. However, the results are also very 
sensitive to the specific realization of noise. 

VI[. EXPERIMENTAL EXAMPLE 

In this section we show the results of the identification 
of the component placement process in pick-and-place 
machines. A detailed description of the process and the 
experimental setup can be found in [SI, [9]. 

The pick-and-place machine is used for automatically 
placing electronic components on a Printed Circuit Board 
(PCB). To study the placement process, an experimental 
setup was made, for which a scheme is shown in figure 7. 

The setup consists of the mounting head, from an actual 
pick-and-place machine, which is fixed above the impacting 
surface. Mounting head contains a vacuum pipette that 
carries the component (mass M ) ,  which is connected to 
the casin_g via spring c1, and moved by the electrical motor 
(force F ) .  Friction effects (linear friction d l ,  dry friction 
fi) are present. The chosen design of the impacting surface 
simulates the elasticity and damping properties of the PCB 
(spring ca. damper d2). but some parasitic effects are also 
present (dry friction A). 

The control variable is the input voltage to the motor U ,  
and the measured variable is the position of the pipette y. 
This experimental setup has two main modes of operation: 
free mode, when the component is not in contact with 
the impacting surface, and impucf mode, when they are 

Fig. 7. Schematic representation of the experimental sehlp 

in contact. Note that the sensor of contact between the 
component and the impacting surface is not available. 

A dataset consisting of 750 samples is collected. The 
dataset is divided into two overlapping sets of 500 points, 
the first set is used for identification, and the second for 
validation. All three procedures where applied for several 
order estimates and with different tuning pammeters. The 
procedures were executed for all the combinations of these 
orders and tuning parameters. The proposed quality mea- 
sures U," and SSE,, were used to choose acceptable iden- 
tified models for which the simulations were plotted. The 
best identified model was then chosen by visual inspection. 

For the clustering-based procedure figure 8 shows the 
simulation based on the validation dataset for the best 
model obtained. In the upper panel of the figure measured 
output yid and the simulated output ysmL are depicted. The 
input signal U is plotted in the middle panel and the lower 
panel shows which of the identified subsystems is active 
at each time instant. It turns out that the best models are 
obtained for high values of c. The same was observed in 
[8]. A possible explanation is the following: because of the 
presence of dry friction neither the free nor the impact mode 
are linear, but with large LD's the effects of dry friction can 
be 'averaged out' as a process noise. Note that the difference 
between the measured and simulated responses, which is 
due to unmodeled dry friction, is clearly visible, e.g. on the 
time interval 1225,3001 

Fig. 8. Simulation of the PWARX model generated b the 
clusterin procedure with na = 2, nb = 2, s = 2 and c = $0 for 
the vali&aon data set with SSE,,, = 1.98 

As the number of modes s for the greedy procedure 
is not fixed, in order to identify two models, the right 
combination of the parameters a, y and 6 has to be found. 
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For the initial error bound 6 we used 3eC = 1, obtained 
from the clustering-based procedure, assuming that this 
value would be a good estimate for the variance of the 
measurement noise. Executing the greedy procedure with 
6's in the vicinity of this 38, resulted in identified models 
with only one parameter vector, and a large number of 
infeasible points. Therefore, we had to lower the error 
bound to 6 = 0.25. For this value of 6 the procedure 
identified a model that distinguishes two subsystems. Model 
identified with this 6 had a smaller value of 8: for the 
identification dataset than the model identified with the 
clustering-based procedure. However, when looking at the 
values of SSE,,, for the identification dataset and the 
validation dataset the model identified with the clustering- 
based procedure performs better. This observation can he 
attributed to the fact that the greedy procedure is less robust 
to noise and therefore the estimated parameter vectors are 
sensitive to the noise realization. The simulation of the 
validation dataset for the hest identified model is shown 
in the figure 9. 

Due to the severe noise and nonlinearities (e.g. dry 
friction) the algebraic procedure returned complex numbers 
as the estimated parameter values. 

. .  , - -. - - - 
si*,,.__UmCU3 

Fig. 9. Simulation of the PWARX model generated by the greedy 
praedvre with n, = 2, nb = 2, 6 = 0.25, a = 0.15, @ = 0.05 
and y = 5 .  10W6 for the validation data set with SSE,,, = 2.15 

VIII. CONCLUSIONS AND RECOMMENDATIONS 

In this paper we discussed three procedures for the 
identification of PWARX models. The clustering-based pro- 
cedure, proposed in [I], reduces the problem of classifying 
the data to an optimal clustering problem. The greedy pro- 
cedure, proposed in [Z], approaches the problem as that of 
partitioning an infeasible system of linear inequalities into 
a minimum number of feasible subsystems The algebraic 
procedure, proposed in [3], [4], treats the problem in an 
algebraic geomemc fashion. 

By applying the algorithms on suitably constructed one- 
dimensional problems we have emphasized same of the 
behaviors that are intrinsic to the procedures. In section 
IV we have shown that approaches that neglect geomet- 
rical properties present in the data set (such as greedy 
and algebraic approach) may experience data classification 
errors which may cause problems in the estimation of the 
regions. The greedy procedure tries to polve this problem by 
neglecting certain datapoints - this helped in the considered 
example, but it is not clear whether this is true in general. 
The straightforward classification of datapoints as proposed 
in [3] suffers the most from classification errors. A possible 
way to overcome this problem may lie in the combination 
of the approaches provided by all three procedures: e.g. the 

undecidable data points may be classified to the same mode 
as the closest feasible data point. This issue requires further 
research. 

In section V we generated the identification data with an 
I-dimensional PWARX system, and then we tried to identify 
models with overestimated orders. All of the procedures 
experienced problems with this example. The clustering 
procedure is not able to identify proper models since the 
distance information becomes corrupted when adding non- 
relevant information to the regressors. The greedy procedure 
has troubles estimating subsystems for which a sufficient 
number of datapoints can be classified. We did not manage 
to identify a model with the algebraic procedure when 
overestimating the orders. 

In section VI we illusaated the effects of noise are 
on the accuracy of the estimated parameter vectors. We 
studied how sensitive the obtained results are to the specific 
realizations of noise with the same variance, as well as the 
effects of varying the variance. In this respect the clustering- 
based procedure is the procedure that was the most robust 
to noise. The method produced the most accurate estimates 
and was the least sensitive w.r.t. the realization of noise. The 
greedy procedure was less accurate and less consistent in 
estimating parameter vectors. Our experiments show that the 
algebraic procedure is vety sensitive to noise. We stress that 
the observed behaviors are specific for the studied examples, 
and that for conclusive statements the analysis for the more 
general cases is needed. 

In section VI1 we applied the procedures on a dataset 
obtained from an experimental setup of a pick-and-place 
machine discussed in [8]. Using physical insights and 
trial-and-emor to tune the procedures, the models of the 
process were successfully identified with clustering-based 
and greedy procedures. However,we found that all three 
procedures lack clear guidelines on selecting tuning param- 
eters. 
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