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Abstract: Receding horizon control has recently been used for regulating discrete-time Piecewise Affine (PWA) 
systems. One of the obstructions for implementation consists in guaranteeing closed-loop stability a priori. This is an 
issue that has only been addressed marginally in the literature. In this paper we present an extension of the terminal cost 
method for guaranteeing stability in receding horizon control to the class of unconstrained Piecewise Linear (PWL) 
systems. A linear matrix inequalities set-up is developed to calculate the terminal weight matrix and the auxiliary 
feedback gains that ensure stability for quadratic cost based receding horizon control. It is shown that the PWL state-
feedback control law employed in the stability proof globally asymptotically stabilizes the origin of the PWL system. 
The additional conditions needed to extend these results to constrained PWA systems are also pointed out. The 
implementation of the proposed method is illustrated by an example. 
 
Keywords: Piecewise linear systems, Piecewise affine systems, Discrete-time systems, Receding horizon control, 
Stability, Linear matrix inequalities. 
 
 
1. INTRODUCTION 
 
Recently, research has focused on questions related to the optimal control and stabilization of hybrid systems in general 
and of Piecewise Affine (PWA) systems in particular, e.g. see (Rantzer and Johansson, 2000; Mignone et al., 2000; 
Bemporad et al., 2003; Borrelli et al., 2003) and the references therein. This interest in PWA systems is motivated by 
the fact that the PWA framework can model a broad class of hybrid systems (Sontag, 1996; Heemels et al., 2001). Also, 
PWA models can be obtained through appropriate conversion procedures (Bemporad, 2004) from the broad class of 
discrete-time hybrid automata that can be modeled in the language HYSDEL (Torrisi and Bemporad, 2004). Extension 
of methods for receding horizon control, also known as Model Predictive Control (MPC), to PWA systems led to 
successful implementations such as the ones reported in (Bemporad et al., 2000a; Bemporad et al., 2000b; De Schutter 
et al., 2002; Kerrigan and Mayne, 2002; Lazar and Heemels, 2003; Grieder et al., 2004). However, one of the serious 
drawbacks encountered in these implementations consists in guaranteeing closed-loop stability a priori. This aspect has 
only been addressed marginally in the previous work on receding horizon control of hybrid systems. 
 
The first solution for guaranteeing stability of hybrid model based receding horizon control has been presented in 
(Bemporad and Morari, 1999) for Mixed Logical Dynamical (MLD) systems, which are equivalent to PWA systems 
under certain mild conditions (Heemels et al., 2001). This approach is based on enforcing a terminal state equality 
constraint. However, this method may require a long prediction horizon to guarantee feasibility for all initial states of 
interest, especially when constraints are present. As a result, a large sampling time is required for real-time 
implementation. Also, the system needs to have certain controllability properties, while stabilizability should be 
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sufficient in general. Most of the other MPC schemes mentioned above handle stability by keeping the state within a 
controllable (reachable) path (a sequence of controllable sets computed with respect to a desired target set) and by 
assuming positive invariance of the predefined target set. A notable exception is the paper (Bemporad et al., 2000a), 
where an extension of the results obtained for (linear) constrained LP-based receding horizon control (Bemporad et al., 
2000c) has been pursued. Unfortunately, this MPC approach did not yield conclusive stabilization conditions, but only a 
heuristic criterion. Another option is to determine stability a posteriori by obtaining the explicit PWA solution of the 
MPC optimization problem and then analyzing the stability of the closed-loop system using piecewise quadratic 
Lyapunov functions (Grieder et al., 2004). Note that this method is not applicable for PWA systems if quadratic costs 
are used, since then the explicit solution of the MPC optimization problem is no longer piecewise affine. 
 
In this paper we develop a priori stabilization conditions for quadratic cost based receding horizon control of 
unconstrained PWL systems. The proposed method is an extension of the terminal cost approach (Mayne et al., 2000) 
for guaranteeing stability in linear or nonlinear MPC. The procedure for deriving the stabilization conditions is based on 
Lyapunov arguments, which yield, after using non-trivial transformations, a set of Linear Matrix Inequalities (LMI). 
The feasibility of the resulting LMI implies that the value function of the MPC cost is a Lyapunov function of the 
controlled PWL system. The terminal weight on the state variables and the auxiliary feedback gains that ensure stability 
are obtained from the solution of the derived LMI. The stabilizing MPC algorithm leads to a Mixed Integer Quadratic 
Programming (MIQP) problem, which is standard in the context of hybrid MPC (Bemporad and Morari, 1999; Torrisi 
and Bemporad, 2004). Moreover, it is proved that the PWL state-feedback control law employed in the stability proof 
globally asymptotically stabilizes the origin of the PWL system. It is also pointed out that the stability problem solved 
in this paper represents a necessary step towards guaranteeing stability for receding horizon control of constrained 
PWA systems. 
 
 
2. PROBLEM FORMULATION 
 
Consider the time-invariant discrete-time PWL system described by equations of the form (Sontag, 1981): 
 
 1k j k j kx A x B u+ = +   when  k jx ∈Ω , (1) 
 
where n

kx ∈R  is the state vector and m
ku ∈R  is the control input vector at the discrete-time instant 0≥k . 

nxn
jA ∈R ,  nxm

jB ∈R , j∈S , where  : {1,  2, , }s= …S  and s  denotes the number of discrete modes. Here 

{ | }j jΩ ∈S  is assumed to be a collection of polyhedral sub-sets of nR  with mutually disjointed interiors and 
n

jj
∪Ω = R . 

 
The purpose is to regulate the state of system (1) to the origin. For a given N ∈N , let ( , ) ( , , )k k k k k Nx x x +=x u …  

denote a state sequence generated by system (1) with the measured state kx  as initial condition and with the input 

sequence 1: ( , , ).k k k Nu u + −=u …  
 
Now consider the following problem. 
 
Problem 1 At time 0≥k  let kx  be given and minimize the quadratic cost 
 

 
1

0
( , ) :

N
T T T

k k k N k N k i k i k i k i
i

J x x Px x Qx u Ru
−

+ + + + + +
=

= + +∑u  (2) 

 
over all input sequences ( )m N

k ∈u R , subject to  
 
 1k i j k i j k ix A x B u+ + + += +   when  k i jx + ∈Ω , for  0,..., 1i N= − . (3) 
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Here N  denotes the prediction horizon and P , Q  and R  are positive definite and symmetric matrices. Let  
 
 ( ) : min ( , )

k
k k kV x J x=

u
u  (4) 

 
denote the value function corresponding to cost (2), let 
 
 * * * *

1 1: ( ,  , , )k k k k Nu u u+ + −=u …  (5) 
 
denote an optimal sequence of controls calculated for state n

kx ∈R  by solving Problem 1 and let 
* * * *

1( , ) ( , , )k k k k k Nx x x+ +=x u …  denote the corresponding optimal state trajectory. According to the receding horizon 
strategy, the MPC control is obtained as 
 
 * *(1) ;   .k k ku u k += = ∈u Z  (6) 
 
However, the use of the receding horizon strategy does not necessarily guarantee that system (1) in closed-loop with the 
MPC control (6) is stable (Mayne et al., 2000). Note that an optimal sequence of controls (5) may not be unique. 
However, this will not affect the stability analysis that follows. 
 
The goal of this paper is to develop conditions with respect to the ingredients of Problem 1 such that system (1) in 
closed-loop with the MPC control (6) is asymptotically stable. Moreover, if possible, these conditions should be such 
that Problem 1 leads to an MIQP problem, as this is a standard tool in the context of hybrid MPC (Bemporad, 2004; 
Torrisi and Bemporad, 2004). 
 
A way to ensure stability is to use the terminal equality constraint method in MPC (Keerthi and Gilbert, 1988), which is 
feasible for PWL systems. Although this method can be applied straightforwardly and is conceptually simple, it has the 
disadvantage that the system must be brought to the origin in finite time, over the prediction horizon. This requires that 
the PWL system is controllable, while stabilizability should be sufficient to develop a stabilizing MPC scheme. Also, 
the terminal equality constraint approach may require a long prediction horizon for ensuring feasibility of Problem 1 
(e.g. see (Allgöwer et al., 1999) for details). 
 
In order to prove stability, we aim at using the value function (4) as a candidate Lyapunov function for the closed-loop 
system (1)-(6), i.e. we require that 
 
 1( ) ( ) 0k kV x V x+ − < ;  k +∈Z , \{0}n

kx∀ ∈R , (7) 
 
and we consider a local PWL controller of the form 
 
 :k j ku K x=   when  ,   ,mxn

k j jx K j∈Ω ∈ ∈SR . (8) 
 
Note that this corresponds to one of the usual approaches for guaranteeing stability in MPC (Allgöwer et al., 1999; 
Mayne et al., 2000). A more precise problem formulation can now be given as follows: given Q  and R , which are 
tuning factors of the MPC algorithm, determine P  (and N ) such that stability is ensured for the closed-loop system 
(1)-(6), i.e. such that (7) holds. 
 
 
3. STABILIZING RECEDING HORIZON CONTROL OF PWL SYSTEMS 
 
In this section we develop an LMI set-up for calculating the terminal weight matrix P  such that (7) is satisfied for any 
N . Consider the nonlinear matrix inequality 
 
 ( ) ( ) 0,  T T

j j j j j j j jP A B K P A B K Q K RK j− + + − − > ∈S  (9) 
 
in the unknowns ( , ),  ,jP K j∈S  where the matrix P  will be taken as the terminal weight employed in cost (2) and 
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the feedbacks { |  }jK j∈S  define the control law in (8). 
 
Theorem 1 Assume that {( , ) | }jP K j∈S  with 0P >  satisfy (9). Then it holds that 
 
a) The MPC control (6) globally asymptotically stabilizes the PWL system (1); 

 
b) The origin of the PWL system (1) in closed-loop with feedback (8) is globally asymptotically stable. 

 
Proof: Consider (5) and the shifted sequence of controls 
 
 * * *

1 1 2 1: ( , , , , )k k k k N k Nu u u u+ + + + − +=u … , (10) 
 
where the auxiliary control k Nu +  is given by the PWL state-feedback (8). 
 
a) In order to achieve stability we will prove that (7) is satisfied for all initial conditions 0 \{0}nx ∈R , which can be 
written as 
 

 1 1

* * *
1 1 1

* * * * * *
1 1

( ) ( ) ( , ) ( , ) ( , ) ( , )

( ) 0,   \{0}.
k k k kk k k k k k

T T T T T n
k k k k k N k N k N k N k N k N k

V x V x J x J x J x J x

x Qx u Ru x Px x P Q x u Ru x
+ ++ + +

+ + + + + + + +

− = − ≤ − =

=− − + − − + < ∀ ∈

u u u u

R
 (11) 

 
Here, *

k k jx x= ∈Ω  is the measured state at the sampling instant k  and *
1k j k j kx A x B u+ = + . Since the first two terms 

of the last inequality in (11) are always negative, it suffices to determine the matrix P  and k Nu +  given by (8) such that 
 
 * *

1 1 ( ) 0,   \{0},T T T n
k N k N k N k N k N k N kx Px x P Q x u Ru x+ + + + + + + +− − + < ∀ ∈R  (12) 

 
for condition (11) to hold. By substituting 
 
 *

1k N j k N j k Nx A x B u+ + + += +   when  * ,k N jx j+ ∈Ω ∈S   
 
and (8) in (12), i.e. 
 

 ( )* * 0,T T T T T T T T
k N j j j j j j j j j j j j j j k Nx A PA P Q K RK K B PB K K B PA A PB K x+ +− + + + + + <  ,j∈S  (13) 

 
we obtain the equivalent 
 
 ( ) ( ) 0,T T

j j j j j j j jP A B K P A B K Q K RK− + + − − >  .j∈S   
 
Since {( , ) | }jP K j∈S  satisfy (9) for all j∈S  it follows that (7) holds. This shows that the value function (4) is a 
Lyapunov function for the closed-loop system (1)-(6), thereby proving asymptotic stability; 
 
b) If {( , ) | }jP K j∈S  satisfy (9), then we have that 
 

 
0                                            

,   .
( ) ( ) 0T

j j j j j j

P
j

A B K P A B K P
>⎧

∈⎨ + + − <⎩
S   

 
Therefore it directly follows that the function ( ) : TV x x Px=  is a common quadratic Lyapunov function for the 

matrices ,j j jA B K j+ ∈S . Hence, the origin of the unconstrained PWL system (1) with feedback (8) is globally 
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asymptotically stable.                                                                                                                                                          
 
In order to implement the result of Theorem 1, it would be desirable that the nonlinear matrix inequality (9) is 
transformed into an LMI. A solution to transform the matrix inequality (9) without the terms j

T
j RKKQ +  into an 

LMI has been presented in (Mignone et al., 2000), where state-feedback stabilization of PWA systems has been 
investigated. Note that the technique of (Mignone et al., 2000) no longer works for (9) due to the extra terms. In the 
sequel we transform (9) into an LMI using a new technique based on Schur complements (Boyd et al., 1994). 
 
Consider the variables 
 
 1: −= PZ  and 1: −= PKY jj , j∈S  (14) 
 
and the LMI 
 

 
1

1

( )
0 0

: 0.
0 0

( ) 0 0

T T
j j j j

j
j

j j j

Z Z Y A Z B Y
Z Q
Y R

A Z B Y Z

−

−

⎛ ⎞+
⎜ ⎟
⎜ ⎟∆ = >⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

 (15) 

 
Theorem 2 Suppose that for j∈S  the variables ( , )jP K  and ( , )jZ Y  are related according to (14). Then (9) and 

0P >  are feasible if and only if (15) is feasible. 
 
Proof: We start by applying the Schur complement to (15) as follows: 
 

 
1

1

( )
0 0

   0,
0 0

( ) 0 0

T T
j j j j

j

j j j

Z Z Y A Z B Y
Z Q
Y R

A Z B Y Z

−

−

⎛ ⎞+
⎜ ⎟
⎜ ⎟ >⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

  

 
which leads to 
 

 
1

0 0
( ( ) ) 0 0 0

0 0 ( )

T T
j j j j j

j j j

Q Z
Z Z Y AZ BY R Y

Z AZ BY−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− + >⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

  

and 
 

 

1

1

0 0
0 0 0.
0 0

Q
R

Z

−

−

⎛ ⎞
⎜ ⎟

>⎜ ⎟
⎜ ⎟
⎝ ⎠

  

 
Since 0Q >  and 0R >  it follows that 
 

 1

0                                                                             
( ) ( ) 0.T T

j j j j j j j j

Z
Z ZQZ Y RY A Z B Y Z A Z B Y−

>⎧
⎨ − − − + + >⎩

 (16) 

 
Hence, (15) is feasible if and only if (16) is feasible. Substituting the new variables defined in (14) in (16) gives 
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1

1 1 1 1 1 1 1 1 1

0                                                                                                                     
( ) ( ) ( ) ( ) 0.T T

j j j j j j j j

P
P A P B K P P A P B K P P QP K P R K P

−

− − − − − − − − −

⎧ >⎪
⎨ − + + − − >⎪⎩

 (17) 

 
Then we pre-multiply and post-multiply both matrix inequalities in (17) by P , yielding the equivalent 
 

 
0                                                                   

( ) ( ) 0.T T
j j j j j j j j

P
P A B K P A B K Q K RK
>⎧

⎨ − + + − − >⎩
 (18) 

 
Consequently, feasibility of (15) and feasibility of (18) are equivalent. As the second matrix inequality of (18) is (9) this 
completes the proof.                                                                                                                                                             
 
If the LMI (15) is feasible then, by Theorem 2, the terminal weight matrix and the feedback gains are recovered as 
 
 1−= ZP  and 1

j jK Y Z −=  for j∈S . (19) 
 
The main result of the paper can now be formulated as follows. 
 
Theorem 3 Assume that the LMI (15) is feasible, let {( , ) | }jZ Y j∈S  be a solution and calculate P  and jK  as in 
(19). Then it holds that 
 
a) The MPC control (6) globally asymptotically stabilizes the PWL system (1); 

 
b) The origin of the PWL system (1) in closed-loop with feedback (8) is globally asymptotically stable.                          
 
Remark 1 Theorem 3 provides a priori sufficient stabilization conditions for receding horizon control of unconstrained 
PWL systems. The nonlinear matrix inequality that was obtained from the Lyapunov requirement for stability (7) has 
been transformed into an LMI, which can be easily solved. If state and/or input constraints are imposed, or if the class 
of PWA systems is considered, a terminal state inequality constraint has to be added to Problem 1 to ensure stability. 
Then, Problem 1 corresponds to the terminal cost and constraint set method in MPC (Mayne et al., 2000). Moreover, 
one has to compute a positively invariant set for a PWA system in order to enable the result of Theorem 3 for 
application, which is a non-trivial problem. A possible solution for solving this problem is presented in (Lazar et al., 
2004), where a stabilizing MPC set-up is developed for the class of constrained PWA systems. Hence, the stabilization 
conditions developed in this paper represent a necessary step towards guaranteeing stability for receding horizon control 
of constrained PWA systems.                                                                                                                                             
 
 
4. POSSIBILITIES TO REDUCE CONSERVATIVENESS 
 
The result of Theorem 3 requires that a common terminal weight matrix P  should satisfy the LMI (15) for all j∈S  
and this may result in some conservativeness. In this section we present a solution to reduce conservativeness that is 
based on using piecewise terminal weights in (2). Consider the following problem: 
 
Problem 2 At time 0≥k  let kx  be given and minimize the quadratic cost 
 

 
1

0
( , ) :

N
T T T

k k k N j k N k i k i k i k i
i

J x x P x x Qx u Ru
−

+ + + + + +
=

= + +∑u   when  k N jx + ∈Ω  (20) 

 
over all input sequences ( )m N

k ∈u R , subject to  
 
 1k i j k i j k ix A x B u+ + + += +   when  k i jx + ∈Ω , for  0,..., 1i N= − .  

 
 
Note that Problem 2 can still be transformed into an MIQP problem, e.g. see (Bemporad and Morari, 1999; Bemporad, 
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2004; Torrisi and Bemporad, 2004) for a systematic method. Let 
 
 ( ) : min ( , )

k
k k kV x J x=

u
u  (21) 

 
denote now the value function corresponding to cost (20), let * * * *

1 1: ( ,  , , )k k k k Nu u u+ + −=u …  denote an optimal sequence 

of controls calculated for state n
kx ∈R  by solving Problem 2 and let * * * *

1( , ) ( , , )k k k k k Nx x x+ +=x u …  denote the 
corresponding optimal state trajectory. Then, according to the receding horizon strategy, the MPC control is obtained as 
in (6). Then Theorem 1 can be generalized as follows. 
 
Consider the nonlinear matrix inequality 
 
 ( ) ( ) 0,  ( , ) ,T T

j j j j i j j j j jP A B K P A B K Q K RK i j− + + − − > ∈ ×S S  (22) 
 
in the unknowns ( , ),  j jP K j∈S  where the matrices { | }jP j∈S  will be taken as the terminal weights employed in 

cost (20) and the feedbacks { | }jK j∈S  define the control law in (8). 
 
Theorem 4 Assume that {( , ) | }j jP K j∈S  with 0jP >  for all j∈S  satisfy (22). Then it holds that 
 
a) The MPC control (6) that solves Problem 2 globally asymptotically stabilizes the PWL system (1); 

 
b) The origin of the PWL system (1) in closed-loop with feedback (8) is globally asymptotically stable. 

 
Proof: a) The Lyapunov requirement for stability (7) yields 

 
 * *

1 1 ( ) 0,   \{0}.T T T n
k N i k N k N j k N k N k N kx Px x P Q x u Ru x+ + + + + + + +− − + < ∀ ∈R  (23) 

 
By substituting *

1k N j k N j k Nx A x B u+ + + += +  for *
1,  ,  ( , )k N j k N ix x i j+ + +∈Ω ∈Ω ∈ ×S S  and (8) in (23), i.e. 

 
 ( )* * 0,  ( , ) ,T T T T T T T T

k N j i j j j j j j i j j j j i j j i j j k Nx A PA P Q K RK K B PB K K B PA A PB K x i j+ +− + + + + + < ∈ ×S S  (24) 

 
we obtain the equivalent 
 
 ( ) ( ) 0,  ( , ) .T T

j j j j i j j j j jP A B K P A B K Q K RK i j− + + − − > ∈ ×S S   
 
Since {( , ) | }j jP K j∈S  satisfy (22) it follows that (7) holds, which shows that the value function (21) is a Lyapunov 
function for the closed-loop system (1)-(6), thereby proving asymptotic stability; 
 
b) Since {( , ) | }j jP K j∈S  satisfy (22) we have that 

 

 
0                                               

,   ( , ) .
( ) ( ) 0

i
T

j j j i j j j j

P
i j

A B K P A B K P
>⎧

∈ ×⎨ + + − <⎩
S S   

 
Therefore it directly follows that the function ( ) : T

jV x x P x=  when jx∈Ω  is a piecewise quadratic Lyapunov 

function for the matrices ,j j jA B K j+ ∈S . Hence, the origin of the unconstrained PWL system (1) with feedback (8) is 
globally asymptotically stable.                                                                                                                                            
 
Remark 2 Theorem 4 takes into account all possible pairs of state space regions (i.e. all possible mode transitions from 

iΩ  to jΩ ) within a total of s  regions (where s  represents the number of elements of S ). Hence, this approach 
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requires that 2s  linear matrix inequalities of the form (22) are feasible. A possible way to reduce the number of pairs 
employed is to consider only mode switches that can really occur in the system. This can be done using the tools 
developed in (Bemporad et al., 2000b) to perform off-line a one-step rechability analysis for the considered PWL 
system.                                                                                                                                                                                 
 
Next, we transform the nonlinear matrix inequality (22) into an LMI in a similar way as done for Problem 1. Consider 
the variables 
 
 1:j jZ P−=  and 1:j j jY K P−= , for j∈S  (25) 
 
and the LMI 
 

 
1

1

( )
0 0

: 0.
0 0

( ) 0 0

T T
j j j j j j j

j
ij

j

j j j j i

Z Z Y A Z B Y
Z Q
Y R

A Z B Y Z

−

−

⎛ ⎞+
⎜ ⎟
⎜ ⎟∆ = >⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

 (26) 

 
Theorem 5 Suppose that for j∈S  the variables ( , )j jP K  and ( , )j jZ Y  are related according to (25). Then (22) 

and 0iP >  are feasible if and only if (26) is feasible. 
 
Proof: We start by applying the Schur complement to (26) as follows: 
 

 
1

1

( )
0 0

   0,
0 0

( ) 0 0

T T
j j j j j j j

j

j

j j j j i

Z Z Y A Z B Y
Z Q
Y R

A Z B Y Z

−

−

⎛ ⎞+
⎜ ⎟
⎜ ⎟ >⎜ ⎟
⎜ ⎟⎜ ⎟+⎝ ⎠

  

 
which leads to 
 

 
1

0 0
( ( ) ) 0 0 0

0 0 ( )

j
T T

j j j j j j j j

i j j j j

Q Z
Z Z Y AZ BY R Y

Z A Z BY−

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− + >⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

  

 
and 
 

 

1

1

0 0
0 0 0.
0 0 i

Q
R

Z

−

−

⎛ ⎞
⎜ ⎟

>⎜ ⎟
⎜ ⎟
⎝ ⎠

  

 
Since 0Q >  and 0R >  it follows that 
 

 1

0                                                                                  
( ) ( ) 0.

i
T T

j j j j j j j j j i j j j j

Z
Z Z QZ Y RY A Z B Y Z A Z B Y−

>⎧
⎨ − − − + + >⎩

 (27) 

 
Hence, (26) is feasible if and only if (27) is feasible. Substituting the new variables defined in (25) in (27) gives 
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1

1 1 1 1 1 1 1 1

 0                                                                                                                               
( ) ( ) ( ) (

i
T T

j j j j j j i j j j j j j j j j j

P
P A P B K P P A P B K P P QP K P R K

−

− − − − − − − −

>
− + + − − 1) 0.     jP−

⎧⎪
⎨ >⎪⎩

 (28) 

 
Then we pre-multiply and post-multiply the first matrix inequality in (28) by iP  and the second matrix inequality in 

(28) by jP , yielding the equivalent 
 

 
0                                                                    
( ) ( ) 0.

i
T T

j j j j i j j j j j

P
P A B K P A B K Q K RK

>⎧
⎨ − + + − − >⎩

 (29) 

 
Consequently, feasibility of (26) and feasibility of (29) are equivalent. As the second matrix inequality of (29) is (22) 
this completes the proof.                                                                                                                                                      
 
If the LMI (26) is feasible then, by Theorem 5, the terminal weight matrices and the feedback gains are recovered as 
 
 1

j jP Z −=  and 1
j j jK Y Z −=  for j∈S . (30) 

 
Combining Theorem 4 and 5, the main result for Problem 2 can now be formulated as follows. 
 
Theorem 6 Assume that the LMI (26) is feasible, let {( , ) | }j jZ Y j∈S  be a solution and calculate jP  and jK  as in 
(30). Then it holds that 
 
a) The MPC control (6) that solves Problem 2 globally asymptotically stabilizes the PWL system (1); 

 
b) The origin of the PWL system (1) in closed-loop with feedback (8) is globally asymptotically stable.                          
 
Another possibility to reduce conservativeness is to employ the S-procedure (Boyd et al., 1994) in (9) (or (22)), i.e. to 
require that 
 
 (( ) ( ) ) 0,  T T T

j j j j j j j jx A B K P A B K P Q K RK x j+ + − + + < ∈S  (31) 
 
only when jx∈Ω . 
 
A sufficient condition for (31) to hold is to find a function ( ) : T

j jW x x S x=  such that ( ) 0jW x ≥  when jx∈Ω  
such that the matrix inequality 
 
 (( ) ( ) ) 0T T T T

j j j j j j j j jx A B K P A B K P Q K RK x x S x+ + − + + + < ,  j∈S  (32) 

 
is satisfied for all \{0}nx∈R . Since ( )jW x  might be negative outside jΩ , (32) is less conservative than (13). 
 
In this case (9) can be replaced by 
 
 ( ) ( ) 0,    ,T T

j j j j j j j j jP A B K P A B K M K RK j− + + − − > ∈S  (33) 
 
where : ( )j jM Q S= +  becomes a new decision variable that needs to satisfy 0jM >  and 
 
 ( ) 0T

jx M Q x− >  for all .jx∈Ω   
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If jΩ  is, for instance, of the form { | 0},  ,n
j jx E x jΩ = ∈ ≥ ∈SR  the approach of (Rantzer and Johansson, 2000) 

can be employed as an alternative to (33). Then jS  is taken of the form T
j j jE U E  with jU  some matrix with 

nonnegative entries.                                                                                                                                                             
 
 
5. EXAMPLE  
 
Consider the following piecewise linear system with the partitioning corresponding to the four quadrants of the two 
dimensional x1 – x2 plane (Mignone et al., 2000): 
 

 

1 1 1 1

2 2 2 2

1

3 3 3

0 .0 4 0 .4 6 1 1 0 1
,    0 ;     , ,

0 .1 3 9 0 .3 4 1 0 1 0

0 .9 3 6 0 .3 2 3 1 0 1
 ,    0 ;    , ,

0 .7 8 8 0 .0 4 9 0 1 0
 

0 .8 5 7 0 .
  ,    0 ;     

k k k

k k k

k

k k k

A x B u E x A E B

A x B u E x A E B

x

A x B u E x A

+

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ ≥ = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ ≥ = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

=

−
+ ≥ = 3

4 4 4 4

8 1 5 1 0 1
, ,

0 .4 9 1 0 .6 2 0 1 0

0 .0 2 2 0 .6 4 4 1 0 1
,    0 ;     , ,

0 .7 5 8 0 .2 7 1 0 1 0k k k

E B

A x B u E x A E B

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎪
⎪
⎪ − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ + ≥ = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎪ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩

 (34) 

 
The LMI (15) has been solved using the LMI Control Toolbox (Gahinet et al., 1995) for the tuning parameters 2Q I=  

and 0.1R = , and for 1,..., 4j = , yielding the following terminal weight matrix and feedback gains: 
 

 
1 2

3 4

2.8013 0.3772
,   

0.3772 1.8104
[0.0566  0.4011],   [ 1.0097  0.3093],
[0.7625  -0.8677],   [ 0.0812  0.6595].

P

K K
K K

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

= = − −
= = − −

 (35) 

 
Problem 1 has been transformed in an equivalent MIQP form using the HYSDEL software package (Torrisi and 
Bemporad, 2004). A modified version of the solver developed in (Bemporad and Mignone, 2000d) has been used to 
solve Problem 1 at each sampling instant. The simulation results are plotted in Fig. 1 for system (34) with the initial 
state 0 [4  -4]Tx =  in closed-loop with the MPC control law (6) with the prediction horizon 2N = . 
 

-4 -3 -2 -1 0 1 2 3 4
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

x1

x2  
0 1 2 3 4 5 6 7 8 9

-2.5

-2

-1.5

-1

-0.5

0

0.5

u

Samples  
Fig. 1a Closed-loop state trajectory: MPC - solid/circle 

line; state-feedback - dashed/star line. 
Fig. 1b Input history: MPC - solid/circle line; 

state-feedback - dashed/star line. 
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The MPC algorithm that solves Problem 1 with the terminal weight given in (35) (calculated as in (19)) successfully 
stabilizes the piecewise linear system (34). Note that the PWL state-feedback (8) also stabilizes system (34), but it 
yields larger control inputs in comparison with the unconstrained MPC controller. 
 
 
6. CONCLUSIONS 
 
In this paper we have derived a priori stabilization conditions for quadratic cost based receding horizon control of 
unconstrained piecewise linear systems using a terminal cost approach. An LMI set-up has been developed to calculate 
the terminal weight matrix (or matrices if multiple terminal weights are used) and auxiliary feedback gains such that the 
value function of the MPC cost is a Lyapunov function of the piecewise linear system in closed-loop with the predictive 
controller. As a benefit, the MPC optimization problem leads to an MIQP problem, which is standard in hybrid MPC. It 
has been shown that the state-feedback control law employed in the stability proof globally asymptotically stabilizes the 
origin of the PWL system. An example illustrated the results. 
 
It has been pointed out that the stabilization conditions derived in this paper constitute a necessary step towards 
guaranteeing stability for receding horizon control of constrained PWA systems, which is part of future work. 
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