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Abstract—A unifying design perspective is presented for
emulation-based (dynamic) event-triggered state-feedback
control of nonlinear systems. The main component of this
new approach is to interpret event-triggered controlled sys-
tems as the interconnection of hybrid dynamical systems
and to analyze the overall system using a hybrid small gain
theorem. Based on this new perspective, we unify several
event-triggered schemes that were previously proposed in
the literature under one umbrella. Moreover, the design
approach offers great flexibility and can be used for the
development of novel event-triggered schemes and sys-
tematic modification and improvement of existing trigger-
ing strategies. In this article, we illustrate via simulations
that these novel and/or modified event-triggered controllers
can lead to a further reduction in the required number of
transmissions, while still guaranteeing stability.

Index Terms—Event-triggered control (ETC), hybrid sys-
tems, networked control systems, small-gain theorem.

I. INTRODUCTION

EVENT-TRIGGERED control (ETC) is a class of sampled-
data schemes in which the loop is closed whenever a

predefined state- or output-dependent condition is satisfied [1],
[2], [3]. As such, ETC is a natural generalization of classi-
cal sampled-data control [4], since state-dependent sampling
is used instead of periodic sampling. Reasons for considering
ETC are manifold, and we emphasise the motivation arising
from the emerging resource-aware control applications with
packed-based communication networks. In this context, the
energy consumption, communication bandwidth, and compu-
tational power are limited, and thus, ETC controllers have been
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proposed in the literature as an alternative to (periodic) time-
triggered controllers in order to decrease the communication
load, while preserving appropriate performance and robustness
guarantees [3]. The ETC approach has also been experimentally
verified on various settings including mobile robots [5] and
vehicle platooning [6].

The benefits of ETC were recognized a long time ago [1],
and since then, many different triggering strategies have been
proposed in the literature, see, e.g., [7], [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19] and the references therein.
However, the relationship between these various approaches, the
intuition behind them, and their advantages/disadvantages are
hard to understand as the underlying design tools and philosophy
appear to be different for each particular scheme. Additionally,
the stability proofs for available strategies are often similar,
and thus, repeated for each different scheme, highlighting the
need of a unifying analysis approach. Lastly, it is often unclear
how the design flexibility within each approach affects the
required transmission intervals and system performance. The
recent studies [20], [21] for classes of ETC systems shed some
light on this issue, but a systematic design framework remains
elusive.

The first objective of this article is to show that a large class
of seemingly unrelated ETC schemes can be unified within
one design perspective. As a consequence, valuable insights are
revealed, which were not previously observed in the literature.
Particularly, it provides clear viewpoints on the essential differ-
ences and similarities of previously proposed ETC strategies,
and adds design flexibility to each existing approach, which
allows for a systematic modification of current schemes. In fact,
our second main objective is to use this unifying perspective
to redesign existing and generate novel ETC schemes. Conse-
quently, the proposed approach enables a clearer and systematic
design methodology that may be used to increase interevent
times, as we illustrate via a numerical example. We foresee other
performance objectives, such as convergence speed and robust-
ness may be addressed under the same small-gain perspective.

As commonly adopted in the ETC literature, see, e.g., [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], we
will use an emulation approach. That is, a (potentially dynamic)
continuous-time controller is first designed to robustly stabilize
the continuous-time plant (ignoring the packet-based nature
of communication). This controller is then implemented via
an event-triggering rule, while preserving important stability
properties. For the analysis, we model the resulting closed
loop as a hybrid system using the formalism of [22], decom-
pose it as the interconnection of two subsystems, and consider
the interconnection from a small-gain perspective. Although
hybrid systems have been used to study ETC techniques in,
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e.g., [13], [13] does not explicitly use a small-gain theorem
to analyze them, which limits the understanding of similarities
and differences between the studied ETC techniques. Moreover,
Postoyan et al. [13] does not consider the redesign of existing
techniques. We emphasise that some of these event-triggering
rules might involve auxiliary state variables, see, e.g., [11], [12],
[13], [14], with the aim of potentially reducing the number of
transmissions. Then, at the core of our unifying view, we propose
a specific interconnection that can deal with these auxiliary
variables and cover many techniques in the literature. To study
stability of this interconnection, we adopt a recently proposed
hybrid small-gain theorem [23], which ensures overall stability
provided a small-gain condition involving the two subsystems
is satisfied. Within this perspective, the analysis boils down
to designing the ETC rule (and auxiliary variables, if present)
to ensure that the small-gain conditions hold. Equivalently, in
hybrid systems terminology, the triggering rule synthesis then
consists in shaping the flow and the jump sets (together with
the design of the auxiliary variable dynamics) to enforce the
small-gain theorem conditions.

We highlight that Liberzon et al. [23] provided a general tool
to study stability of hybrid systems using a small-gain theorem,
and its main contributions are unrelated to ETC. Only a particular
ETC scheme is studied as an application of this tool in [23, Sec.
V.C]. Specifically, it demonstrates how to interpret the static
event-triggering rule in [7] with a small-gain analysis. However,
Liberzon et al. [23] adopted a modified version of the triggering
in [7] so that it directly fits the small-gain theorem (we do
not need such modifications in this article). Compared to [23],
we significantly generalize the applications of the small-gain
perspective by covering many ETC techniques in the literature
(not just the one in [7]). Additionally, we propose a novel
interconnection that can deal with dynamic ETC techniques, and
we show how to systematically redesign the existing techniques.

More in detail, in this article, we demonstrate that the small-
gain perspective underlies various important schemes that have
been proposed in the ETC literature, such as the well-known
relative threshold strategy from [7], the dynamic triggering
strategy in [11], the fixed-threshold strategy found in [8], [24],
[25], and [26], the decreasing threshold on the network-induced
error used in [13], [27], [28], [29], and the decreasing threshold
on the Lyapunov function from [14]. It is important to note that,
many crucial steps are needed in order to step from [23] and
be able to unify many ETC schemes under one umbrella. For
instance, in every studied technique, the way we decouple the
system becomes important; sometimes the auxiliary variable is
coupled with the plant/controller system, and sometimes with
the network-induced error system. Additionally, for some dy-
namic techniques, such as the one in [14], new hybrid models
for the auxiliary variable are introduced to be able to apply
the small-gain theorem. Moreover, for some of the strategies,
the proposed approach allows us to provide stronger conclu-
sions. More importantly, the small-gain view not only unifies
many influential strategies in the ETC literature under the same
umbrella, but it also clarifies how to systematically redesign
them to create novel and more general strategies. Particularly,
the analysis reveals that all considered techniques have one
of the gains equal to zero (i.e., cascade-like interconnection),
which is a key factor that opens the door for redesigns that can
potentially enlarge the intertransmission times of the original
techniques. In this context, a relevant contribution of our work
is that we explicitly show how to redesign and combine some

of the original approaches listed above, all done by utilizing the
same small-gain perspective.

Relevant to the work herein, the past work [30] provides a
small-gain approach to ETC of nonlinear systems. However,
Liu et al. [30] only applied to static triggering rules, i.e., those
that relate the state of the controlled system and the network-
induced error. As we mentioned above, our results cover a more
general class of dynamic ETC rules that use auxiliary variables
in their triggering thresholds. Moreover, the small-gain view
in [30] is different to the one presented here, since we model
the closed loop as a hybrid system and we explicitly provide the
dynamics of the network-induced error. This implies that the
corresponding small-gain conditions have to hold in adequately
defined sets, which respect the system dynamics, and thus, the
system gains have a clear meaning.

Some preliminary results of this work have been presented
in [31]. We emphasise that this manuscript is a significant ex-
tension of [31]. Particularly, we study many more ETC strategies
that were not considered in [31], thus highlighting the applica-
bility of the small-gain perspective. In addition, we generalize
the redesigned techniques in [31], and we also present novel
ones.

II. PRELIMINARIES

Let Z>0 := {1, 2, . . .}, Z≥0 := {0, 1, 2, . . .}, R :=
(−∞,∞), and R≥0 := [0,∞). Given a nonempty closed
set A ⊂ Rn and a vector x ∈ Rn, the distance of x to A is
defined as |x|A := miny∈A |x− y|. For a matrixA ∈ Rn×m and
its singular values λi, i ∈ {1, . . . , n}, |A| := max{λ1, . . . , λn}
is its induced 2-norm. For any x ∈ Rn and y ∈ Rm, (x, y)
stands for [x�, y�]�. Given a real, symmetric matrix P , we
denote its maximum and minimum eigenvalue as λmax(P ) and
λmin(P ), respectively. The notation I stands for the identity
map from R≥0 to R≥0. A function γ : R≥0 → R≥0 is of
class-K, if it is continuous, zero at zero and strictly increasing
and it is of class-K∞ if, in addition, it is unbounded. We write
γ ∈ K∞ ∪ {0} when function γ is either of class-K∞ or it is
identically equal to zero. A function γ : R≥0 × R≥0 → R≥0 is
of class-KL, if it is continuous, γ(·, r) is of class-K for each
r ∈ R≥0, and, for each s ∈ R≥0, γ(s, ·) is decreasing to zero.
For x, v ∈ Rn and locally Lipschitz U : Rn → R, U ◦(x; v) is
the Clarke derivative of the function U at x in the direction
v, i.e., U ◦(x; v) := lim supy→x,λ↓0

U(y+λv)−U(y)
λ

. This notion
will be useful as we will be working with locally Lipschitz
Lyapunov functions, which are not differentiable everywhere,
and it reduces to the standard directional derivative 〈∇U(x), v〉
when U is continuously differentiable. For a set S ⊂ Rn and
x ∈ Rn, TS(x) is the tangent cone to S at x, if it is the set of
all vectors v ∈ Rn for which there exist xi ∈ S, τi > 0 with
xi → x, τi → 0 as i → ∞ such that v = limi→∞(xi − x)/τi.

We will model closed-loop ETC systems as hybrid systems
of the form (1), see [22], for which the jump times will corre-
spond to triggering instants. In particular, a hybrid system H, as
considered here, is given by

H
{

q̇ = F(q), q ∈ C
q+ = G(q), q ∈ D

(1)

where q ∈ Rn is the state, C,D ⊆ Rn are the flow and the jump
sets, which are assumed to be closed, and F ,G : Rn → Rn

are continuous functions. Hence, system (1) satisfies the hybrid
basic conditions in [22]. For more information about the notion
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Fig. 1. Block diagram of the considered ETC setting.

of solutions for H, see [22]. We just recall that a solution is
maximal if it cannot be extended and it is complete if its domain
is unbounded. We focus on the following stability property.

Definition 1: A closed set A ⊆ Rn is uniformly globally
asymptotically stable (UGAS) for system H, if there exists
β ∈ KL such that, for any solutionϕ and (t, j) ∈ domϕ, it holds
that |ϕ(t, j)|A ≤ β(|ϕ(0, 0)|A, t+ j), and all maximal solutions
are complete. �

We use [13, Definition 3] to characterize the existence of a
strictly positive amount of time between any two successive
transmissions, which is essential for ETC.

Definition 2: System H has a uniform semiglobal dwell time
outsideA ⊆ Rn, whereA is strongly forward invariant1 for sys-
temH, if for anyΔ > 0, there exists τ(Δ) > 0 such that for each
solution ϕ with |ϕ(0, 0)|A ≤ Δ and all (s, i), (t, j) ∈ dom ϕ
with s+ i ≤ t+ j, ϕ(t, j) /∈ A ⇒ j − i ≤ (t− s)/τ(Δ) + 1.
System H has a uniform semiglobal dwell time if for any
Δ > 0, there exists τ(Δ) > 0 such that for each solution ϕ
with |ϕ(0, 0)| ≤ Δ and for all (s, i), (t, j) ∈ domϕwith s+ i ≤
t+ j, it holds that j − i ≤ (t− s)/τ(Δ) + 1. �

III. HYBRID SYSTEM MODEL

In this section, we present a hybrid system model for the
considered ETC setting, like in [13]. In this context, we adopt the
emulation approach [32], [33], which is explained next. Consider
Fig. 1, where the nonlinear plant has the form

ẋp = fp(xp, u) (2)

with xp ∈ Rnp represents the state and u ∈ Rnu represents the
control input, np, nu ∈ Z>0. The first step in the emulation
approach is to design a controller that robustly stabilizes the plant
(2) in the absence of a communication (packet-based) network.
This will be formalized in SA1 further below. We assume that
the designed controller is nonlinear and has a continuous-time
model of the form

ẋc = fc(xc, xp)

u = gc(xc, xp) (3)

where xc ∈ Rnc is the state of the controller, nc ∈ Z>0. We can
also cover static controllers by writing u = gc(xp) in (3). The
functions fp and fc are assumed to be continuous, and gp and gc
are assumed to be continuously differentiable and, without loss
of generality, zero at zero.

1A setA ⊆ Rn is strongly forward invariant for systemH, if for each solution
ϕ to system (1),ϕ(t, j) ∈ A for some (t, j) ∈ domϕ implies thatϕ(t,′ j′) ∈ A
for any (t,′ j′) ∈ domϕ with t+ j ≤ t′ + j′.

In the second step of emulation, we implement the designed
controller (3) over a network as per Fig. 1. At each transmis-
sion instant tj , j ∈ I ⊆ Z≥0, the controller receives the plant
measurements, updates its knowledge accordingly, sends the
control input to the actuators, and the latter update the signal
applied to the plant. Consequently, plant (2) has no longer access
to u, but to its networked version û, and controller (3) has
access to x̂p, the networked version of xp. We assume ideal
packed-based communication in the sense that x̂p(t

+
j ) = xp(tj)

and û(t+j ) = u(tj), for any j ∈ I. Between two successive
transmission instants, x̂p and û are governed by the dynamics
of the holding devices given by

˙̂xp = f̂p(xp, xc, x̂p, û)

˙̂u = f̂c(xp, xc, x̂p, û) (4)

where f̂p and f̂c are continuous functions. Note that zero-
order-hold devices correspond to f̂p = 0, f̂c = 0, for instance.
We allow f̂p and f̂c to depend on xp, xc, x̂p, and û for the
sake of generality, which allows us to cover cases such as the
model-based techniques in [8].

The transmission instants tj , j ∈ I, are formally defined by
an underlying event-triggering rule, which is to be designed. The
main goal of ETC is to synthesize these rules to communicate
according to the system needs while guaranteeing stability and
satisfactory levels of performance, by closing the loop whenever
a predefined state-dependent triggering condition is satisfied. In
general, the triggering conditions may depend on xp, xc, u, and
some auxiliary variable η ∈ Rnη ,nη ∈ Z≥0 that can be modeled
as

η̇ = h̃(xp, xc, x̂p, û, η), t ∈ (tj , tj+1)

η(t+j ) = �̃ (xp(tj), xc(tj), x̂p(tj), û(tj), η(tj)) (5)

where h̃, �̃ are continuous functions.
Before presenting the hybrid model for the ETC system in

Fig. 1, we introduce some useful variables. Let x := (xp, xc) ∈
Rnx be the augmented state of the plant and controller, where
nx := np + nc. Let e := (exp

, eu) ∈ Rne , ne := np + nu, de-
note the network-induced error, where exp

:= x̂p − xp and
eu := û− u. Note that e(t+j ) = 0 for every j ∈ I. The error
e can be treated as an input to system (2) and (3) and this
observation plays a key role in the sequel. Indeed, from the
definitions of x, e, and (2) and (3), we can write

ẋ = f(x, e) (6)

where f(x, e) := (fp(xp, gc(xc, xp + exp
) + eu), fc(xc, xp +

exp
)). Consequently, we can model the overall closed-loop ETC

system in Fig. 1 as the following hybrid system, which we denote
by H�

H�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = f(x, e)
ė = g(x, e)
η̇ = h(x, e, η)

}
(x, e, η) ∈ C

x+ = x
e+ = 0
η+ = �(x, e, η)

⎫⎬
⎭ (x, e, η) ∈ D

(7)

where f, g, h, and � are continuous functions, with f defined
below (6), and g, h, and � determined from (2) to (5). We
emphasise that the specific dynamics for η and the specific
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Fig. 2. Block diagram of the decomposition.

definition for the flow set C and jump set D will be determined
by the underlying ETC mechanism as we will illustrate in
Section V. In this context, H� in (7) denotes the resulting hybrid
model corresponding to each ETC strategy and we, thus, take
� ∈ {A,B, . . . , G}, where each letter corresponds to a particular
strategy considered in Section V.

IV. SMALL-GAIN PERSPECTIVE

Here, we present the main analytical tools that define our
unifying perspective. Different from other hybrid system ap-
proaches for ETC such as [13], our unifying view is based on
small-gain arguments. To that end, we will propose a novel
decomposition of the closed loop (7). Let us write η in (5) as
η = (η1, η2), whereη1 ∈ Rnη1 ,η2 ∈ Rnη2 , andnη1

, nη2
∈ Z≥0

satisfy nη1
+ nη2

= nη . This decomposition of η is useful and
provides generality for the upcoming analysis, since we will
associate this auxiliary variable with the x-system for some
triggering methodologies and with the e-system for others.
Therefore, the core of the unifying perspective is to interpret
system (7) as a feedback interconnection of the (x, η1)-system
and the (e, η2)-system, as illustrated by Fig. 2. We can then
rewrite the hybrid model (7) as

H1

{
(ẋ, η̇1) = F1(q), q ∈ C(
x+, η+1

)
= G1(q), q ∈ D

H2

{
(ė, η̇2) = F2(q), q ∈ C(
e+, η+2

)
= G2(q), q ∈ D

(8)

where q := (x, e, η) ∈ Rnq , nq := nx + ne + nη , F1(q) :=
(f(x, e), h1(q)), G1(q) :=(x, �1(q)), F2(q) :=(g(x, e),h2(q)),
G2(q) := (0, �2(q)), (h1(q), h2(q)) := h(q), and (�1(q), �2(q))
:= �(q).

The feedback interconnection (8) provides the starting point
for our unifying small-gain view. By means of a hybrid small-
gain theorem (see Theorem 1), we can state conditions that
ensure the stability of the overall system (8). Therefore, the ETC
design focuses on shaping the flow and jump sets C and D of
system (8) [equivalently of system (7)] and defining the flow and
jump dynamics of η to guarantee satisfaction of these conditions.

Before presenting the hybrid small-gain theorem, we formal-
ize the robustness property that is ensured by the emulation-
based controller introduced in (3). Particularly, controller (3)
is designed to ensure the following input-to-state stable (ISS)
condition holds with respect to network-induced errors.

Standing Assumption 1 (SA1): There exist a continu-
ously differentiable function V : Rnx → R≥0, and functions
αV , αV , αV , γ ∈ K∞ such that the following hold.

1) For all x ∈ Rnx , αV (|x|) ≤ V (x) ≤ αV (|x|).

2) For all x ∈ Rnx and e ∈ Rne , 〈∇V (x), f(x, e)〉 ≤
−αV (|x|) + γ(|e|).

�
SA1 implies that system (6) is ISS with respect to input e,

which acts an additive measurement and input disturbance on the
closed-loop system (2) and (3); see [34] for a formal definition
on ISS. This assumption is natural in the ETC context and it has
been adopted in a wide variety of works in the ETC literature,
see, e.g., [7], [11], [12], [13], [35].

We are now ready to present the hybrid small-gain theorem,
which is a crucial technical tool for our unifying perspective.
This theorem is a tailored version from [23, Th. III.3] to study
stability of a closed set A ⊆ Rnq for system (8). The proof is
omitted since it follows similar lines to the proof of [23, Th.
III.3]. Given the system decomposition depicted in Fig. 2, we
write A = A1 ×A2, with A1 ⊆ Rnx+nη1 and A2 ⊆ Rne+nη2 .

Theorem 1: Suppose that, for any i ∈ {1, 2}, there exist lo-
cally Lipschitz functions Vi : Rni → R≥0, αi, αi ∈ K∞, χi ∈
K∞ ∪ {0}, and positive definite functions αi : R≥0 → R≥0,
such that the following hold.

i) For all q ∈ C ∪D ∪ G(D), α1(|(x, η1)|A1
) ≤

V1(x, η1) ≤ α1(|(x, η1)|A1
), and α2(|(e, η2)|A2

) ≤
V2(e, η2) ≤ α2(|(e, η2)|A2

).
ii) For all q ∈ C with F(q) := (F1(q),F2(q)) ∈ TC(q)

V1(x, η1) ≥ χ1 (V2(e, η2))

⇒ V ◦
1 ((x, η1);F1(q)) ≤ −α1(|(x, η1)|A1

)

V2(e, η2) ≥ χ2 (V1(x, η1))

⇒ V ◦
2 ((e, η2);F2(q)) ≤ −α2(|(e, η2)|A2

).

iii) For all q ∈ D and i ∈ {1, 2}, Vi(Gi(q)) ≤ Vi(q).
iv) The small-gain condition χ1 ◦ χ2(s) < s holds for all

s > 0.
Then, there exist αU , αU , ρ ∈ K∞ and positive definite func-

tions αU : R≥0 → R≥0 such that the following hold for U :=
max{V1, ρ(V2)}.

a) For all q ∈ C ∪D ∪ G(D), αU (|q|A) ≤ U(q) ≤
αU (|q|A).

b) For all q ∈ C such that F(q) ∈ TC(q), U ◦(q;F(q)) ≤
−αU (|q|A).

c) For all q ∈ D, U(G(q)) ≤ U(q), where G(q) :=
(G1(q),G2(q)). �

Items (i)–(iii) of Theorem 1 imply that the (x, η1)-system
is ISS with respect to input (e, η2) with the gain χ1, and the
(e, η2)-system is ISS with respect to input (x, η1)with a gainχ2.
Item (iv) of Theorem 1 is the small-gain condition. In Theorem 1,
a max-type Lyapunov function is constructed for system (8)
when the (x, η1)-system and the (e, η2)-system are ISS and the
small-gain condition is satisfied. We will show in Section V that
the conditions of Theorem 1 are verified by various ETC schemes
available in the literature. Indeed, for these schemes, we show
that the design of the flow and jump sets C and D, and of the
η-dynamics in (7), enforces ISS properties for the (x, η1)-system
and the (e, η2)-system as well as the small-gain condition in item
(iv) of Proposition 1. Particularly, we will see that verifying
conditions of Theorem 1 follow similar arguments for all the
studied techniques. For instance, when verifying item (ii) for the
(x, η1)-system, the definition of C will naturally lead to χ1 = 0
for every triggering scheme when computing the decrease on
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V1. In fact, this is an important observation since it opens the
door for the redesign of available triggering techniques so that
the small-gain condition holds with nonzero χ1. This can lead
to enlarging the flow set and thereby potentially reducing the
number of transmissions and the minimum interevent times, as
will be illustrated in a numerical case study in Section VI. On
the other hand, for the (e, η2)-system, to verify item (ii), we
will essentially prove the ISS property vacuously, i.e., we select
χ2 such that V2(e, η2) ≥ χ2(V1(x, η1)) never holds (outside the
origin). Lastly, item (iii) will often hold trivially since e+ = 0
and x+ = x.

Using Theorem 1 and extra conditions on the hybrid time
domains of its solutions, see [13, Th. 1], we can state UGAS of
set A for system (8), as formalized next.

Theorem 2: Consider system (8) and a given closed set A ⊆
Rnq . Suppose that the following hold.

1) Conditions (i)–(iv) of Theorem 1 hold.
2) System (8) has a uniform semiglobal dwell time outside

set A.
3) Maximal solutions are complete.

Then, set A is UGAS for system (8). �
Formally, the proposed ETC design approach boils down to

designing the flow and jump sets C and D, and the flow and
jump dynamics of the auxiliary variable η [i.e., functions h
and � in (7)], so that the conditions in Theorems 1 and 2 are
satisfied. We emphasise that this perspective is general enough
to encompass various popular ETC schemes available in the
literature, which can all be reinterpreted using this small-gain
view. Additionally, the proposed small-gain view not only can
recover available results, but it also can be used for the develop-
ment of new triggering conditions, and systematic modification
and improvement of existing triggering strategies, which can
potentially generate longer interevent times.

V. MAIN RESULTS

In this section, we illustrate how to apply the unifying
small-gain perspective by revisiting previous event-triggering
techniques proposed in the literature. For each ETC technique,
we first specify the corresponding hybrid model (7) with flow
and jump sets C, D, and η-dynamics when relevant. Then, we
state UGAS by showing that all conditions of Theorem 2 are
satisfied. Lastly, we show how to modify these previous ETC
techniques in order to enlarge the flow set C and shrinking
the jump set D, while maintaining the UGAS property. All the
proofs are deferred to the Appendix to avoid breaking the flow
of exposition.

A. Relative Threshold Strategy in [7]

We start with the well-known technique proposed by Tabuada
in [7], which has been exploited and extended in various other
contexts, see, e.g., [15], [36], [37], [16], [38], [23], [39], [40],
[41], [12], [10]. We will refer to it throughout as the relative
threshold technique.

1) Model: The relative threshold technique in [7] does not
require an additional auxiliary variable η, i.e., nη = 0. There-
fore, the resulting hybrid model here is (7) with state q := (x, e)
only. Next we define the flow and jump sets. The triggering rule
in [7] corresponds to γ(|e|) ≥ σαV (|x|), where σ ∈ (0, 1) is a
design parameter, and αV , γ ∈ K∞ come from SA1. This leads

to the flow and jump sets

C := {q : γ(|e|) ≤ σαV (|x|)}
D := {q : γ(|e|) ≥ σαV (|x|)} (9)

see also [13], [35] for similar hybrid models for the relative
threshold technique. We use HA to denote the hybrid model
resulting from the relative threshold strategy described above,
i.e., system (7) without η and flow/jump sets as per (9).

We assume the following on the functions f, g, αV , and γ.
Assumption 1: The functions f , g in (7), and α−1

V , γ ∈ K∞
from SA1 are locally Lipschitz. �

The Lipschitz conditions in Assumption 1 are stated to guar-
antee the existence of a uniform semiglobal dwell time outside
the attractor specified below, which is needed to state UGAS via
Theorem 2. This is formalized in Corollary 1, as follows.

2) Analysis: Let A = A1 ×A2 with

A1 := {x ∈ Rnx : x = 0}, A2 := {e ∈ Rne : e = 0}. (10)

In the following, we show that set A is UGAS for system HA

via Theorem 2. To that end, we first need to show conditions
(i)–(iv) of Theorem 1 hold. In fact, we show in Proposition 1 in
the Appendix that the conditions of Theorem 1 hold with gains
χ1 and χ2 given by

χ1(s) = 0, χ2(s) = (1 + ε)
[
γ−1 ◦ σαV ◦ α−1

V (s)
]2

(11)

where ε > 0 can take any value, and γ, αV , αV come from SA1.
To state UGAS via Theorem 2, it remains to show items 2)
and 3), that is, the dwell-time property and the completeness of
maximal solutions. Thanks to Assumption 1, as shown in [7,
Th. III.1] and [13, Th. 4], system HA has a uniform semiglobal
dwell time outside A. Moreover, according to [13, Th. 4], all
maximal solutions to system HA are complete. Therefore, we
can use Theorem 2 to state the following.

Corollary 1: Consider systemHA and suppose Assumption 1
holds. Then, set A defined by (10) is UGAS. �

We can conclude that the relative threshold technique in [7] fits
our small-gain setting. More importantly, this approach reveals
that the gain χ1 in (11), related to the ISS property of the
x-system, is equal to zero. This suggests that we can modify
the triggering condition, i.e., the flow and jump sets, in such a
way that the ISS property of the x-system holds with a nonzero
gain, while still preserving the small-gain condition and, thus,
stability. By doing so, we enlarge the flow set C, and shrink the
set D, which may help generating longer average and minimum
interevent times, as we will illustrate later on with simulations in
Section VI. We formalize this redesign in the following section.

Remark 1: Note that Liberzon et al. [23] already studied
the relative threshold technique [7] with a hybrid Lyapunov
small-gain theorem. The difference here is that we consider
exactly the same condition as in the original paper [7], and not
a modified one as used in [23]. Specifically, Liberzon et al. [23]
considered V2(e) ≥ χ2(V1(x)) as triggering rule, which im-
mediately fits the small-gain theorem. We consider the exact
condition proposed in [7], i.e., γ(|e|) ≥ σαV (|x|). �

Remark 2: The relative threshold technique has also been
studied in [10] using small-gain theorems, but the networked
control system is modeled as a continuous-time system of
the form (6), as opposed to a hybrid system as in (7).
In [10], system (6) is assumed to be ISS, i.e., |x(t)| ≤
max{β(|x(0)|, t), γe(|e|[0,t])} holds for all t ≥ 0, someβ ∈ KL
and γe ∈ K, and the event-triggering condition is developed
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with this trajectory-based gain function γe. In contrast, we use
the ISS-Lyapunov function-based gain functions χ1, χ2 from
Theorem 1. Besides the aforementioned differences, these two
approaches indeed have the same rationale, while noting that
system (7) is ISS if and only if it admits an ISS-Lyapunov
function [34]. However, we can explicitly study how the event-
triggering conditions impact the performance of the system
using Lyapunov function analysis, e.g., through the involvement
of αV , which depicts the decay rate of V , see item (ii) of
SA1. �

3) Redesign: We now formalize the redesign foreshadowed
in the discussion in the following Corollary 1. Particularly, we
modify the original triggering condition (9) by redefining the
flow and jump sets C and D as

C := {(x, e) : (1− δ)γ(|e|) ≤ σαV (|x|)}
D := {(x, e) : (1− δ)γ(|e|) ≥ σαV (|x|)} (12)

where δγ(|e|) is the newly introduced term enlarging the flow
set, and shrinking the jump set, compared to (9). We use Hr

A
to denote the redesign of system HA, i.e., system (7) with
redesigned flow and jump sets (12). To design δ, we rely on
the next assumption, which is satisfied when SA1 holds with
αV , αV , αV all quadratic or all linear, for instance.

Assumption 2: There exists c > 0 such that for any s ≥ 0,
αV ◦ α−1

V (s) ≤ cαV ◦ α−1
V (s). �

The main objective here is to design δ so that Hr
A is UGAS.

Specifically, δ is designed so that conditions of Theorem 2 are
satisfied with χ1 �= 0. The details can be found in the proof of
Proposition 2 in the Appendix. We, thus, have that δ has to be

chosen in the interval
(
0, 1−σ

1−σ+σc

)
. As a result, Theorem 1 holds

with χ1 and χ2 given by

χ1(s) = αV ◦ α−1
V ◦ δ

ν(1− σ)
γ(s1/2)

χ2(s) =

[
γ−1 ◦ (1 + ε)

σ

1− δ
αV ◦ α−1

V (s)

]2
(13)

for all s ≥ 0, where ν ∈ (0, 1) and ε > 0 can be any constants.
All the details can be found in the proof of Proposition 2 in the
Appendix. As a consequence, we derive the UGAS property for
Hr

A by following the analysis in Section V-A2.
Corollary 2: Consider system Hr

A and suppose that Assump-
tions 1 and 2 hold. Then, set A defined by (10) is UGAS. �

B. Dynamic Triggering Strategy in [11]

We note that the relative threshold technique studied in the
previous section did not use the auxiliary variable η. We now
study an event-triggering rule, which does depend on the dynam-
ics of η, with nη = 1. This dynamic technique was introduced
in [11], and it has been extended afterwards to other (distributed)
ETC settings, see, e.g., [12], [29], [42].

1) Model: The dynamic technique in [11] employs η, which
satisfies purely continuous dynamics given by η̇ = −β(η) +
σαV (|x|)− γ(|e|), where η ∈ R≥0,β ∈ K∞ is a designed func-
tion, andαV , γ ∈ K∞ are as per SA1, and σ ∈ (0, 1). Therefore,
the η-dynamics in (7) reduce here to

η̇ = −β(η) + σαV (|x|)− γ(|e|), q ∈ C

η+ = η, q ∈ D (14)

where q := (x, e, η). Moreover, the triggering rule in [11] cor-
responds to η + θ(σαV (|x|)− γ(|e|)) ≤ 0, where θ ∈ R≥0 is a
design parameter. This leads to the flow and jump sets, for θ > 0

C := {q : η + θ(σαV (|x|)− γ(|e|)) ≥ 0, η ∈ R≥0}
D := {q : η + θ(σαV (|x|)− γ(|e|)) ≤ 0, η ∈ R≥0} (15)

and for θ = 0 we define

C := {q : η ≥ 0}, D := {q : η = 0, σαV (|x|) ≤ γ(|e|)}
(16)

where the last inequality in (16) is used to avoid Zeno phe-
nomenon when θ = 0. We then use HB to denote the resulting
hybrid system for the dynamic triggering strategy, i.e., system
(7) with η-dynamics (14) and flow/jump sets (15). Note that the
relative threshold rule in (9) can be seen as the limit case of the
dynamic rule (15) when θ → +∞.

2) Analysis: Let A = A1 ×A2 with

A1 := {(x, η) ∈ Rnx × R≥0 : (x, η) = (0, 0)}
A2 := {e ∈ Rne : θe = 0}. (17)

Note for θ > 0we haveA2 = {e ∈ Rne : e = 0} and for θ = 0,
A2 = Rne . As before, we want to show that the set A is UGAS
via Theorem 2. For this strategy, we divide the analysis in two
cases: θ > 0 and θ = 0. For θ > 0, we have from Proposition 3
in the Appendix that the conditions of Theorem 1 hold with

χ1(s) = 0, χ2(s) =
[
γ−1 ◦ (1 + ε)χ2(s)

]2
(18)

for all s ≥ 0, where χ2(s) =
s
θ + σαV ◦ α−1

V (s), for any ε > 0.
For θ = 0, we have from Proposition 4 in the Appendix that
conditions of Theorem 1 hold with χ1 = χ2 = 0.

It remains to show the dwell time property and that maximal
solutions are complete. First, from [11, Prop. 2.3], we know that
HB admits a uniform semiglobal dwell time outside A when
Assumption 1 holds. Lastly, we show that all maximal solutions
are complete in Lemma 1 in the Appendix. Therefore, from
Theorem 2, we can state the following.

Corollary 3: Consider systemHB and suppose Assumption 1
holds. Then, set A defined by (17) is UGAS. �

We note that in [11], asymptotic stability of (x, η) = 0 was
shown for θ ∈ R≥0. Therefore, with Corollary 3, we not only
recover the results from [11], but also derive stronger conditions
for the case θ > 0, since we show that (x, η, e) = 0 is UGAS.

Remark 3: The dynamic triggering technique analyzed in this
section has also been studied with a trajectory-based small-gain
analysis in [29], see Remark 2 for more details about such
design. �

3) Redesign: Note that our approach reveals that χ1 = 0,
just like it did for the relative threshold technique in the previous
section. Consequently, as in Section V-A, we can exploit this to
redesign the original dynamic technique and, thus, enlarge the
flow setC, and shrink the setD, with the hope of obtaining larger
interevent times. Particularly, we modify the flow dynamics of η,
as well as the flow and the jump sets, so thatχ1 is no longer zero,
while still ensuring the small-gain condition and, thus, stability.
In particular, we modify the dynamics of η to

η̇ = −β(η) + σαV (|x|)− γ(|e|) + δ(γ(|e|)), q ∈ C

η+ = η, q ∈ D (19)
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where β, δ ∈ K∞ are to be designed, and δ is such that I − δ ∈
K∞. The main difference with the original η-dynamics (14) is
that we have added the term δ(γ(|e|)) in the flow map of η, which
slows down the decrease of η and may thus help in reducing the
number of transmissions. We modify the flow and the jump sets
accordingly as

C := {q : η + θ(σαV (|x|)− (I − δ) ◦ γ(|e|)) ≥ 0, η ≥ 0}
D := {q : η + θ(σαV (|x|)− (I − δ) ◦ γ(|e|)) ≤ 0, η ≥ 0}

(20)

where we consider the case θ > 0 for simplicity. Henceforth,
we denote the redesign of HB by Hr

B , i.e., system (7) with
redesigned η-dynamics (19) and flow/jump sets (20).

Exactly as before, the design of δ boils down to ensuring
that the conditions of Theorem 1 hold, which we formalize in
Proposition 5 in the Appendix. Particularly, we take

δ(s) < min

{
ν�

(
s

2(1 + ε)

)
, s/2

}
(21)

where �(s) := α̃1 ◦ α−1
1 ◦ a−1

2 (s), a2(s) :=
s
θ +

σαV (α
−1
V (s)), α1(s) = αV (s) + s, and α̃1(s) := min{(1−

σ)αV (s/2), β(s/2)}. As a result, Theorem 1 holds with

χ1(s) = α1 ◦ α̃−1
1 ◦ 1

ν
δ(γ(s1/2))

χ2(s) =
[
γ−1 ◦ (1 + ε)(I − δ)−1 ◦ a2(s)

]2
(22)

for some ν ∈ (0, 1) and ε > 0.
Remark 4: We note that there always exists a δ ∈ K∞ that

satisfies (21) and I − δ ∈ K∞. Particularly, we can choose

δ(s) := �min

{∫ s

0

min

{
ν
d�(s/(2(1 + ε)))

ds
,
1

2

}
ds,

s

2

}

with � ∈ (0, 1) and � ∈ K∞ is any continuously differentiable
lower bound of �. Then, this function satisfies 0 < dδ(s)

ds < 1
2

and δ(s) < min{ν�( s
2(1+ε) ), s/2} for any s ≥ 0. �

It remains to ensure both the dwell time property and com-
pleteness of maximal solutions. Note that, for any given initial
condition, the first jump generated by Hr

B occurs later than
the one generated by HB . Using this argument, we can prove
that Hr

B has a semiglobal dwell-time outside A. Lastly, com-
pleteness of maximal solutions follows similarly to the proof of
Lemma 1. We can, thus, state the following stability result for
the redesigned dynamic technique.

Corollary 4: Consider system Hr
B and suppose Assump-

tions 1 holds. Then, setA defined by (17) with θ > 0 is UGAS.�

C. Fixed Threshold on Network-Induced Error

Different to the abovementioned two strategies that take into
account bothx and e in their triggering conditions, we now study
a strategy that generates a transmission when |e| is greater than
or equal to a fixed value [35]. This mechanism is considered in
numerous studies, see, e.g., [8], [24], [25], [26], [13, Sec. V.D].

1) Model: The fixed threshold strategy, also called absolute
event-triggering, consists in generating a transmission whenever
|e| ≥ d′ for some tunable parameter d′ > 0. We can equiva-
lently write this condition as γ(|e|) ≥ γ(d′) =: dwhere γ ∈ K∞
comes from SA1, and consider d > 0 as the tunable parameter.
We note that this strategy does not need the auxiliary variable

η, i.e., nη = 0. As a result, the hybrid model for this case
corresponds to (7), without η, and with flow and jump sets
defined as

C := {q : γ(|e|) ≤ d}, D := {q : γ(|e|) ≥ d} (23)

where q := (x, e). As it is clear by now, we use HC to denote
the hybrid system corresponding to the fixed threshold strategy,
i.e., system (7) with flow/jump sets (23).

2) Analysis: Let A = A1 ×A2 with

A1 :=
{
x ∈ Rnx : V (x) ≤ αV ◦ α−1

V (2d)
}

A2 := {e ∈ Rne : γ(|e|) ≤ d} (24)

with V, αV , αV , γ from SA1. Note that the attractor does not
impose x (and e) to be equal to zero as in the previous ETC
strategies, but a more general set whose “size” depends on d.
From Proposition 6 in the Appendix, the conditions of Theo-
rem 1 are verified with χ1 = χ2 = 0.

Note that system HC admits a uniform semiglobal dwell time
and its maximal solutions are complete, as shown in the proof
of [13, Th. 5]. Then, UGAS ofA is derived in view of Theorem 2.

Corollary 5: Consider system HC . Then, set A defined by
(24) is UGAS. �

Remark 5: The stability property established in Corollary 5
can also be viewed as practical stability of the origin, which
guarantees that trajectories converge to an adjustable attractor
including the origin. Here, the attractor is A and it can be made
as small as desired by adjusting parameter d. �

Remark 6: As in previous sections, the proposed small-
gain approach provides enough flexibility to redesign—in this
case—the fixed threshold triggering strategy. Particularly, we
could consider the triggering condition γ(|e|) ≥ d+ δθ(|e|), for
θ : R≥0 → R≥0, instead of γ(|e|) ≥ d, so that the small-gain
condition in Theorem 1 holds with nonzero χ1, χ2. By doing
so, we would change the attractor A2 in (24), which could make
this redesign redundant as we can already change the attractor
A2 by adjusting d. However, we note that the proposed redesigns
in this article are not necessarily exhaustive and many others can
be proposed depending on the chosen objective, by following a
similar philosophy. �

D. Decreasing Threshold on Network-Induced Error

An extra level of flexibility can be added to the fixed threshold
strategy from Section V-C. Particularly, transmissions can be
triggered when |e| crosses a certain decreasing threshold. These
techniques can be found in, e.g., [13], [27], [28], [29].

1) Model: Similar to the dynamic triggering strategy in Sec-
tion V-B, the triggering condition for these strategies can be
written by using the scalar auxiliary variable η, i.e., nη = 1.
Particularly, the hybrid model is given by (7) with η-dynamics

η̇ = −β(η), q ∈ C

η+ = η, q ∈ D (25)

where β ∈ K∞, and the flow and jump sets are defined as

C := {q : γ(|e|) ≤ σβ(η) + d, η ≥ 0, d > 0}
D := {q : γ(|e|) ≥ σβ(η) + d, η ≥ 0, d > 0} (26)

for some σ ∈ (0, 1). We use HD to denote this hybrid system.
Note that jumps occur whenever the norm of the network-
induced error is greater or equal than a decreasing threshold
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on η plus a constant d. For η(0, 0) = 0, this rule reduces to the
fixed threshold strategy.

2) Analysis: Let A = A1 ×A2 with

A1 :=
{
(x, η) ∈ Rnx × R≥0 :

V (x) ≤ αV ◦ α−1
V (2d), η = 0

}
A2 := {e ∈ Rne : γ(|e|) ≤ 2d}. (27)

As usual, we want to show that A is UGAS via Theorem 2.
First, from Proposition 7 in the Appendix, we know that for this
strategy all conditions in Theorem 1 are verified with

χ1(s) = 0, χ2(s) =
[
γ−1 ◦ 2(1 + ε)σβ(s)

]2
(28)

for all s ≥ 0, any σ ∈ (0, 1), ε > 0, and all s ≥ 0. Complete-
ness of maximal solutions and the dwell time condition follow
similarly to the fixed threshold strategy as in Corollary 5. We
can, thus, state the following result.

Corollary 6: Consider system HD. Then, set A defined by
(27) is UGAS. �

3) Redesign: Once again we have that the conditions of
Theorem 1 holds with χ1 = 0 for this strategy, and thus, we
present a redesign that aims to ensure UGAS with nonzero χ1,
and thus, enlarges the flow set C with hopes of obtaining larger
interevent times. To that end, we modify the η-dynamics to

η̇ = −β(η) + δ(γ(|e|A2
)), q ∈ C

η+ = η, q ∈ D. (29)

Note that the redesigned dynamics (29) are different to
(25), in the sense that (29) is no longer open-loop, but it
now involves the network-induced error e. The goal here
is to design δ ∈ K∞ such that the conditions of Theo-
rem 1 hold. It follows from Proposition 8 that for δ(s) <

min
{

ν
2αV ◦ α−1

V ◦ 1
2β

−1
(

s
2(1+ε)σ

)
, ν(1− σ)β ◦ 1

2β
−1(

s
2(1+ε)σ

)}
, with some ν ∈ (0, 1) and ε > 0, then the condi-

tions of Theorem 1 are satisfied with

χ1(s) = max

{
2αV ◦ α−1

V ◦ 2

ν
δ(γ(

√
s))

2β−1 ◦ 1

ν(1− σ)
δ(γ(

√
s))

}

χ2(s) =
[
γ−1 ◦ 2(1 + ε)σβ(s)

]2
(30)

for all s ≥ 0.
As we discussed at the end of Section V-B, we note that,

for any given initial condition, the first jump generated by
Hr

D occurs later than HD. This argument is used to show
the semiglobal dwell-time condition. Lastly, completeness of
maximal solutions follows similarly to the proof of Lemma 1 in
the Appendix. Therefore, we can state the following.

Corollary 7: Consider system Hr
D. Then, set A defined by

(27) is UGAS. �

E. Decreasing Threshold on V

Different from all the triggering rules studied above, where
the triggering conditions are built upon the network-induced
error, we now study the approach in [14], where the objective is
to keep the value of the Lyapunov function V in SA1 below a

time-varying designed threshold that decreases to the origin.
This technique has also been applied for the self-triggered
implementation of linear controllers in [43].

1) Model: Transmissions in [14] are triggered at the
violation of V (x(t)) ≤ −μV (x(tj))(t− tj) + V (x(tj)), t ∈
[tj , tj+1), j ∈ Z≥0, μ > 0, and tj denotes the jth transmission
instant. We first note that SA1 implies

〈∇V (x), f(x, e)〉 ≤ −α̃V (V (x)) + γ(|e|) (31)

holds with α̃V (s) := αV ◦ α−1
V (s), s ≥ 0, for all x ∈ Rnx and

e ∈ Rne . The results of this section will exploit (31), as opposed
to SA1, just to be consistent with [14]. This approach can be
captured by the hybrid model (7) with η-dynamics

η̇1 = −β(η1, η2)

η̇2 = 0

}
q ∈ C

η+1 = V (x)

η+2 = V (x)

}
q ∈ D (32)

with flow and jump sets defined as

C = {q : V (x) ≤ η1, η2 ≥ η1} (33)

D =
{
q : V (x) ≥ η1,

∂V
∂x (x)f(x, e) ≥ −σ1α̃V (V (x))

η1 ≥ 0
}

(34)

where q := (x, e, η1, η2), β is assumed to satisfy β(·, r) ∈ K∞
for each r > 0, and β(s, ·) ∈ K∞ for each s > 0, σ1 ∈ (0, 1)
is a parameter, and functions V and αV come from SA1.
We highlight that, in order to apply the small-gain view, the
technique from [14] is first embedded into a novel hybrid model
(32). In fact, note that we now require a vector η := (η1, η2) to
model the condition from [14], as opposed to scalar η-dynamics
as we used for previous methods. We denote this hybrid system
byHE , i.e., system (7) with η-dynamics (32) and flow/jump sets
(38). We have considered a more general case than [14], since
the strategy in [14] is recovered for β(η1, η2) = μη2, μ > 0. In
general, β is designed such that

β(s1, s2) ≥ σα̃V (s2), s1, s2 ≥ 0 (35)

whereσ ∈ (0, σ1), forσ1 ∈ (0, 1) as per (39). With this choice of
β, we note thatV (x) decreases faster than η1 in view of (31). The
condition ∂V

∂x (x)f(x, e) ≥ −σ1α̃V (V (x)) in the definition of
the set D is used to exclude the Zeno phenomenon. Particularly,
after a jump, we have that η1 = V (x) and it is not necessary to
jump again since the derivative of V needs to be greater or equal
to −σ1α̃V (V (x)) before jumping again.

2) Analysis: Let A = A1 ×A2 with

A1 := {(x, η1, η2) ∈ Rnx × R≥0 × R≥0

(x, η1, η2) = (0, 0, 0)}
A2 := Rne . (36)

We verify the conditions of Theorem 1 in Proposition 9 in the
Appendix, and show that they hold with χ1 = χ2 = 0.

By following similar lines to [13, Th. 6], we can show that
system HE admits a uniform semiglobal dwell time outside A.
Also, its maximal solutions are complete by following similar
arguments as in Lemma 1. We, thus, derive the following stabil-
ity result with the help of Theorem 2.

Corollary 8: Consider systemHE and suppose Assumption 1
holds. Then, set A defined by (36) is UGAS. �
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3) Redesign: We present two redesigns, which we param-
eterize by some constant ξ ∈ {0, 1}. That is, we use ξ = 0 to
define Redesign I, and ξ = 1 for Redesign II. We first modify
η1 in (32) such that

η̇1 = −β(η1, η2) + (1− ξ)δ(|x|) + ξδ1(|e|), q ∈ C

η+1 = V (x), q ∈ D (37)

and flow/jump sets as

C = {q : V (x) + ξδ2(|e|) ≤ η1, η2 ≥ η1} (38)

D =
{
q : V (x) + ξδ2(|e|) ≥ η1

∂V
∂x (x)f(x, e) ≥ −σ1α̃V (V (x)), η1 ≥ 0

}
(39)

where δ, δ1, δ2 ∈ K∞ are to be designed. We denote the re-
designed version ofHE byHr

E . Note that δ relates to Redesign I
(ξ = 0), and δ1, δ2 to Redesign II (ξ = 1). Consider the attractor
sets

A1 := {(x, η1, η2) ∈ Rnx × R≥0 × R≥0

(x, η1, η2) = (0, 0, 0)}
A2 := {e ∈ Rne : ξe = 0}. (40)

Note that A2 = Rne for ξ = 0 and A2 = {0} for ξ = 1. Hence,
when ξ = 0, the attractor setA1 ×A2 is not compact, while it is
compact when ξ = 1. For Redesign I (ξ = 0), we select δ ∈ K∞
so that

δ(s) ≤ σ( 12 − ν)α̃V ◦ α1(s) (41)

holds for all s ≥ 0, where σ > 0 comes from (35), ν ∈ (0, 1/2)
is a design parameter, and α1(s) = min{(1/2)αV (s/2), s/4}.
Note that it is always possible to select a function δ ∈ K∞ that
satisfies (41), take for instance δ = σ( 12 − ν)αV ◦ α1. Proposi-
tion 10 in Section V-E ensures the conditions of Theorem 1 hold
with χ1 = χ2 = 0. Following the similar arguments surround-
ing Corollary 7, we can then state the following.

Corollary 9: Consider system Hr
E with ξ = 0 and suppose

Assumption 1 holds. Then, set A defined by (40) is UGAS. �
Note that the Redesign I (ξ = 0) does not derive a nonzero

χ1 as in the previous sections. This is due to the fact that A2 in
(40) is not compact for ξ = 0. However, the intertransmission
times may still increase since we are enlarging the flow set, as
we illustrate with an example in Section VI. On the other hand,
for Redesign II (ξ = 1), given any ε > 0 and δ2 ∈ K∞, we select
δ1 ∈ K∞ so that δ1(s) < σ(1/2− ν)α̃V ◦ δ2( 1

1+εs) for all s >
0. Then, from Proposition 11, the conditions of Theorem 1 are
satisfied with nonzero gains

χ1(s) = α̃−1
V ◦ 1

(1/2− ν)σ
δ1(

√
s)

χ2(s) = [(1 + ε)δ−1
2 (s)]2 (42)

for all s ≥ 0. Moreover, Redesign II allows for stronger stability
results (for a compact attractor) compared to both [14] and
Redesign I. We formalize it in the following.

Corollary 10: Consider system Hr
E with ξ = 1 and suppose

Assumption 1 holds. Then, the origin is UGAS. �
We will see on an example in Section VI that Redesign

II may provide larger interevent times compared to [14] and
Redesign I.

F. Combined Triggering Strategy

We have already highlighted the flexibility of the proposed
approach in the sense that it not only covers many existing
approaches in the literature, but it also allows for simple re-
design. In this section, we aim to highlight such flexibility even
further by studying a combination of existing ETC strategies,
which we call combined triggering strategy. We only show one
example of such combined strategies, but that many more can
be considered. The combined strategy we consider below is the
combination of the relative threshold in Section V-A and the
decreasing threshold on |e| from Section V-D.

1) Model: The resulting model for this strategy is (7) with
η-dynamics as per (25), and flow and jump sets defined as

C := {q : γ(|e|) ≤ σmax{β(η), αV (|x|)}, η ≥ 0}
D := {q : γ(|e|) ≥ σmax{β(η), αV (|x|)}, η ≥ 0} (43)

where q := (x, e, η) and σ ∈ (0, 1). We denote this model by
HF . Note that the combination of the ETC strategies is reflected
in C and D. Also, for simplicity, we have considered only the
purely decreasing part of the strategy from Section V-D, i.e.,
d = 0 in (26). This strategy has also been studied in [13, Sec.
V.A] with a slightly different triggering condition.

2) Analysis: Let A = A1 ×A2 with

A1 := {(x, η) ∈ Rnx × R≥0 : (x, η) = (0, 0)}
A2 := {e ∈ Rne : e = 0}. (44)

The conditions of Theorem 1 are verified in Proposition 12
in the Appendix. Particularly, we show that for this combined
triggering strategy such conditions hold with gains

χ1(s) = 0

χ2(s) =
[
γ−1 ◦ (1 + ε)σ(αV ◦ α−1

V (s) + β(s))
]2

(45)

for all s ≥ 0 and ε > 0.
The existence of a uniform semiglobal dwell time outside A

for system HF is guaranteed by following similar lines as the
proof in [13, Th. 2]. This with the completeness of maximal
solutions, as discussed in Corollary 3, implies the following
result.

Corollary 11: Consider systemHF and suppose Assumption
1 holds. Then, set A defined by (44) is UGAS. �

3) Redesign: For this redesign, we modify the original η-
dynamics in (25) as

η̇ = −β(η) + δ(γ(|e|)), q ∈ C

η+ = η, q ∈ D (46)

where functions β, δ ∈ K∞ are to be designed. We denote the
redesign of HF by Hr

F , i.e., system (7) with η-dynamics (46)
and flow/jump sets (43). It follows from Proposition 13 in the
Appendix that for δ(s) < να̃1 ◦ α−1

1 ◦ α̂−1
1 ◦ 1

(1+ε)σ s, for some
ν ∈ (0, 1), where α̃1(s) := (1− σ)min{αV (s/2), β(s/2)},
α1(s) = αV (s) + s, and α̂1(s) := αV ◦ α−1

V (s) + β(s), then
the conditions of Theorem 1 are satisfied with gains

χ1(s) = α1 ◦ α̃−1
1 ◦ 1

ν
δ
(
γ(s1/2)

)
χ2(s) =

[
γ−1 ◦ (1 + ε)σ(αV ◦ α−1

V (s) + β(s))
]2

(47)
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for all s ≥ 0. The existence of a uniform semiglobal dwell
time outside A for system Hr

F is guaranteed by using similar
arguments surrounding Corollary 4. This with the completeness
of maximal solutions, as discussed in Corollary 3, implies the
next result.

Corollary 12: Consider system Hr
F and suppose Assump-

tion 1 holds. Then, set A defined by (44) is UGAS. �
Remark 7: An important advantage in studying combined

triggering strategies is that they may generate less transmissions
compared to each individual method. Moreover, the proposed
small-gain view in this article provides a systematic and simple
approach to combine different existing ETC strategies and tackle
their stability. �

VI. NUMERICAL EXAMPLE

We now illustrate how the redesign flexibility that the small-
gain perspective provides can be used to potentially reduce the
number of transmissions. To that end, we study the redesigns
from Sections V-A3, V-B3, V-D3, V-E3, and V-F3, and we com-
pare them to their original versions. Consider for this purpose,
the nonlinear dynamics of a single-link robot arm ẋp = Axp +
Bu− φ(xp), which is stabilized with a state-feedback controller

of the form u = Kxp +B�φ(xp), where A = [0 1
0 0], B =

[0 1]�, and φ(xp) = [0 sin(xp,1)]
�. The gain K is designed

such that the eigenvalues of A+BK are −1 and −2. We
consider that only the state xp is sent over the network, and
thus, e = x̂p − xp. Note that x = xp in (6) since the controller
is static and, thus, nc = 0 in (3). Under this setting, we can
show that SA1 is verified withV (x) = x�Px,P = [ 1 −0.5

−0.5 0.5 ],

αV (s) = λmin(P )s2, αV (s) = λmax(P )s2, αV (s) = (1/2)s2,
and γ(s) = 2(|P |+ |PBK|)2 s2 for any s ≥ 0. Moreover, As-
sumption 2 is satisfied with c = λmax(P )/λmin(P ). We have
chosen σ = 0.1, θ = 1, and β(η) = η for any η ≥ 0. For the
strategy in Section V-E, we have chosen β(η1, η2) as per (35)
with σ1 = 0.99. Lastly, the redesign parameter δ for each trig-
gering strategy has been chosen as per Sections V-A3, V-B3,
V-D3, V-E3, and V-F3, with ν = 0.99 and ε = 10−4, where
applicable. For Redesign II in Section V-E, δ1 is chosen to satisfy
the condition above (42) with δ2(s) = s, s ≥ 0.

We have run simulations for each triggering strategy for
10 different initial conditions x(0, 0) uniformly distributed on
the circle centered at the origin of radius 20. In all cases, we
have selected e(0, 0) = (0, 0) and η(0, 0) = x(0, 0)�Px(0, 0),
when relevant. The obtained average, minimum, and maximum
intertransmissions times over the 10 simulations are summarized
in Table I. We can see that, in every triggering strategy, the
redesigned technique generates larger average interevent times
than the corresponding original one. This translates in fewer
transmissions, while still guaranteeing desirable stability condi-
tions. A similar improvement is seen for the minimum interevent
times, with the exception of the decreasing threshold on |e|
strategy in Section V-D, and the combined strategy technique
in Section V-F, which give the same value as the original
technique. With regards to maximum interevent times, it can
be seen that the considered redesigns also provide an improve-
ment, with the exception of the dynamic triggering strategy in
Section V-B. We note that the redesigns proposed in this article
are not necessarily exhaustive: they open the door for potentially
more extensive redesigns by following the same small-gain
philosophy.

TABLE I
AVERAGE (τAVG), MINIMUM (τMIN), AND MAXIMUM (τMAX)

INTERTRANSMISSION TIMES OVER TEN DIFFERENT INITIAL CONDITIONS AND
AN INTERVAL OF 10 (CONTINUOUS) TIME UNITS

Lastly, we would like to highlight that the purpose of this
section is to show the possible improvements brought by the
redesigned techniques and not to compare the different trigger-
ing conditions with each other; this type of comparisons have
already been done in [11] and [13], for instance.

VII. CONCLUSION

We proposed a unifying perspective to cover various com-
monly used ETC techniques in the literature under one umbrella.
The design consists of choosing the dynamics of auxiliary
variables and the construction of the jump and flow sets in
an appropriate hybrid system description such that a hybrid
small-gain theorem hold. We provided clear viewpoints on the
essential differences and similarities of these ETC strategies.
We also demonstrated the flexibility of the small-gain view as it
easily provides redesigns for each of these schemes, which leads
to the same stability guarantees as the original event generator;
however, typically using less transmissions, as demonstrated by
simulations.

We note that this viewpoint was not directly applicable to
some triggering rules proposed in the literature, such as those
based on time-regularization [44], the dynamic rule in [13,
Sec. V.B], and the event-holding strategy in [45]. It seems
that for these strategies a dissipativity approach might be more
appropriate, which will be investigated in future work. An-
other interesting direction is to study codesign of controller
and ETC rules under a small-gain view. In this context, re-
design of controllers for improved robustness is of interest,
together with the inclusion of plant external disturbances. We
believe that this work can serve as a foundation for these
generalizations.

APPENDIX A

Here, we provide the detailed statements and proofs surround-
ing the main results in Section V.

A. Relative Threshold Strategy in Section V-A

The following proposition shows that the relative threshold
strategy satisfies the conditions of Theorem 1.
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Proposition 1: Consider system HA. Then, the conditions of
Theorem 1 are satisfied with A1, A2 in (10), V1(x) = V (x),
V2(e) = |e|2 for any x ∈ Rnx and e ∈ Rne , α1(s) = αV (s),
α1(s) = αV (s), α2(s) = α2(s) = s2, χ1, χ2 in (11), α1(s) =
(1− σ)αV (s), anyα2 ∈ K∞, with γ,αV coming from Assump-
tion 1, for any s ≥ 0. �

Proof: We first consider the x-system with V1 = V and show
that the conditions of Theorem 1 are satisfied. V1 satisfies item
(i) of Theorem 1 in view of item (i) of SA1. Let q ∈ C. The
definition of set C in (9) implies that γ(|e|) ≤ σαV (|x|), which
with SA1, leads to 〈∇V1(x), f(x, e)〉 ≤ −αV (|x|) + γ(|e|) ≤
−(1− σ)αV (|x|) =: −α1(|x|). Hence, item (ii) of Theorem 1
holds with χ1(s) = 0 for any s ≥ 0. Let q ∈ D. Since x does
not change at jumps, we have that2 V1(x

+) = V1(x) in view of
(7). Then, item (iii) of Theorem 1 holds.

We now consider the e-system with Lyapunov func-
tion V2(e) = |e|2. V2 satisfies item (i) of Theorem 1
with α2(s) = α2(s) = s2 for any s ≥ 0. Let q ∈ C. It
follows from (9) and item (i) of SA1 that γ(|e|) ≤
σαV (|x|) ≤ σαV ◦ α−1

V (V1(x)), and thus, V2(e) = |e|2 ≤
(γ−1 ◦ (σαV ◦ α−1

V (V1(x))))
2 =: χ2(V1(x)). Hence, for any

ε > 0, V2(e) > (1 + ε)χ2(V1(x)) =: χ2(V1(x)) contradicts
the fact that q ∈ C. Consequently, for any α2 ∈ K∞, V2(e) >
χ2(V1(x)) ⇒ 〈∇V2(e), g(x, e)〉 ≤ −α2(|e|) vacuously holds.
On the other hand, when V2(e) = χ2(V1(x)), noting that
V2(e) ≤ χ2(V1(x)) =

1
1+εχ2(V1(x)) on C, we necessarily

have that x = 0 and thus e = 0, and thus 〈∇V2(e), g(x, e)〉 =
−α2(|e|) = 0 holds in this case, for any α2 ∈ K∞. Therefore,
item (ii) of Theorem 1 is verified. Let q ∈ D. We have that
V2(e

+) = 0 in view of (7).
Lastly, the small-gain condition in item (iv) holds as χ1(s) =

0 for any s ≥ 0, concluding the proof. �
The following proposition applies to the redesigned relative

threshold strategy presented in Section V-A3.
Proposition 2: Consider system Hr

A and suppose Assump-
tions 1 and 2 hold. Then, the conditions of Theorem 1 are
satisfied with A1, A2, V1, V2, α1, α1, α2, α2 in Proposition 1,
χ1, χ2 in (13),α1 = (1− ν)(1− σ)αV for someν ∈ (0, 1), and
any α2 ∈ K∞. �

Proof: We only need to prove that items (ii) and (iv) of
Theorem 1 are verified in view of Proposition 1.

Let q ∈ C and consider the x-system with V1 = V . In view
of item (ii) of SA1 and (12), 〈∇V1(x), f(x, e)〉 ≤ −(1−
σ)αV (|x|) + δγ(|e|). Hence, δγ(|e|) ≤ ν(1− σ)αV (|x|),
with ν as above, implies 〈∇V1(x), f(x, e)〉 ≤ −(1− ν)(1−
σ)αV (|x|) =: −α1(|x|). In view of item (i) of SA1 and
using V2(e) = |e|2, δγ(

√
V2(e)) ≤ ν(1− σ)αV ◦ α−1

V (V1(x))
implies δγ(|e|) ≤ ν(1− σ)αV (|x|) and, thus, item (ii) of
Proposition 1 holds with χ1 in (13).

Consider the e-system now and q ∈ C. In view of (12) and

item (i) of SA1, γ(|e|) ≤ σ

1− δ
αV ◦ α−1

V (V1(x)) and, since

V2(e) = |e|2, V2(e) ≤ [γ−1 ◦ ( σ
1−δαV ◦ α−1

V (V1(x))
)
]2. As a

2In all the proofs of the Appendix, when we write (with some abuse of
notation) x+, e+, η+ for vectors x, e, η, we mean x, 0, �2(q) in view of (8),
respectively.

result, in view of the definition ofχ2 in (13) and sinceγ−1 ∈ K∞,
V2(e) > χ2(V1(x)) = [γ−1 ◦ (1 + ε) σ

1−δαV ◦ α−1
V (V1(x))]

2,
which contradicts the fact that q ∈ C. We then follow the same
reasoning as in the proof of Proposition 1.

The last property we need to check is the small-gain condition.

Since δ ∈
(
0, 1−σ

1−σ+σc

)
, there exist ν ∈ (0, 1) sufficiently close

to 1 and ε > 0 sufficiently small such that

δ

1− δ
(1 + ε)

σ

ν(1− σ)
<

1

c
(48)

where c comes from Assumption 2. From (13), for any s ≥ 0

χ1 ◦ χ2(s) = αV ◦ α−1
V

(
δ(1 + ε)

ν(1− σ)

σ

1− δ
αV ◦ α−1

V (s)

)
.

Let s > 0. From (48), and since the involved functions are
strictly increasing, we derive χ1 ◦ χ2(s) < αV ◦ α−1

V ( 1cαV ◦
α−1
V (s)). Invoking Assumption 2, we derive χ1 ◦ χ2(s) < αV ◦

α−1
V (αV ◦ α−1

V (s)) = s. Hence, the small-gain condition is ver-
ified, which concludes the proof.

B. Dynamic Triggering Strategy in Section V-B

The following proposition shows that the dynamic triggering
strategy satisfies the conditions of Theorem 1 with θ > 0.

Proposition 3: Consider system HB with θ > 0. Then,
the conditions of Theorem 1 are satisfied with A1 and
A2 in (17), V1(x, η) = V (x) + η for any (x, η) ∈ Rnx × R,
V2(e) = |e|2 for any e ∈ Rne , α1(s) = min{αV (s/2), s/2},
α1(s) = αV (s) + s, α2(s) = α2(s) = s2, α1(s) = min{(1−
σ)αV (

s
2 ), β(

s
2 )}, any α2 ∈ K∞, and χ1, χ2 in (18), for any

s ≥ 0. �
Proof: We first study the (x, η)-system with the Lyapunov

functionV1(x, η) = V (x) + η. Item (i) of Theorem 1 is satisfied
in view of item (i) of SA1 and [46, Remark 2.3]. Let q ∈ C. In
view of item (ii) of SA1

〈∇V1(x, η),F1(x, e, η)〉
≤ −(1− σ)αV (|x|)− β(η)

≤ −min {(1− σ)αV (|(x, η)|/2), β(|(x, η)|/2)}
=: −α1(|(x, η)|)

where the last inequality follows from [46, Remark 2.3]. Con-
sequently, item (ii) of Theorem 1 holds with χ1(s) = 0 for
any s ≥ 0. Let q ∈ D. We have that V1(x

+, η+) = V1(x, η)
in view of (7) and (14). We now consider the e-system with
V2(e) = |e|2. Items (i) and (iii) of Theorem 1 hold in view
of Proposition 1. We now verify item (ii) of Theorem 1. Let
q ∈ C. From (i) of SA1, (15) and the definition of V1, γ(|e|) ≤
1
θη + σαV (|x|) ≤ χ2(V1(x, η)), withχ2 defined after (18). This
implies, by definition of V2 that V2(e) ≤ [γ−1(χ2(V1(x, η)))]

2.
Hence, V2(e) > [γ−1((1 + ε)χ2(V1(x, η)))]

2 =: χ2(V1(x, η)),
which contradicts the fact that q ∈ C. Thus, item (ii) of Theo-
rem 1 holds by following the same reasoning as in the proof of
Proposition 1. Lastly, the small-gain condition holds trivially as
χ1 = 0. �

The following proposition shows that the dynamic triggering
strategy satisfies the conditions of Theorem 1 with θ = 0.
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Proposition 4: Consider system HB with θ = 0. Then, the
conditions of Theorem 1 are satisfied with A1 and A2 in (17),
V1, α1, α1, α1 as per Proposition 3, and V2(e) = |e|2A2

for any
e ∈ Rne , any α2(s), α2(s) ∈ K∞ satisfying α2(s) ≤ α2(s) for
s ≥ 0, any α2 ∈ K∞, and χ1(s) = χ2(s) = 0, s ≥ 0. �

Proof: Consider the (x, η)-system. Items (i)–(iii) in Theo-
rem 1 for the (x, η)-system follow exactly as in the proof of
Proposition 3. Now consider the e-system with V2(e) = |e|2A2

.
Since θ = 0 implies A2 = Rne , then V2(e) = |e|2A2

= 0 for all
e ∈ Rne . Therefore, item (i) follows for anyα2(s), α2(s) ∈ K∞
satisfying α2(s) ≤ α2(s), for any s ≥ 0. Moreover, items (ii)
and (iii) trivially follow. Lastly, the small-gain condition in item
(iv) follows straightforwardly given χ1 = χ2 = 0, concluding
the proof. �

The below lemma shows that all maximal solutions to system
HB are complete.

Lemma 1: Each maximal solution to HB is complete. �
Proof: Let q = (x, e, η) ∈ C \D. If η > 0, then there exists

a neighborhood U of q such that for any q′ = (x,′ e,′ η′) ∈ U ,
η′ > 0. Then, for any q′ ∈ U , F(q′) ∩ TC(q

′) �= ∅, since
TC(q

′) = Rnq and F(q′) ∈ TC(q
′), where F(q′) =

(f(x,′ e′), g(x,′ e′),−β(η′) + σαV (|x′|)− γ(|e′|)). On the
other hand, if η = 0, necessarily σαV (|x|)− γ(|e|) > 0, as
q ∈ C \D. Hence, there exists a neighborhood U of q such
that for any q′ = (x,′ e,′ η′) ∈ U , σαV (|x′|)− γ(|e′|) > 0.
Then, F(q′) ∩ TC(q

′) �= ∅ for any q′ ∈ U , since TC(q
′) =

Rnx+ne × R≥0 and F(q′) = (f(x,′ e′), g(x,′ e′), 0) ∈ TC(q
′).

Moreover, note that G(D) ⊂ C ∪D, where G(q) = (x, 0, η).
Hence, any maximal solution is complete in view of [22,
Prop. 6.10]. �

The following proposition applies to the redesigned strategy
proposed in Section V-B3.

Proposition 5: Consider system Hr
B . Then, the conditions

of Theorem 1 are satisfied with A1, A2, V1, V2, α1, α1, α2, α2

from Proposition 3, χ1, χ2 in (22), α1 = (1− ν)α̃1(s) for some
ν ∈ (0, 1) with α̃1(s) := min{(1− σ)αV (s/2), β(s/2)}, and
any α2 ∈ K∞. �

Proof: We only need to prove items (ii) and (iv) of Theorem 1;
the proofs of items (i) and (iii) follow as per Proposition 3.

Let q ∈ C and consider the (x, η)-system with V1 as given in
Proposition 3. In view of SA1 and (19),

〈∇V1(x, η),F1(x, e, η)〉
≤ −(1− σ)αV (|x|)− β(η) + δ(γ(|e|))
≤ −α̃1(|(x, η)|) + δ(γ(|e|)).

Note that if V1(x, η) ≥ χ1(V2(e)) with χ1 in (22),
then δ(γ(|e|)) ≤ να̃1(|(x, η)|), with ν ∈ (0, 1), and thus
〈∇V1(x, η),F1(x, e, η)〉 ≤ −α1(|(x, η)|), as desired.

Consider the e-system and let q ∈ C. We have that (I − δ) ◦
γ(|e|) ≤ η

θ + σαV (|x|) ≤ a2(V1(x, η)) with a2(s) :=
s
θ +

σαV (α
−1
V (s)). This implies that V2(e) ≤ [γ−1 ◦ (I − δ)−1 ◦

a2(V1(x, η))]
2 for q ∈ C. Now, from the definition of χ2 in

(22), if V2(e) > χ2(V1(x, η)), then q ∈ C is contradicted, so the
right-hand side of item (ii) of Theorem 1 vacuously holds in this
case for any α2 ∈ K∞. The case where V2(e) = χ2(V1(x, η))
can only occur at the origin, like in the proof of Proposition 1,

which also leads to the satisfaction of the right-hand side of
item (ii) of Theorem 1.

We are left with proving that the small-gain condition holds.
With the definition of χ1, χ2 in (22), we have that χ1 ◦ χ2(s) =
α1 ◦ α̃−1

1 ( 1ν δ((1 + ε)(I − δ)−1 ◦ a2(s))). Therefore, we need
δ ∈ K∞ to satisfy

δ(s) < να̃1 ◦ α−1
1 ◦ a−1

2 ◦ (I − δ) ◦ 1

1 + ε
s (49)

so that χ1 ◦ χ2(s) < s for all s > 0. Let � := α̃1 ◦ α−1
1 ◦

a−1
2 . Then, (49) implies �−1((1/ν)δ(s)) + δ(s/(1 + ε)) <

s/(1 + ε), which holds if we have �−1((1/ν)δ(s)) <
s

2(1+ε) and δ(s/(1 + ε)) < s
2(1+ε) . In other words, δ(s) <

min{ν�( s
2(1+ε) ), s/2}, for any s ≥ 0, ensures the small con-

dition holds, and the proof is, thus, complete.

C. Fixed Threshold Strategy in Section V-C

The following proposition shows the fixed threshold strategy
in Section V-C2 satisfies the conditions of Theorem 1.

Proposition 6: Consider system HC . Then, the conditions of
Theorem 1 are satisfied with A1 and A2 as in (24), V1(x) =
max{V (x)− αV ◦ α−1

V (2 d), 0}, V2(e) = |e|2A2
for any x ∈

Rnx and e ∈ Rne , some α1, α1 ∈ K∞, α2(s) = α2(s) = s2,
χ1 = χ2 = 0, α1(s) =

1
2αV ◦ α−1

V ◦ α1(s), for any s ≥ 0, any
α2 ∈ K∞, with αV , αV , αV from Assumption 1. �

Proof: We consider the x-system and show that the
conditions of Theorem 1 hold. Item (i) of Theorem 1
holds by [22, p. 54]. Let q ∈ C. The definition of set C in
(23) implies that γ(|e|) ≤ d, i.e., e ∈ A2, which with item
(ii) of SA1, leads to 〈∇V1(x), f(x, e)〉 ≤ −αV (|x|) + d.
When q ∈ C \ A, necessarily x �∈ A1 as e ∈ A2. Thus,
V1(x) = V (x)− αV ◦ α−1

V (2d). On the other hand,
1
2αV ◦ α−1

V (V1(x)) + d = 1
2 (αV ◦ α−1

V (V1(x)) + αV ◦
α−1
V ◦ αV ◦ α−1

V (2d)) ≤ αV ◦ α−1
V (V1(x) + αV ◦

α−1
V (2 d)) = αV ◦

α−1
V (V (x)). Hence, in view of item (i) of SA1

〈∇V1(x), f(x, e)〉 ≤ −αV ◦ α−1
V (V (x)) + d

≤ −1

2
αV ◦ α−1

V (V1(x))

≤ −1

2
αV ◦ α−1

V ◦ α1(|x|A1
)

= −α1(|x|A1
). (50)

When q ∈ A, (50) also holds since 〈∇V1(x), f(x, e)〉 = 0 =
−α1(|x|A1

) in this case. Then, item (ii) of Theorem 1 holds
with χ1 = 0. Item (iii) of Theorem 1 holds as x does not change
at jumps.

We now consider the e-system and V2(e) = |e|2A2
. V2 satisfies

item (i) of Theorem 1 with α2(s) = α2(s) = s2 for any s ≥ 0.
Let q ∈ C. Note thatV2 is locally Lipschitz, see [47, Lemma 1.2].
We distinguish two cases: (i) γ(|e|) < d and (ii) γ(|e|) = d. For
case (i), for any α2 ∈ K∞, V ◦

2 (e; g(x, e)) = 0 = −α2(|e|A2
)

holds as |e|A2
= 0. Consider case (ii), which means that q ∈

C ∩D, and considerF(q) ∈ TC(q), q := (x, e). [13, Lemma 4]
shows that 0 =

〈∇d, f(x, e)
〉 ≥ 〈∇γ(|e|), g(x, e)〉. Then, we

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 03,2023 at 05:47:52 UTC from IEEE Xplore.  Restrictions apply. 



5918 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 10, OCTOBER 2023

have that item (ii) of Theorem 1 holds with χ2(s) = 0 for any
s ≥ 0, in view of the definition of V2 and γ is of class-K∞. Item
(iii) holds as per the other proofs in the Appendix. Lastly, item
(iv) holds as χ1 = χ2 = 0, completing the proof. �

D. Decreasing Threshold on Network-Induced Error in
Section V-D

The following proposition shows the decreasing threshold
strategy on the network-induced error satisfies conditions of
Theorem 1.

Proposition 7: Consider system HD. Then, all conditions of
Theorem 1 are satisfied with A1,A2 as in (27), V1(x, η) = max
{V (x)− αV ◦ α−1

V (2 d), 0}+ η for any (x, η) ∈ Rnx × R≥0,
V2(e) = |e|2A2

for any e ∈ Rne , some α1, α1 ∈ K∞, α2(s) =
α2(s) = s2, α1(s) := max{min{(1− σ)β(s/2), (1/2)αV ◦
α−1
V (α1(s/2)/2)}, β(α1(s))}, any α2 ∈ K∞, and χ1, χ2 as per

(28). �
Proof: Consider (x, η)-system with V1(x, η) = max{V (x)

− αV ◦ α−1
V (2 d), 0}+ η. Since V1 is continuous, zero only on

A1, and radially unbounded with respect to A1, then item (i) of
Theorem 1 holds by [22, p. 54]. Let q ∈ C. We consider two
cases: (i) (x, η) /∈ A1 and (ii) (x, η) ∈ A1. Consider case (i),
which holds either for (ia) V (x) > αV ◦ α−1

V (2 d) and η ≥ 0, or
(ib) V (x) ≤ αV ◦ α−1

V (2 d) and η > 0. For (ia), we have that,
from SA1, and since q ∈ C

〈∇V1(x, η),F1(x, e, η)〉
≤ −αV (|x|) + γ(|e|)− β(η)

≤ −(1− σ)β(η)− (αV ◦ α−1
V (V (x))− d)

< −(1− σ)β(η)

− 1
2αV ◦ α−1

V

(
V (x)− αV ◦ α−1

V (2d)
)

≤ −(1− σ)β(η)− 1
2αV ◦ α−1

V (V1(x, η)− η)

where the latter follows from V (x) > αV ◦ α−1
V (2 d) and the

definition of V1. By writing V1 = V1/2 + V1/2, we have from
the above that, if η ≤ V1(x, η)/2, then 〈∇V1(x, η),F1

(x, e, η)〉 ≤ −(1− σ)β(η)− 1
2αV ◦α−1

V (V1(x, η)/2)≤−min
{(1−σ)β(|(x, η)|A1

/2), (1/2)αV ◦ α−1
V (α1(|(x, η)|A1

/2)/2)},
where we used [46, Remark 2.3]. On the other hand, if
η > V1(x, η)/2, then 〈∇V1(x, η),F1(x, e, η)〉 < −(1− σ)β
(V1(x, η)/2)≤−(1−σ)β(α1(|(x, η)|A1

)/2) since σ ∈ (0, 1)
and β is nondecreasing. Therefore, for case (ia), 〈∇V1(x, η),
F1(x, e, η)〉 ≤ −max{min{(1− σ)β(|(x, η)|A1

/2), (1/2)αV ◦
α−1
V (α1(|(x, η)|A1

/2)/2)}, (1− σ)β(α1(|(x, η)|A1
/2))}. Now

consider case (ib), where V (x) ≤ αV ◦ α−1
V (2 d) and η > 0.

Then, V1(x, η) = η, and thus, 〈∇V1(x, η),F1(x, e, η)〉 =
−β(η) = −β(V1(x, η)) ≤ −β(α1(|(x, η)|A1

)). Now consider
case (ii), i.e., (x, η) ∈ A1. In this case, we have that
V1(x, η) = 0, and thus, 〈∇V1(x, η),F1(x, e, η)〉 = 0.
Consequently, from all the abovementioned cases, item (ii) of
Theorem 1 holds with χ1 = 0, and α1(s) := −max{min{(1−
σ)β(s/2), (1/2)αV ◦ α−1

V (α1(s/2)/2)}, β(α1(s))}. Item (iii)
holds in view of (7) and (25), i.e., V1(x

+, η+) ≤ V1(x, η).

Now consider the e-system with V2(e) = |e|2A2
. V2 satis-

fies item (i) of Theorem 1 with α2(s) = α2(s) = s2, for any
s ≥ 0. Let q ∈ C. We distinguish two cases: (i) e �∈ A2, and
case (ii) e ∈ A2. Consider case (i), i.e., γ(|e|) > 2 d. Since
q ∈ C, we have that γ(|e|) ≤ σβ(η) + d ≤ σβ(V1(x, η)) +
d < σβ(V1(x, η)) +

1
2γ(|e|) < 2σβ(V1(x, η)). Then, when

V2(e) = |e|2A2
≥ χ2(V1(x, η)), we have that, since ε > 0,

γ(|e|) ≥ γ(|e|A2
) > 2σβ(V1(x, η)), which contradicts q ∈ C.

Therefore, for any α2 ∈ K∞ and χ2 in (28), V2(e) ≥
χ2(V1(x)) ⇒ V ◦

2 (e; g(x, e)) ≤ −α2(|e|A2
) vacuously holds.

Now consider case (ii). Since here e ∈ A2, we have |e|A2
=

0, and thus, V ◦
2 (e; g(x, e)) = −α2(|e|A2

) = 0 holds for any
α2 ∈ K∞. Hence, item (ii) of Theorem 1 holds. Item (iii)
holds since V2(e

+) = 0 ≤ V2(e). Lastly, the small-gain con-
dition in item (iv) trivially holds since χ1 = 0, concluding the
proof. �

The following proposition relates to Section V-D3.
Proposition 8: Consider system Hr

D. Then, all conditions of
Theorem 1 are satisfied with A1 and A2 as in (27), V1(x, η)
= max{V (x)− αV ◦ α−1

V (2 d), 0}+ η for any (x, η) ∈ Rnx

× R≥0, V2(e) = |e|2A2
for any e ∈ Rne , some α1, α1∈K∞,

α2(s) = α2(s) = s2, α1(s) := max{min{(1− σ)β(s/2),
((1−ν)/2)αV ◦ α−1

V (α1(s/2)/2)}, (1−ν)β(α1(s))}, any α2 ∈
K∞, and χ1, χ2 as per (30). �

Proof: We only analyze the (x, η)-system since the η-
dynamics are the only change in the redesign, i.e.,χ2 remains un-
changed. In addition, we only verify item (ii) in Theorem 1 since
items (i) and (iii) follow exactly as in Proposition 7. Let q ∈ C
and we proceed using the same cases as in Proposition 7, i.e., for
case (ia), if η ≤ V1(x, η)/2, then 〈∇V1(x, η),F1(x, e, η)〉 ≤
−(1 − σ)β(η) − 1

2αV ◦ α−1
V (V1(x, η)/2) + δ(γ(|e|A2

)).
Then, if V1≥2αV ◦ α−1

V ◦ 2
ν δ(γ(

√
V2)), for some ν∈(0, 1),

then δ(γ(|e|A2
)) ≤ ν

2αV ◦ α−1
V (V1(x, η)/2), and 〈∇V1(x, η),

F1(x, e, η)〉 ≤ −(1− σ)β(η)− (1−ν)
2 αV ◦ α−1

V (V1(x, η)/2).
Next, case (ib) when η>V1(x, η)/2 implies that 〈∇V1(x, η),
F1(x, e, η)〉 ≤ −(1− σ)β(V1(x, η)/2) + δ(γ(|e|A2

)). Then,
when V1 ≥ 2β−1 ◦ 1

ν(1−σ)δ(γ(
√
V2)), we have δ(γ(|e|A2

)) ≤
ν(1− σ)β(V1(x, η)/2), and thus, 〈∇V1(x, η),F1(x, e, η)〉 ≤
−(1 − ν)(1 − σ)β(V1(x, η)/2) ≤ −(1 − ν)(1 − σ)β(α1

(|(x, η)|A1
)/2). Next, for case (ib), we get 〈∇V1(x, η),F1

(x, e, η)〉 = −β(V1(x, η)) + δ(γ(|e|A2
)). Then, if V1 ≥

β−1 ◦ 1
ν δ(γ(

√
V2)), we get δ(γ(|e|A2

)) ≤ νβ(V1(x, η)) and
〈∇V1(x, η),F1(x, e, η)〉 ≤ − (1− ν)β(V1(x, η))≤−(1− ν)
β(α1(|(x, η)|A1

)). Lastly, case (ii) follows exactly as in
Proposition 7. From all the above, we note that item (ii) of
Theorem 1 is verified with χ1 in (30).

Lastly, we verify the small-gain condition. Using (28), we
have thatχ1 ◦ χ2(s) = max{2αV ◦ α−1

V ◦ 2
ν δ(2(1 + ε)σβ(s)),

2β−1 ◦ 1
ν(1−σ)δ(2(1+ε)σβ(s))}. Then, as δ(s)<min{ν

2αV ◦
α−1
V ◦ 1

2β
−1( s

2(1+ε)σ ), ν(1− σ)β◦ 1
2β

−1( s
2(1+ε)σ )}, χ1◦χ2(s)

< s for any s > 0. �

E. Decreasing Threshold on V Strategy in Section V-E

The following proposition is for the triggering rule of decreas-
ing threshold on V in Section V-E2.
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Proposition 9: Consider system HE . Then, the conditions
of Theorem 1 hold with A1, A2 in (36), V1(x, η1, η2) = max
{V (x), 1

2 (η1 + η2)}, V2(e) = |e|2A2
for any (x, η1, η2)

∈ Rnx × R≥0 × R≥0 and e ∈ Rne , α1(s) = min{(1/2)
αV (s/2), s/4}, α1(s) = αV (s) + s, any α2, α2, α2 ∈ K∞
satisfying α2(s) ≤ α2(s), α1(s) =

1
2σα̃V (α1(s)), s ≥ 0, α̃V

as per (31), and χ1 = χ2 = 0. �
Proof: Consider the (x, η1, η2)-system. V1 satisfies item (i)

of Theorem 1 in view of item (i) of SA1, and from [46, Remarks
2.2–2.3]. Let q ∈ C and note that here η2 ≥ η1. Therefore,
η2 ≥ 1

2 (η2 + η1), and from (35), we can write β(η1, η2) ≥
σα̃V (η2) ≥ σα̃V (

1
2 (η2 + η1)). Moreover, since η2 ≥ η1 ≥

V (x), then V1(x, η1, η2) =
1
2 (η1 + η2). Consequently, from all

the above, we get 〈∇V1(x, η1, η2),F1(q)〉 = − 1
2β(η1, η2) ≤−(1/2)σα̃V (V1(x, η1, η2)) ≤ −(1/2)σα̃V (α1(|(x, η1, η2)|)).

Then, item (ii) of Theorem 1 holds with χ1 = 0.
Let q ∈ D.V1(x

+, η+1 , η
+
2 ) = max{V (x+), 1

2η
+
1 + 1

2η
+
2 } =

V (x) ≤ V1(x, η1, η2), and thus, item (iii) of Theorem 1 holds.
Consider the e-system now. It is straightforward that item

(i) of Theorem 1 holds with any α2, α2 ∈ K∞ satisfying
α2(s) ≤ α2(s). Since A2 = Rne when q ∈ C, then |e|A2

= 0
and 〈∇V2(e),F2(q)〉 = 0 = −α2(|e|A2

) for any α2 ∈ K∞, and
hence, item (ii) of Theorem 1 holds. Item (iii) holds as V2(e

+) =
0. Lastly, the small-gain condition holds as χ1 = χ2 = 0, con-
cluding the proof. �

Proposition 10: Consider system Hr
E with ξ = 0. Then,

the conditions of Theorem 1 hold with A1,A2, V1, V2, α1,
α1, α2, α2, α2, χ1, χ2 from Proposition 9, and α1(s) =
νσα̃V (α1(s)), s ≥ 0, α̃V as per (31). �

Proof: We only verify item (ii) of Theorem 1 for the
(x, η1, η2)-system since the other items follow as per Propo-
sition 9. Particularly, here we have 〈∇V1(x, η1, η2),F1(q)〉 =
− 1

2β(η1, η2) + δ(|x|) ≤ − 1
2σα̃V (α1(|(x, η1, η2)|)) +

δ(|(x, η1, η2)|). The proof is complete by using the choice
of δ in (41). �

Proposition 11: Consider system Hr
E with ξ = 1. Then,

the conditions of Theorem 1 hold with A1,A2 as per (40),
V1, α1, α1 from Proposition 9, V2(e) = |e|2, α2(s) = α2(s) =
s2, α1(s) = νσα̃V (α1(s)), any α2 ∈ K∞, s ≥ 0, and χ1, χ2 as
per (42). �

Proof: We only verify items (ii) and (iv) of Theorem 1,
since the other items follow similar to Proposition 9. Consider
the (x, η1, η2)-system. Let q ∈ C, then, proceeding similarly
to Proposition 9, we can write 〈∇V1(x, η1, η2),F1(q)〉 =
− 1

2β(η1, η2) + δ1(|e|) ≤ − 1
2σα̃V (V1(x, η1, η2)) + δ1(|e|).

Therefore, if V1(x, η1, η2) ≥ α̃−1
V ◦ 1

(1/2−ν)σ δ1(
√
V2(e)) =:

χ1(V2(e)), we have δ1(|e|) ≤ σ(1/2− ν)α̃V (V1(x, η1, η2)),
which in turn implies 〈∇V1(x, η1, η2),F1(q)〉 ≤ −νσα̃V

(V1(x, η1, η2)) ≤ − νσα̃V (α1(|(x, η1, η2)|)). Consider
the e-system now. Let q ∈ C and note that δ2(|e|) ≤
V (x) + δ2(|e|) ≤ η1 ≤ V1(x, η1, η2). Hence, in C, we have
V2(e) = |e|2 ≤ [δ−1

2 (V1(x, η1, η2))]
2. Hence, if V2(e) >

χ2(V1(x, η1, η2)), with χ2 in (42), then q ∈ C is contradicted,
so the right-hand side of item (ii) of Theorem 1 vacuously
holds in this case for any α2 ∈ K∞. The case where V2(e) =
χ2(V1(x, η1, η2)) can only occur at the origin, like in the proof

of Proposition 1, which leads to the satisfaction of item (ii) of
Theorem 1.

Lastly, we design δ1 so that the small-gain condition in item
(iv) of Theorem 1 holds. By definition of χ1 and χ2 in (42), we
have χ1 ◦ χ2(s) = α̃−1

V ◦ 1
(1/2−ν)σ δ1((1 + ε)δ−1

2 (s)). Then, as

δ1(s) < σ(1/2− ν)α̃V ◦ δ2( 1
1+εs), for some ε > 0 and δ2 ∈

K∞, we have χ1 ◦ χ2(s) < s for any s > 0. �

F. Combined Strategy I in Section V-F

The following proposition applies to the combined triggering
strategy from Section V-F.

Proposition 12: Consider system HF . Then, the conditions
of Theorem 1 are satisfied with A1 and A2 in (44),
V1(x, η) = V (x) + η, V2(e) = |e|2 for any x ∈ Rnx ,
η ∈ R≥0 and e ∈ Rne , α1(s) = min{αV (s/2), s/2},
α1(s) = αV (s) + s, α2(s) = α2(s) = s2, α1(s) = (1−
σ)min{αV (s/2), β(s/2)}, any α2 ∈ K∞, and χ1, χ2 as per
(45). �

Proof: Consider the (x, η)-system with V1(x, η) = V (x) +
η. Item (i) of Theorem 1 is satisfied as per Proposi-
tion 3. Let q ∈ C. Then, from SA1 and the definition of
C, 〈∇V1(x, η),F1(x, e, η)〉 ≤ −(1− σ)(αV (|x|) + β(η)) ≤
−α1(|(x, η)|), which implies item (ii) in Theorem 1 holds with
χ1 = 0. Item (iii) is satisfied as x and η do not change at jumps.
Consider the e-system with V2(e) = |e|2. Item (i) of Theorem 1
is satisfied with α2(s) = α2(s) = s2 for all s ≥ 0. Let q ∈ C,
then γ(|e|) ≤ σαV (|x|) + σβ(η) ≤ σ[αV ◦ α−1

V (V1(x, η)) +
β(V1(x, η))]. Hence, if V2(e) = |e|2 ≥ χ2(V1(x, η)), then
γ(|e|) ≥ (1 + ε)σ[αV ◦ α−1

V (V1(x, η)) + β(V1(x, η))] which
contradicts q ∈ C since ε > 0, and thus, item (ii) of Theorem 1
is satisfied using the arguments in the proof of Proposition 1
for any α2 ∈ K∞. Lastly, item (iv) follows immediately since
χ1 = 0, completing the proof. �

Proposition 13: Consider system Hr
F . Then, the conditions

of Theorem 1 are satisfied with A1 and A2 in (44),
V1(x, η) = V (x) + η, V2(e) = |e|2 for any x ∈ Rnx ,
η ∈ R≥0 and e ∈ Rne , α1(s) = min{αV (s/2), s/2},
α1(s) = αV (s) + s, α2(s) = α2(s) = s2, α1(s) = (1−
ν)(1− σ)min{αV (s/2), β(s/2)}, ν ∈ (0, 1), any α2 ∈ K∞,
and χ1, χ2 as per (47). �

Proof: We only focus on proving items (ii) and (iv) of
Theorem 1 for the x-system, since the proof of other items
and the e-system follow exactly as in Proposition 12. Let
q ∈ C, then, from the proof of Proposition 12 we have
that 〈∇V1(x, η),F1(x, e, η)〉 ≤ −α̃1(|(x, η)|) + δ(γ(|e|)),
where α̃1(s) := (1− σ)min{αV (s/2), β(s/2)}. Therefore, if
V1(x, η) ≥ α1 ◦ α̃−1

1 ◦ 1
ν δ(γ(|e|)) for some ν ∈ (0, 1), then

δ(γ(|e|)) ≤ να̃1(|(x, η)|). Hence, 〈∇V1(x, η),F1(x, e, η)〉 ≤
−α1(|(x, η)|). Lastly, we design δ so that the small-gain con-
dition in item (iv) is satisfied. We have that χ1 ◦ χ2 = α1 ◦
α̃−1
1 ◦ 1

ν δ((1 + ε)σ(αV ◦ α−1
V + β)). Then, since we design δ

such that δ(s) < να̃1 ◦ α−1
1 ◦ α̂−1

1 ◦ 1
(1+ε)σ s, where α̂1(s) :=

αV ◦ α−1
V (s) + β(s), then χ1 ◦ χ2(s) < s for any s > 0, com-

pleting the proof. �
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