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Abstract— The projection lemma (often also referred to
as the elimination lemma) is one of the most powerful and
useful tools in the context of linear matrix inequalities for
system analysis and control. In its traditional formulation,
the projection lemma only applies to strict inequalities,
however, in many applications we naturally encounter non-
strict inequalities. As such, we present, in this note, a non-
strict projection lemma that generalizes both its original
strict formulation as well as an earlier non-strict version.
We demonstrate several applications of our result in robust
linear-matrix-inequality-based marginal stability analysis
and stabilization, a matrix S-lemma, which is useful in (di-
rect) data-driven control applications, and matrix dilation.

Index Terms— Linear matrix inequalities (LMIs), parame-
ter elimination, data-driven control, semi-definite program-
ming, marginal stability

I. INTRODUCTION

L INEAR matrix inequalities (LMIs) have found their way
into a wide variety of control applications [1]. In parallel

to this adoption, an incredible collection of tools has been
developed that enables us to formulate LMIs for different and
increasingly complicated applications. The projection lemma
(PL), see, e.g., [2], [3], is a crucial part of this LMI toolkit,
which has been an enabler for developing powerful results,
such as, e.g., H∞ controller synthesis [2], [4], robust control
design [1], [5], [6], and gain-scheduled control design [7], [8]
to name but a few. In fact, [6, Chapter 9] presents a unified
approach based on the projection lemma to solve 17 seemingly
different control problems, including the characterization of all
stabilizing controllers for a linear time-invariant (LTI) plant,
covariance control, H∞ control, L∞ control, LQG control,
and H2 control of LTI systems. It is also used to introduce
slack variables for reducing the conservatism in certain robust
control designs, see, e.g., [9], [10]. In other words, the PL
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has had–without a doubt–a significant impact in the field of
system and control theory. All of the above developments are
based on the strict version of the projection lemma (strict in
the sense of strictness of the involved matrix inequalities).
Given the impact of this strict projection lemma (SPL) and the
emergence of various control problems that call for non-strict
versions of the PL (see Sections II and IV below), we will
formulate a non-strict generalization of this powerful result.

The classical (strict) projection lemma [1], [2], as stated
next, is formulated in terms of strict inequalities. For any
complex matrix A ∈ Cm×n, we denote its conjugate transpose
by AH and its annihilator by A⊥, which is any matrix whose
columns form a basis of the kernel (null space) of A.

Lemma 1. Let U ∈ Cm×p and V ∈ Cn×p be arbitrary
complex matrices and let Q ∈ Hp be Hermitian. Then, there
exists a matrix X ∈ Cm×n which satisfies the LMI

Q+ UHXV + V HXHU ≻ 0, (1)

if and only if

UH
⊥QU⊥ ≻ 0 and V H

⊥QV⊥ ≻ 0. (2)

When replacing the strict inequalities (≻) in Lemma 1 by non-
strict inequalities (≽), the implication (1) ⇒ (2) still holds.
However, the converse is no longer true as illustrated with the
following example.

Example 1. Consider the matrices

Q =

[
2 1
1 0

]
, U = V =

[
1 0

]
with U⊥ = V⊥ =

[
0
1

]
as the relevant annihilators. It is straightforward to verify that
UH
⊥QU⊥ = V H

⊥QV⊥ = 0 ≽ 0, i.e., the non-strict version of (2)
holds. However, there exists no X ∈ C such that

Q+ UHXV + V HXHU =

[
2 + (X +X∗) 1

1 0

]
≽ 0,

where X∗ denotes the complex conjugate of X . This shows
that the non-strict version of (2) alone is not sufficient to
guarantee the existence of some X for which (1) holds with a
non-strict inequality.

The following non-strict version of the PL from [11, Lemma
6.3] imposes a strong additional assumption on U and V under
which (1) ⇔ (2) holds with non-strict inequalities as well.

Lemma 2. Suppose that U and V satisfy

imUH ∩ imV H = {0}. (3)
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Then, there exists some X such that

Q+ UHXV + V HXHU ≽ 0, (4)

if and only if

UH
⊥QU⊥ ≽ 0 and V H

⊥QV⊥ ≽ 0. (5)

This result, in which im (·) denotes the image of a matrix,
is shown to be useful in the context of, e.g., robust control
using µ-synthesis [11]. However, due to the strong assumption
(3), this result cannot be employed in many situations, such
as for characterizing marginal Lyapunov stability as we will
illustrate in Section II. Moreover, the condition (3) also
prevents Lemma 2 from yielding the SPL as a corollary, since
the SPL does not involve any assumptions on the matrices U
and V . In this sense, Lemma 2 is not a true generalization of
the SPL.

Our main contribution in this note is a general non-strict
projection lemma (NSPL), see Theorem 1 below, that
(a) provides necessary and sufficient conditions for the exis-

tence of a solution to the LMI (4),
(b) does not impose any assumption on the matrices U , V

and Q = QH, and
(c) generalizes both the SPL and Lemma 2.

Although special cases of the NSPL have found applications
in earlier work, see, e.g., [3], [11], [12], the general NSPL
is, to the best of the authors’ knowledge, not found in the
literature.

One of the key challenges in deriving a general NSPL is
the identification of an additional condition that, if combined
with (5), is equivalent to the feasibility of (4). Moreover, even
though our proof of the NSPL is inspired by the proof of
the SPL, the non-strictness of the inequalities and the absence
of simplifying assumptions, such as (3), result in additional
technical challenges. These challenges are highlighted in detail
in our proof of the NSPL.

We illustrate how to apply our main result for several
applications. First, we derive LMI-based marginal stability
conditions, which could not be achieved using the SPL or
Lemma 2. Second, we apply the NSPL to solve a matrix
dilation problem and, third, we derive a useful interpolation re-
sult with weaker assumptions than existing ones. Interestingly,
this interpolation result naturally leads to a generalization of
the matrix S-lemma in [13, Corollary 12], which is used for
(direct) data-driven control.

The remainder of this note is organized as follows. After
introducing some notational conventions in Section I-A, we
discuss a motivating example, in Section II, for which the SPL
and Lemma 2 fall short. In Section III, we present the NSPL,
which forms our main contribution. Finally, we present several
applications of this NSPL in Section IV and give conclusions
in Section V. All proofs are found in the Appendix.

A. Notation
The sets of real, complex and non-negative natural numbers

are denoted, respectively, by R, C and N = {0, 1, 2, . . .}.
The sets of n-dimensional real and complex vectors are,
respectively, Rn and Cn. The sets of n-by-n Hermitian and

symmetric matrices are denoted by, respectively, Hn = {A ∈
Cn×n | A = AH} and Sn = {A ∈ Rn×n | A = A⊤}.
We use the symbol ⋆ to complete a Hermitian matrix, e.g.,[
A B
⋆ C

]
=

[
A B
BH C

]
, and I is an identity matrix of appropriate

dimension. For a Hermitian matrix H ∈ Hn, H ≻ 0, H ≽ 0
and H ≺ 0 mean, respectively, that H is positive definite,
i.e., xHHx > 0 for all x ∈ Cn \ {0}, positive semi-definite,
i.e., xHHx ⩾ 0 for all x ∈ Cn, and negative definite, i.e.,
−H ≻ 0. We denote, respectively, the sets of such matrices
of size n-by-n as Hn

≻0, Hn
≽0 and Hn

≺0, and their real-valued
counterparts as Sn≻0, Sn≽0 and Sn≺0. For a complex matrix
A ∈ Cn×m, imA = {x ∈ Cn | x = Ay for some y ∈ Cm}
denotes its image, kerA = {x ∈ Cm | Ax = 0} its
kernel and A+ its (Moore-Penrose) pseudoinverse. Finally,
diag{A1, A2, . . . , An} denotes a block-diagonal matrix with
diagonal blocks Ai, i ∈ {1, 2, . . . , n}.

II. MOTIVATING EXAMPLE

Consider the discrete-time LTI system

xk+1 = Axk, (6)

where xk ∈ Rnx denotes the state at time k ∈ N. We are
interested in marginal stability of the system (6), i.e., whether,
for all x0, the solution xk is uniformly bounded in the sense
that there exists c ⩾ 0 such that ∥xk∥ ⩽ c∥x0∥ for all k ∈ N.
The system (6) is marginally stable, if and only if there exists
a symmetric matrix P ∈ Snx such that [14, p. 211]

P ≻ 0 and P −A⊤PA ≽ 0, (7)

or, equivalently, if there exists S ∈ Snx such that

S ≻ 0 and S −ASA⊤ ≽ 0, (8)

in which case V (x) = x⊤Px (with P = S−1) is a weak Lya-
punov function, i.e., V is positive definite, radially unbounded
and non-increasing along solutions to (6) [15], [16].

While (8) can be used to guarantee marginal stability of (6),
it cannot easily be extended to more complicated applications
such as synthesis or even robust control, e.g., when A is un-
certain, by applying (8) to the relevant closed-loop dynamics.
In the context of asymptotic stability, many different LMI-
based conditions have been proposed that not only guarantee
that (6) is asymptotically stable, but also accommodate such
more complicated applications, see, e.g., [17]–[20]. Many of
these results, see, e.g., [17]–[19] (or [21] for continuous time),
follow by application of the SPL. For illustrative purposes, we
consider the following condition: The system (6) is asymp-
totically stable if and only if there exist a symmetric matrix
S ∈ Snx and a matrix X ∈ Rnx×nx such that [9][

S AX
⋆ X +X⊤ − S

]
≻ 0. (9)

This follows from the conditions S ≻ 0 and S −ASA⊤ ≻ 0,
which are necessary and sufficient for asymptotic stability, by
applying Lemma 1. To see this, note that (9) is (1) with

Q =

[
S 0
⋆ −S

]
, U⊤ =

[
0
I

]
and V ⊤ =

[
A
I

]
.
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This condition is useful for stabilizing controller synthesis
by replacing A with A + BK and applying the linearizing
change of variables X = KY , where K is the to-be-designed
controller gain. What makes the condition in (9) even more
powerful is the absence of products between A and S, which
enables a natural extension to robust controller synthesis as
presented in, e.g., [17], [19], in which both A and S depend
on some uncertain parameter. Clearly, we cannot use the SPL
to obtain a non-strict counterpart to (9) that is also equivalent
to (8). Also the condition in (3) is not always satisfied and,
hence, we cannot apply Lemma 2 either. To see this, observe
that, if there exists some x ∈ Rnx \ {0} with Ax = 0, then
(0, x⊤)⊤ is contained in both imU⊤ and imV ⊤ and, hence,
their intersection is non-trivial. In the next section, we will
present a generalization of Lemma 2 after which we will revisit
this example in Section IV-A and derive a non-strict version
of (9).

III. MAIN RESULT

The main contribution of this note, i.e., a non-strict gener-
alization of the well-known SPL, is stated below.

Theorem 1. There exists X satisfying (4) if and only if (5)
holds together with

kerU ∩ kerV ∩ {ξ ∈ Cp | ξHQξ = 0} ⊂ kerQ. (10)

We emphasize that Theorem 1 does, in contrast to Lemma 2,
not involve any additional assumption on the matrices U and
V and, thereby, genuinely provides necessary and sufficient
conditions for the feasibility of (4). Furthermore, the novel
condition (10) does, in contrast to (4) and (5), not constitute
an LMI. Instead, it is a nontrivial coupling condition between
the matrices U , V and Q that is absent in the SPL. In the
remainder of this section and in the next section, we consider
several important applications of Theorem 1 and we illustrate
how to verify whether (10) holds in the related proofs. In
particular, we will see that most of these applications do not
exhibit (10) explicitly, since this coupling condition will be
shown to be satisfied automatically as a consequence of the
underlying problem structure.

Example 2. In Example 1 we have seen that, for the given
matrices U , V and Q, the LMI (4) is not feasible in X even
though (5) holds. By Theorem 1, we infer that (10) must fail
to hold. Indeed, for this example, we have kerQ = {0} and
kerU ∩ kerV ∩ {ξ ∈ Cp | ξHQξ = 0} = imU⊥ ̸⊂ kerQ.

By using a perturbation argument, we can easily prove the
SPL in Lemma 1 by using the NSPL in Theorem 1.

Corollary 1. The SPL is a special case of the NSPL.

We can also show Lemma 2 using the NSPL in Theorem 1.

Corollary 2. Lemma 2 is a special case of Theorem 1.

To illustrate that Theorem 1 is indeed more general than
Lemma 2 and to make the conservatism introduced by (3)
in Lemma 2 more concrete, we provide an algebraic example.

Example 3. Consider the matrices

Q =

3 1 −2
⋆ 1 −1
⋆ ⋆ 1

 , U⊤ =

1 0
1 1
0 1

 and V ⊤ =

 1
0
−1

 .

Relevant annihilators are given by

U⊥ =
[
1 −1 1

]⊤
and V⊥ =

[
1 −1 1
0 1 0

]⊤
.

It is straightforward to verify that

U⊤
⊥QU⊥ = 1 ≽ 0 and V ⊤

⊥ QV⊥ =

[
1 −1
⋆ 1

]
≽ 0.

Since imU⊤ ∩ imV ⊤ = im
[
1 0 −1

]⊤ ̸= {0}, we infer
that (3) does not hold. Hence, we cannot apply Lemma 2.
However, we can still use Theorem 1 to conclude that there
exists a solution X to (4), because (10) is trivially satisfied.
To see this, note that U⊤

⊥QU⊥ = 1 ≻ 0, such that there does
not exist a nonzero x ∈ kerU ∩ kerV with x⊤Qx = 0 at all.

Remark 1. The proof of Theorem 1 is constructive. It also
shows that, if U , V and Q are real-valued, the result holds
with the solution X to (4) being real-valued as well.

Although a rigorous proof has not been published before,
special versions of the NSPL have already proved useful in
formulating LMI relaxations in robust control [12]. In the next
section, we revisit the motivating example from Section II,
for which we showed that the SPL and Lemma 2 did not
apply, and utilize Theorem 1 to find a solution. We will
also demonstrate applications of Theorem 1 to matrix dilation
theory, interpolation and a matrix S-lemma, which is used in
modern data-driven techniques.

IV. APPLICATIONS

In this section, we present several relevant applications of
Theorem 1. For each of the applications below, the crucial
steps in their respective proofs are achieved through the NSPL.

A. Marginal stability and stabilizability revisited
First, we revisit the motivating example discussed in Sec-

tion II, for which we demonstrated that neither the strict
projection lemma nor Lemma 2 could be applied. Using
Theorem 1 we derive a non-strict version of (9) that can
be used to test marginal stability of the system (6). The
resulting condition is presented in (P1.3), below, along with its
counterpart that can be used for observer synthesis in (P1.2).

Proposition 1. The following statements are equivalent:
(P1.1) The system (6) is marginally stable.
(P1.2) There exist a symmetric positive-definite matrix P ∈

Snx
≻0 and a matrix X ∈ Rnx×nx such that[

P A⊤X⊤

⋆ X +X⊤ − P

]
≽ 0. (11)

(P1.3) There exist a symmetric positive-definite matrix S ∈
Snx
≻0 and a matrix X ∈ Rnx×nx such that[

S AX
⋆ X +X⊤ − S

]
≽ 0. (12)
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Moreover, any matrix X satisfying (11) or (12) is non-singular.

Although this is not the main focus of this note, let us elaborate
somewhat on the two characterizations of marginal stability
obtained in Proposition 1. They are equivalent, but each is
useful in different applications. For instance, (P1.2) is useful
for observer synthesis by replacing A with A + LC and
applying the linearizing change of variables ZL = XL. Simi-
larly, (P1.3) can be used for controller synthesis by substituting
A with A + BK and performing the linearizing change of
variables KX = ZK . Since no products between A and P or
S appear, both (P1.2) and (P1.3) can be used, following the
same development as in [17], to synthesize polytopic/switched
observers/controllers for polytopic or switched linear systems,
while guaranteeing marginal stability of the closed-loop (or
estimation error) system using a polytopic/switched weak
Lyapunov function.

B. Interpolation and the matrix S-procedure

We can also apply the NSPL to derive the interpolation
result below, which is a version of [12, Lemma A.2] with
slightly weaker assumptions.

Lemma 3. Let R ∈ Sm≺0 and

P =

[
Q S
⋆ R

]
∈ Sn+m

with Q− SR−1S⊤ ≽ 0. Then, for any z ∈ Rn and w ∈ Rm,
there exists some matrix ∆ ∈ Rm×n such that

w = ∆z and
[
I
∆

]⊤
P

[
I
∆

]
≽ 0, (13)

if and only if [
z
w

]⊤
P

[
z
w

]
⩾ 0. (14)

Interpolation results, such as the one in Lemma 3, have been
used in LMI relaxations techniques for robust control [12].
Interestingly, Lemma 3 can also be used to derive the matrix
S-lemma below.

Lemma 4. Let M ∈ Sn+m and

N =

[
N11 N12

⋆ N22

]
∈ Sn+m,

with N22 ≺ 0 and N11−N12N
−1
22 N⊤

12 ≽ 0. Then, the following
statements are equivalent:

(L4.1)
[
I
Z

]⊤
M

[
I
Z

]
≻ 0 for all Z with

[
I
Z

]⊤
N

[
I
Z

]
≽ 0.

(L4.2) There exists some α ⩾ 0 such that M − αN ≻ 0.

Lemma 4 is [13, Corollary 12] without the requirement that
N is non-singular. Similar non-strict results have proved
instrumental in recent (direct) data-driven control applications,
see, e.g., [13], [22]–[25], which, in turn, demonstrates the
relevance of the NSPL also in this area.

C. Matrix dilations

Finally, we indicate that Theorem 1 also has applications in
matrix (or operator) dilation theory [26], such as in the result
stated below.

Lemma 5. Let A ∈ Rm×n, B ∈ Rm×p and C ∈ Rq×n. Then,
there exists D ∈ Rq×p with∥∥∥∥[A B

C D

]∥∥∥∥ ⩽ 1 (15)

if and only if ∥∥[A B
]∥∥ ⩽ 1 and

∥∥∥∥[AC
]∥∥∥∥ ⩽ 1. (16)

A proof based on Theorem 1 can be found in the Appendix.

V. CONCLUSIONS

In this technical note, we presented a non-strict generaliza-
tion of the projection lemma. This non-strict projection lemma
was shown to include both the strict projection lemma and an
earlier non-strict version of the projection lemma as special
cases, thereby showing that our contribution generalizes these
existing results. In addition, we showed several applications
of this novel non-strict projection lemma, for which existing
results could not be applied. One such application is analyzing
marginal stability (or performing marginal stabilization) of
discrete-time LTI systems, for which we derived several LMI-
based conditions. The resulting stability conditions are such
that they can be used for controller and observer synthesis.
They may be further extended to accommodate synthesis for
polytopic/switched linear systems using a polytopic/switched
weak Lyapunov function to guarantee marginal stability for
the corresponding closed-loop system. We also demonstrate
applications of our results to dilation theory as well as in-
terpolation, where, for the latter, we show that the matrix S-
lemma, which proves instrumental in the context of (direct)
data-driven control, naturally follows.
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APPENDIX

A. Preliminaries
Lemma 6 (Schur complement [1, p. 8, 28]). Let Q ∈ Hm,
R ∈ Hn and S ∈ Cm×n. Then,[

Q S
⋆ R

]
≽ 0 (17)

if and only if R ≽ 0, Q−SR+SH ≽ 0 and S(I−RR+) = 0.
If R is non-singular, (17) holds if and only if R ≻ 0 and
Q− SR−1SH ≽ 0.

Lemma 7 (S-lemma [1, p. 24]). Let M,N ∈ Sn and suppose
that there exists some x̄ ∈ Rn such that x̄⊤Nx̄ > 0. Then, the
following statements are equivalent:
(L7.1) x⊤Mx > 0 for all x ∈ Rn \{0} such that x⊤Nx ⩾ 0.
(L7.2) There exists α ⩾ 0 such that M − αN ≻ 0.

Lemma 8 (Finsler’s lemma [27, Theorem 2.2], [28]). Let
M,N ∈ Sn. Then, the following statements are equivalent:
(L8.1) x⊤Mx > 0 for all x ∈ Rn \{0} such that x⊤Nx = 0.
(L8.2) There exists α ∈ R such that M − αN ≻ 0.

B. Proof of Theorem 1
Necessity: Suppose there exists X ∈ Cm×n such that (4)

holds. By definition of the annihilators U⊥ and V⊥, we have
UU⊥ = 0 and V V⊥ = 0. Hence, we conclude

UH
⊥
(
Q+ UHXV + V HXHU

)
U⊥ = UH

⊥QU⊥ ≽ 0

and

V H
⊥
(
Q+ UHXV + V HXHU

)
V⊥ = V H

⊥QV⊥ ≽ 0,

which shows that (5) holds. It remains to show that (10) holds
as well. Let x ∈ kerU ∩ kerV ∩ {ξ ∈ Cp | ξHQξ = 0}. If
S ∈ Hp

≽0 is a matrix with S2 = Q+UHXV +V HXHU , then

∥Sx∥2 = xH(Q+ UHXV + V HXHU)x = xHQx = 0.

We obtain

0 = Sx = S2x = (Q+ UHXV + V HXHU)x = Qx,

i.e., x ∈ kerQ. This shows that (10) holds.
Sufficiency: Suppose that (5) and (10) hold. Let T ∈ Cp×p

be a non-singular matrix, whose columns in the partition T =[
T1 T2 T3 T4 T5

]
are chosen to satisfy

imT4 = kerU ∩ kerV ∩ kerQ, (18)

im
[
T3 T4

]
= kerU ∩ kerV, (19)

im
[
T1 T3 T4

]
= kerU, (20)

im
[
T2 T3 T4

]
= kerV. (21)

By a congruence transformation with T , (4) translates into

Y := THQT + (UT )HX(V T ) + (V T )HXH(UT ) ≽ 0. (22)

Here, the lack of strict inequalities necessitated a more in-
volved congruence transformation (with T ) if compared to the
SPL’s proof. Furthermore, the SPL is proved by constructing
some X such that[
T1 T2 T3

]H
(Q+UHXV +V HXHU)

[
T1 T2 T3

]
≻ 0.

In contrast, we will see that such a strict inequality cannot be
achieved in the current proof. As a result, we have to carefully
determine X such that[

T1 T2 T3

]H
(Q+ UHXV + V HXHU)T5,

satisfies suitable nullspace properties.
Using (18), let us proceed partitioning W := THQT

according to T as

W =


W11 W12 W13 0 W15

⋆ W22 W23 0 W25

⋆ ⋆ W33 0 W35

0 0 0 0 0
⋆ ⋆ ⋆ 0 W55

 . (23)

Similarly, using (20), (21) and (18), the term (UT )HX(V T )
in (22) reads as

(UT )HX(V T ) =


0

(UT2)
H

0
0

(UT5)
H

X


(V T1)

H

0
0
0

(V T5)
H


H

. (24)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2024.3371374

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 09,2024 at 12:55:06 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2023

It follows from (20) and (21), respectively, that
[
UT2 UT5

]
and

[
V T1 V T5

]
have full column rank. Using (23) and (24),

Y in (22) reads asY1 0 Y2

0 0 0
⋆ 0 Y3

 = (25)


W11 W12 +KH W13 0 W15 +MH

⋆ W22 W23 0 W25 + L
⋆ ⋆ W33 0 W35

0 0 0 0 0
⋆ ⋆ ⋆ 0 W55 +N +NH

 ≽ 0,

where [
K L
M N

]
=

[
(UT2)

H

(UT5)
H

]
X

[
V T1 V T5

]
.

Since
[
UT2 UT5

]
and

[
V T1 V T5

]
have full column rank,

observe that

X =

[
(UT2)

H

(UT5)
H

]+ [
K L
M N

] [
V T1 V T5

]+
(26)

satisfies (4) for any K, L, M and N that satisfy (25). In the
remainder of this proof, we construct such K, L, M and N .

First, we construct K that renders Y1 in (25) positive semi-
definite. To this end, note that, due to (5), (20) and (21),[

W11 W13

⋆ W33

]
≽ 0 and

[
W22 W23

⋆ W33

]
≽ 0. (27)

It also follows from (10) that

xHQx ̸= 0 for all x ∈ kerU ∩ kerV with x /∈ kerQ.

Thus, by construction of T3 and using (27), we infer

W33 = TH
3 QT3 ≻ 0.

Hence, we can apply Lemma 6 to (27) to obtain

W11 −W13W
−1
33 WH

13 ≽ 0 and W22 −W23W
−1
33 WH

23 ≽ 0.
(28)

Since W33 ≻ 0, Lemma 6 reveals that Y1 ≽ 0 if and only if[
W11 W12 +KH

⋆ W22

]
−
[
W13

W23

]
W−1

33

[
W13

W23

]H
≽ 0.

By (28), K = −WH
12 + W23W

−1
33 WH

13 renders the latter
inequality valid and, hence, Y1 ≽ 0.

Next, we apply Lemma 6 to see that (25) is equivalent to

Y1 ≽ 0, Y3 − Y H
2 Y +

1 Y2 ≽ 0 and Y H
2 (I − Y1Y

+
1 ) = 0.

We have already constructed a matrix K such that Y1 ≽ 0.
Let us now construct L and M such that Y H

2 (I−Y1Y
+
1 ) = 0,

which, due to the symmetry of Y1Y
+
1 , is equivalent to (I −

Y1Y
+
1 )Y2. Hence, it suffices to find L and M such that we

can write Y2 as Y2 = Y1P̃ for some P̃ , i.e.,W15 +MH

W25 + L
W35

 =

W11 W13W
−1
33 WH

23 W13

⋆ W22 W23

⋆ ⋆ W33

 P̃ , (29)

where we have substituted the earlier constructed matrix K.
A particular choice of P̃ , L and M that satisfies (29) is

P̃ =

 0
0

W−1
33 W35

 ,

[
MH

L

]
=

[
−W15 +W13W

−1
33 W35

−W25 +W23W
−1
33 W35

]
.

It remains to construct N such that

0 ≼ Y3 − Y H
2 Y +

1 Y2 = W55 +N +NH − Y H
2 Y +

1 Y2, (30)

which we achieve by choosing N = αI with α > 0
sufficiently large to ensure that (30) holds. Since we have
found K, L, M and N for which (25) holds, X as in (26)
satisfies (4), which completes the proof.

C. Proof of Corollary 1

We prove Lemma 1 by relying on Theorem 1.
Necessity: Suppose that (1) holds and let Q̃ = Q − ϵI for

some ϵ > 0 such that Q+ UHXV + V HXHU ≻ ϵI . Hence,

Q̃+ UHXV + V HXHU ≽ 0.

By Theorem 1, we infer UH
⊥Q̃U⊥ ≽ 0 and V H

⊥ Q̃V⊥ ≽ 0. Since
U⊥ and V⊥ have full column rank, we conclude

UH
⊥QU⊥ ≽ ϵUH

⊥U⊥ ≻ 0 and V H
⊥QV⊥ ≽ ϵV H

⊥V⊥ ≻ 0.

Sufficiency: Suppose that (2) holds. We can find some
sufficiently small ϵ > 0 such that UH

⊥QU⊥ ≻ ϵUH
⊥U⊥ and

V H
⊥QV⊥ ≻ ϵV H

⊥V⊥. Then, Q̃ := Q− ϵI satisfies

UH
⊥Q̃U⊥ ≻ 0 and V H

⊥ Q̃V⊥ ≻ 0. (31)

Thus, (5) holds. It remains to show (10), i.e.,

kerU ∩ kerV ∩ {ξ ∈ Cp | ξHQ̃ξ = 0} ⊂ ker Q̃,

such that we can apply Theorem 1 and conclude (1) due to
the ϵ perturbation of Q. To show (10), let ξ ∈ kerU ∩ kerV
with ξHQ̃ξ = 0. Then, there exists some η with ξ = U⊥η. It
follows that 0 = ξHQ̃ξ = ηHUH

⊥Q̃U⊥η, which, due to (31),
implies η = 0 and thus ξ = 0. This indeed implies ξ ∈ ker Q̃,
which concludes the proof of (10).

D. Proof of Corollary 2

We prove Lemma 2 by employing Theorem 1. To this end,
it suffices to show that (3) and (5) imply (10). Suppose that (3)
and (5) hold and let ξ ∈ kerU ∩kerV be such that ξHQξ = 0.
Then, there exist ζ and η such that ξ = U⊥ζ and ξ = V⊥η. It
follows that

0 = ξHQξ = ζHUH
⊥QU⊥ζ = ηHV H

⊥QV⊥η.

Using (5), this implies that UH
⊥Qξ = 0 and V H

⊥Qξ = 0. Hence,

Qξ ∈ kerUH
⊥ = (imU⊥)

⊥ = (kerU)⊥ = imUH

and, similarly, Qξ ∈ imV H, i.e.,

Qξ ∈ imUH ∩ imV H (3)
= {0}.

Thereby, (10) holds.
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E. Proof of Proposition 1
(P1.2): It is well-known, see, e.g., [14, p. 211], that (P1.1)

is equivalent to the existence of P ∈ Snx
≻0 satisfying (7), which

is equivalent to the existence of P ∈ Snx
≻0 such that (5) holds

with

Q =

[
P 0
0 −P

]
, U⊥ =

[
I
0

]
and V⊥ =

[
−I
A

]
.

To complete the key step in this proof, we aim to apply
Theorem 1. We can take U =

[
0 I

]
and V =

[
A I

]
. Next,

we will show, for this particular problem, that (5) implies (10).
To this end, let x ∈ kerU ∩ kerV satisfy x⊤Qx = 0. Note
that x ∈ kerU implies that x = (y⊤, 0)⊤ for some y ∈ Rnx .
Moreover, (y⊤, 0)Q(y⊤, 0)⊤ = y⊤Py = 0 implies y = 0,
since P ≻ 0 and, thus, x = 0 ∈ kerQ. It follows that (10) is
valid as well. By Theorem 1, we find that P ∈ Snx

≻0 satisfies (7)
if and only if there exists X ∈ Rnx×nx such that[

P 0
⋆ −P

]
+

[
0
I

]
X

[
A I

]
+

[
A⊤

I

]
X⊤ [

0 I
]
≽ 0. (32)

Thus, (P1.1) and (P1.2) are equivalent. To see that X sat-
isfying (11) is non-singular, we note that (11) implies that
X +X⊤ ≽ P ≻ 0, which holds only if X is non-singular.

(P1.3): The proof is completed using (8) and following the
steps as for (P1.2) with the substitutions P ← S and A← A⊤.

F. Proof of Lemma 3
Necessity: Suppose there exists ∆ ∈ Rm×n for which w =

∆z. It immediately follows that (14) holds, since[
z
w

]⊤
P

[
z
w

]
= z⊤

[
I
∆

]⊤
P

[
I
∆

]
z

(13)
⩾ 0.

Sufficiency: Suppose that (14) holds. If z = 0, this
inequality reads as w⊤Rw ⩾ 0. Due to R ≺ 0, this implies
w = 0. Then, by choosing ∆ = −R−1S⊤, we infer w = ∆z
and, by assumption,[

I
∆

]⊤
P

[
I
∆

]
= Q− SR−1S⊤ ≽ 0.

Next, suppose z ̸= 0. Using Lemma 6 (Schur complement)
and R ≺ 0, the desired inequality in (13) can be expressed as[

Q+ S∆+∆⊤S⊤ ∆⊤

⋆ −R−1

]
≽ 0. (33)

To guarantee w = ∆z, we must have, for some H ∈ Rm×n,

∆ = wz+ +H(I − zz+). (34)

It follows, by substituting (34) into (33), that there exists ∆
satisfying (13), if and only if there exists H such that

Ψ+ U⊤HV + V ⊤H⊤U ≽ 0, (35)

with U =
[
S⊤ I

]
, V =

[
I − zz+ 0

]
and

Ψ =

[
Q+ Swz+ + (Swz+)⊤ (wz+)⊤

⋆ −R−1

]
.

The key step of this proof is done by applying Theorem 1
to find that a matrix H satisfying (35) exists, if and only

if (5) and (10) hold (for Q replaced by Ψ). We introduce the
annihilators

U⊥ =

[
I
−S⊤

]
and V⊥ =

[
z 0

Rw I

]
.

We have U⊤
⊥ΨU⊥ = Q− SR−1S⊤ ≽ 0, by assumption, and

V ⊤
⊥ ΨV⊥ =[

z⊤Qz + z⊤Sw + (z⊤Sw)⊤ + w⊤Rw 0
⋆ −R−1

]
(14)
≽ 0.

Next, we show that (10) holds. Since z ̸= 0, we have

kerU ∩ kerV = im

[
Iz
−S⊤z

]
= im

[
I
−S⊤

]
z. (36)

It follows from (36) that there exists x ∈ kerU ∩ kerV \ {0}
such that x⊤Ψx = 0 if and only if

z⊤
[

I
−S⊤

]⊤
Ψ

[
I
−S⊤

]
z = ∥(Q−SR−1S⊤)

1
2 z∥2 = 0, (37)

where we used the fact that, by assumption, Q−SR−1S⊤ ≽ 0.
It follows that x⊤Ψx = 0 for any x ∈ kerU ∩ kerV and,
hence, (10) holds if kerU ∩ kerV ⊂ kerΨ. We have

Ψ

[
U
V

]
⊥
=

[
Q+ Swz+

wz+ +R−1S⊤

]
z =

[
Qz + Sw

w +R−1S⊤z

]
. (38)

From (14) and the fact that R ≺ 0, we have

0 ⩽

[
z
w

]⊤
P

[
z
w

]
= z⊤Qz + z⊤Sw + w⊤S⊤z + w⊤Rw,

= (w +R−1S⊤z)⊤R(w +R−1S⊤z) ⩽ 0,

and, hence, w = −R−1S⊤z. Substitution in (38) yields

Ψ

[
U
V

]
⊥
=

[
(Q− SR−1S⊤)z

0

]
(37)
= 0,

such that (10) holds. We apply Theorem 1 to conclude that
there exists H satisfying (35) and, thus, ∆ in (34) satis-
fies (13).

G. Proof of Lemma 4
(L4.2)⇒ (L4.1): Suppose that (L4.2) holds. Then, for all

Z ∈ Rm×n such that
[
I Z⊤]N [

I Z⊤]⊤ ≽ 0, we have[
I
Z

]⊤
M

[
I
Z

]
≻ α

[
I
Z

]⊤
N

[
I
Z

]
≽ 0.

(L4.1)⇒ (L4.2): Suppose that (L4.1) holds. By Lemma 3,
for any x = (w⊤, z⊤)⊤ such that x⊤Nx ⩾ 0, there exists
Z ∈ Rm×n such that

w = Zz and
[
I
Z

]⊤
N

[
I
Z

]
≽ 0. (39)

Firstly, we consider the case where N has at least one
positive eigenvalue. Take any x = (w⊤, z⊤)⊤ ̸= 0 such that
x⊤Nx ⩾ 0 and let Z be as in (39). It follows, by (L4.1), that[
I Z⊤]M [

I Z⊤]⊤ ≻ 0 and, hence,

0 < z⊤
[
I
Z

]⊤
M

[
I
Z

]
z

(39)
= x⊤Mx. (40)
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Thus, (L7.1) holds and we can apply Lemma 7 to conclude
that (L4.2) holds. Secondly, we consider the case where N
has no positive eigenvalues, i.e., N ≼ 0. Take any x =
(w⊤, z⊤)⊤ ̸= 0 such that x⊤Nx = 0 and let Z be as in (39).
Again, it follows, by (L4.1), that

[
I Z⊤]M [

I Z⊤]⊤ ≻ 0.
Thus, (40) holds and we can apply Lemma 8 to conclude that
there exists some α ∈ R such that M−αN ≻ 0. If α ⩾ 0, we
are done. Otherwise, since N ≼ 0, we obtain αN ≽ 0 and,
thus,

M − 0 ·N = M ≻ αN ≽ 0, (41)

which completes our proof as well.

H. Proof of Lemma 5
The norm inequality (15) can be expressed as an LMI,

which, using Lemma 6, can be, equivalently, expressed as

0 ≼


I 0 A B
⋆ I C D
⋆ ⋆ I 0
⋆ ⋆ ⋆ I

 = Q+ U⊤DV + V ⊤D⊤U, (42)

with

Q =


I 0 A B
⋆ I C 0
⋆ ⋆ I 0
⋆ ⋆ ⋆ I

 , U =


0
I
0
0


⊤

and V =


0
0
0
I


⊤

.

We introduce the relevant annihilators

U⊥ =


I 0 0
0 0 0
0 I 0
0 0 I

 and V⊥ =


I 0 0
0 I 0
0 0 I
0 0 0

 . (43)

Necessity: By assumption, (42) holds. It follows that

U⊤
⊥QU⊥ =

[
I A B
⋆ I 0
⋆ ⋆ I

]
≽ 0 and V ⊤

⊥ QV⊥ =
[
I 0 A
⋆ I C
⋆ ⋆ I

]
≽ 0,

(44)
which implies the norm inequalities in (16).

Sufficiency: Suppose (16) holds, which is equivalent
to (44). It remains to show that (10) holds, such that we can
apply the NSPL which finishes the proof. To this end, note
that (44) implies, using Lemma 6, that[
I A
⋆ I

]
≽ 0,

[
I −BB⊤ A

⋆ I

]
≽ 0 and

[
I − C⊤C A

⋆ I

]
≽ 0.

(45)
Let x = (x⊤

1 , x
⊤
2 , x

⊤
3 , x

⊤
4 )

⊤ ∈ kerU ∩kerV with x⊤Qx = 0.
Due to (43), we have x2 = 0 and x4 = 0. It follows that

0 = x⊤Qx =

[
x1

x3

]⊤ [
I A
⋆ I

] [
x1

x3

]
(45)
=

∥∥∥∥∥
[
I A
⋆ I

] 1
2
[
x1

x3

]∥∥∥∥∥
2

,

which implies that [
I A
⋆ I

] [
x1

x3

]
= 0. (46)

Next, we observe that

0
(45)
≼

[
x1

x3

]⊤ [
I −BB⊤ A

⋆ I

] [
x1

x3

]
(46)
= −∥B⊤x1∥2, (47)

from which we conclude that B⊤x1 = 0. Similarly, we infer
from (45) that Cx3 = 0. Combining (46), B⊤x1 = 0 and
Cx3 = 0, we obtain

Qx =


I 0 A B
⋆ I C 0
⋆ ⋆ I 0
⋆ ⋆ ⋆ I



x1

0
x3

0

 =


x1 +Ax3

Cx3

A⊤x1 + x3

B⊤x1

 = 0. (48)

In other words, x ∈ kerQ and, thus, (10) holds. Therefore, we
can apply the NSPL to conclude that there exists D ∈ Rq×p

satisfying (15).
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