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Abstract : This paper presents a novel method for designing robust MPC schemes
that are self-optimizing in terms of disturbance attenuation. The method employs con-
vex control Lyapunov functions and disturbance bounds to optimize robustness of the
closed-loop system on-line, at each sampling instant - a unique feature in MPC. More-
over, the proposed MPC algorithm is computationally efficient for nonlinear systems
that are affine in the control input and it allows for a decentralized implementation.

1 Introduction
Robustness of nonlinear model predictive controllers has been one of the most relevant
and challenging problems within MPC, see, e.g., [1, 2, 3, 4, 5]. From a conceptual
point of view, three main categories of robust nonlinear MPC schemes can be identi-
fied, each with its pros and cons: inherently robust, tightened constraints and min-max
MPC schemes, respectively. In all these approaches, the input-to-state stability prop-
erty [6] has been employed as a theoretical tool for characterizing robustness, or robust
stability1.

The goal of the existing design methods for synthesizing control laws that achieve
ISS [7, 8, 9] is to a priori guarantee a predetermined closed-loop ISS gain. Conse-
quently, the ISS property, with a predetermined, constant ISS gain, is in this way en-
forced for all state space trajectories of the closed-loop system and at all time instances.
As the existing approaches, which are also employed in the design of MPC schemes
that achieve ISS, can lead to overly conservative solutions along particular trajectories,
it is of high interest to develop a control (MPC) design method with the explicit goal
of adapting the closed-loop ISS gain depending of the evolution of the state trajectory.

In this article we present a novel method for synthesizing robust MPC schemes
with this feature. The method employs convex control Lyapunov functions (CLFs) and
disturbance bounds to embed the standard ISS conditions of [8] using a finite number
of inequalities. This leads to a finite dimensional optimization problem that has to be
solved on-line, in a receding horizon fashion. The proposed inequalities govern the
evolution of the closed-loop state trajectory through the sublevel sets of the CLF. The
unique feature of the proposed robust MPC scheme is to allow for the simultaneous on-
line (i) computation of a control action that achieves ISS and (ii) minimization of the

1Other characterizations of robustness used in MPC, such as ultimate boundedness or stability of a ro-
bustly positively invariant set, can be recovered as a particular case of ISS or shown to be related.
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closed-loop ISS gain depending of an actual state trajectory. As a result, the developed
nonlinear MPC scheme is self-optimizing in terms of disturbance attenuation. From the
computational point of view, following a particular design recipe, the self-optimizing
robust MPC algorithm can be implemented as a single linear program for discrete-
time nonlinear systems that are affine in the control variable and the disturbance input.
Furthermore, we demonstrate that the freedom to optimize the closed-loop ISS gain on-
line makes self-optimizing robust MPC suitable for decentralized control of networks
of nonlinear systems.

2 Preliminary definitions and results
2.1 Basic notions and definitions

Let R, R+, Z and Z+ denote the field of real numbers, the set of non-negative
reals, the set of integer numbers and the set of non-negative integers, respectively.
We use the notation Z≥c1 and Z(c1,c2] to denote the sets {k ∈ Z+ | k ≥ c1} and
{k ∈ Z+ | c1 < k ≤ c2}, respectively, for some c1, c2 ∈ Z+. For a set S ⊆ Rn, we
denote by int(S) the interior of S. For two arbitrary sets S ⊆ Rn and P ⊆ Rn, let
S ∼ P := {x ∈ Rn | x + P ⊆ S} denote their Pontryagin difference. A polyhedron
(or a polyhedral set) in Rn is a set obtained as the intersection of a finite number of
open and/or closed half-spaces. The Hölder p-norm of a vector x ∈ Rn is defined as
‖x‖p := (|[x]1|p + . . . + |[x]n|p)

1
p for p ∈ Z[1,∞) and ‖x‖∞ := maxi=1,...,n |[x]i|,

where [x]i, i = 1, . . . , n, is the i-th component of x and | · | is the absolute value. For
a matrix M ∈ Rm×n, let ‖M‖p := supx6=0

‖Mx‖p

‖x‖p
denote its corresponding induced

matrix norm. Then ‖M‖∞ = max1≤i≤m

∑n
j=1 |[M ]ij |, where [M ]ij is the ij-th entry

of M . Let z := {z(l)}l∈Z+ with z(l) ∈ Ro for all l ∈ Z+ denote an arbitrary sequence.
Define ‖z‖ := sup{‖z(l)‖ | l ∈ Z+}, where ‖ · ‖ denotes an arbitrary p-norm, and
z[k] := {z(l)}l∈Z[0,k] . A function ϕ : R+ → R+ belongs to class K if it is continuous,
strictly increasing and ϕ(0) = 0. A function ϕ : R+ → R+ belongs to class K∞ if
ϕ ∈ K and lims→∞ ϕ(s) = ∞. A function β : R+ × R+ → R+ belongs to class KL
if for each fixed k ∈ R+, β(·, k) ∈ K and for each fixed s ∈ R+, β(s, ·) is decreasing
and limk→∞ β(s, k) = 0.

2.2 ISS definitions and results
Consider the discrete-time nonlinear system

x(k + 1) ∈ Φ(x(k), w(k)), k ∈ Z+, (1)

where x(k) ∈ Rn is the state and w(k) ∈ Rl is an unknown disturbance input at the
discrete-time instant k. The mapping Φ : Rn × Rl ↪→ Rn is an arbitrary nonlinear
set-valued function. We assume that Φ(0, 0) = {0}. Let W be a subset of Rl.

Definition 2.1 We call a set P ⊆ Rn robustly positively invariant (RPI) for system (1)
with respect to W if for all x ∈ P it holds that Φ(x,w) ⊆ P for all w ∈ W.

Definition 2.2 Let X with 0 ∈ int(X) and W be subsets of Rn and Rl, respectively.
We call system (1) ISS(X, W) if there exist aKL-function β(·, ·) and aK-function γ(·)
such that, for each x(0) ∈ X and all w = {w(l)}l∈Z+ with w(l) ∈ W for all l ∈ Z+, it
holds that all corresponding state trajectories of (1) satisfy ‖x(k)‖ ≤ β(‖x(0)‖, k) +
γ(‖w[k−1]‖), ∀k ∈ Z≥1. We call the function γ(·) an ISS gain of system (1).
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Theorem 2.3 Let W be a subset of Rl and let X ⊆ Rn be a RPI set for (1) with respect
to W, with 0 ∈ int(X). Furthermore, let α1(s) := asδ , α2(s) := bsδ , α3(s) := csδ for
some a, b, c, δ ∈ R>0, σ ∈ K and let V : Rn → R+ be a function such that:

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), (2a)

V (x+)− V (x) ≤ −α3(‖x‖) + σ(‖w‖) (2b)

for all x ∈ X, w ∈ W and all x+ ∈ Φ(x,w). Then the system (1) is ISS(X,W) with

β(s, k) := α−1
1 (2ρkα2(s)), γ(s) := α−1

1

(
2σ(s)

1− ρ

)
, ρ := 1− c

b
∈ [0, 1). (3)

If inequality (2b) holds for w = 0, then the 0-input system x(k + 1) ∈ Φ(x(k), 0),
k ∈ Z+, is asymptotically stable in X.

The proof of Theorem 2.3 is similar in nature to the proof given in [8, 10, 11] by
replacing the difference equation with the difference inclusion as in (1).

2.3 Inherent ISS through continuous and convex control Lyapunov functions
Consider the discrete-time constrained nonlinear system

x(k + 1) = φ(x(k), u(k), w(k)) := f(x(k), u(k)) + g(x(k))w(k), k ∈ Z+, (4)

where x(k) ∈ X ⊆ Rn is the state, u(k) ∈ U ⊆ Rm is the control action and w(k) ∈
W ⊂ Rl is an unknown disturbance input at the discrete-time instant k. φ : Rn×Rm×
Rl → Rn, f : Rn × Rm → Rn and g : Rn → Rn×l are arbitrary nonlinear functions
with φ(0, 0, 0) = 0 and f(0, 0) = 0. Note that we allow that g(0) 6= 0. We assume that
0 ∈ int(X), 0 ∈ int(U) and W is bounded. We also assume that φ(·, ·, ·) is bounded in
X. Next, let α1, α2, α3 ∈ K∞ and let σ ∈ K.

Definition 2.4 A function V : Rn → R+ that satisfies (2a) for all x ∈ X is called a
control Lyapunov function (CLF) for system x(k + 1) = φ(x(k), u(k), 0), k ∈ Z+, if
for all x ∈ X, ∃u ∈ U such that V (φ(x, u, 0))− V (x) ≤ −α3(‖x‖).

Problem 2.5 Let a CLF V (·) be given. At time k ∈ Z+ measure the state x(k) and
calculate a control action u(k) that satisfies:

u(k) ∈ U, φ(x(k), u(k), 0) ∈ X, (5a)
V (φ(x(k), u(k), 0))− V (x(k)) + α3(‖x(k)‖) ≤ 0. (5b)

Let π0(x(k)) := {u(k) ∈ Rm | (5) holds}. Let x(k + 1) ∈ φ0(x(k), π0(x(k))) :=
{f(x(k), u) | u ∈ π0(x(k))} denote the difference inclusion corresponding to the 0-
input system (4) in “closed-loop” with the set of feasible solutions obtained by solving
Problem 2.5 at each instant k ∈ Z+.

Theorem 2.6 Let α1, α2, α3 ∈ K∞ of the form specified in Theorem 2.3 and a corre-
sponding CLF V (·) be given. Suppose that Problem 2.5 is feasible for all states x in X.
Then: (i) The difference inclusion

x(k + 1) ∈ φ0(x(k), π0(x(k))), k ∈ Z+, (6)

is asymptotically stable in X; (ii) Consider a perturbed version of (6), i.e.

x̃(k + 1) ∈ φ0(x̃(k), π0(x̃(k))) + g(x̃(k))w(k), k ∈ Z+ (7)
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and let X̃ ⊆ X be a RPI set for (7) with respect to W. If X is compact, the CLF V (·)
is convex and continuous2 on X and ∃M ∈ R>0 such that ‖g(x)‖ ≤ M for all x ∈ X,
then system (7) is ISS(X̃,W).

Proof: (i) Let x(k) ∈ X for some k ∈ Z+. Then, feasibility of Problem 2.5 ensures
that x(k + 1) ∈ φ0(x(k), π0(x(k))) ⊆ X due to constraint (5a). Hence, Problem 2.5
remains feasible and thus, X is a PI set for system (6). The result then follows directly
from Theorem 2.3. (ii) By convexity and continuity of V (·) and compactness of X,
V (·) is Lipschitz continuous on X [12]. Hence, letting L ∈ R>0 denote a Lipschitz
constant of V (·) in X, one obtains |V (φ(x, u, w)) − V (φ(x, u, 0))| = |V (f(x, u) +
g(x)w)−V (f(x, u))| ≤ LM‖w‖ for all x ∈ X and all w. From this property, together
with inequality (5b) we have that inequality (2b) holds with σ(s) := LMs ∈ K. Since
X̃ is an RPI set for (7) by the hypothesis, ISS(X̃,W) of the difference inclusion (7)
follows from Theorem 2.3. 2

3 Problem definition
Theorem 2.6 establishes that all feasible solutions of Problem 2.5 are stabilizing feed-
back laws which, under additional assumptions even achieve ISS. However, this inher-
ent ISS property of a feedback law calculated by solving Problem 2.5 relies on a fixed,
possibly large gain of σ(·), which depends on V (·). This gain is explicitly related to
the ISS gain of the closed-loop system via (3). To optimize disturbance attenuation for
the closed-loop system, at each time instant k ∈ Z+ and for a given x(k) ∈ X, it would
be desirable to simultaneously compute a control action u(k) ∈ U that satisfies:

(i) V (φ(x(k), u(k), w(k)))− V (x(k)) + α3(‖x‖)− σ(‖w(k)‖) ≤ 0, ∀w(k) ∈ W
(8)

and some function σ(s) := η(k)sδ and (ii) minimize η(k) (η(k), δ ∈ R>0, ∀k ∈ Z+).

Remark 3.1 It is not possible to directly include (8) in Problem 2.5, as it leads to an
infinite dimensional optimization problem. If W is a compact polyhedron, a possibility
to resolve this issue would be to evaluate the inequality (8) only for w(k) taking values
in the set of vertices of W. However, this does not guarantee that (8) holds for all
w(k) ∈ W due to the fact that the left-hand term in (8) is not necessarily a convex
function of w(k), i.e. it contains the difference of two, possibly convex, functions of
w(k). This makes the considered problem challenging and interesting. 2

4 Main results
In what follows we present a solution to the problem stated in Section 3. More specif-
ically, we demonstrate that by considering continuous and convex CLFs and compact
polyhedral sets X, U, W (that contain the origin in their interior) a solution to inequality
(8) can be obtained via a finite set of inequalities that only depend on the vertices of W.
The standing assumption throughout the remainder of the article is that the considered
system, i.e. (4), is affine in the disturbance input w.

2Continuity of V (·) alone is sufficient, but it requires a somewhat more complex proof.
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4.1 Optimized ISS through continuous and convex CLFs
Let we, e = 1, ..., E, be the vertices of W. Next, consider a finite set of sim-

plices S1, . . . , SM with each simplex Si equal to the convex hull of a subset of the
vertices of W and the origin, and such that ∪M

i=1Si = W. More precisely, Si =
Co{0, wei,1 , . . . , wei,l} and {wei,1 , . . . , wei,l} ⊂ {w1, . . . , wE} (i.e. {ei,1, . . . , ei,l} ⊂
{1, . . . , E}) with wei,1 , . . . , wei,l linearly independent. For each simplex Si we define
the matrix Wi := [wei,1 . . . wei,l ] ∈ Rl×l, which is invertible. Let λe(k), k ∈ Z+,
be optimization variables associated with each vertex we. Let α3 ∈ K∞, suppose that
x(k) at time k ∈ Z+ is given and consider the following set of inequalities depending
on u(k) and λ1(k), . . . , λE(k):

V (φ(x(k), u(k), 0))− V (x(k)) + α3(‖x(k)‖) ≤ 0, (9a)

V (φ(x(k), u(k), we))− V (x(k)) + α3(‖x(k)‖)− λe(k) ≤ 0, ∀e = 1, E. (9b)

Theorem 4.1 Let V (·) be a convex CLF. If for α3 ∈ K∞ and x(k) at time k ∈ Z+

there exist u(k) and λe(k), e = 1, . . . , E, such that (9a) and (9b) hold, then (8) holds
for the same u(k), with σ(s) := η(k)s and

η(k) := max
i=1,...,M

‖λ̄i(k)W−1
i ‖, (10)

where λ̄i(k) := [λei,1(k) . . . λei,l
(k)] ∈ R1×l.

Proof: Let α3 ∈ K∞ and x(k) be given and suppose (9b) holds for some λe(k),
e = 1, . . . , E. Let w ∈ W =

⋃M
i=1 Si. Hence, there exists an i such that w ∈

Si = Co{0, wei,1 , . . . , wei,l}, which means that there exist non-negative numbers
µ0, µ1, . . . , µl with

∑l
j=0 µj = 1 such that w =

∑l
j=1 µjw

ei,j +µ00 =
∑l

j=1 µjw
ei,j .

In matrix notation we have that w = Wi[µ1 . . . µl]> and thus [µ1 . . . µl]> = W−1
i w.

Multiplying each inequality in (9b) corresponding to the index ei,j and the inequality
(9a) with µj ≥ 0, j = 0, 1, . . . , l, summing up and using

∑l
j=0 µj = 1 yield:

µ0V (φ(x(k), u(k), 0)) +

l∑
j=1

µjV (φ(x(k), u(k), wei,j ))

− V (x(k)) + α3(‖x(k)‖)−
l∑

j=1

µjλei,j (k) ≤ 0.

Furthermore, using φ(x(k), u(k), wei,j ) = f(x(k), u(k)) + g(x(k))wei,j , convexity
of V (·) and

∑l
j=0 µj = 1 yields

V (φ(x(k), u(k),
l∑

j=1

µjw
ei,j ))− V (x(k)) + α3(‖x(k)‖)−

l∑
j=1

µjλei,j (k) ≤ 0,

or equivalently

V (φ(x(k), u(k), w))− V (x(k)) + α3(‖x(k)‖)− λ̄i(k)[µ1 . . . µl]> ≤ 0.

Using that [µ1 . . . µl]> = W−1
i w we obtain (8) with w(k) = w for σ(s) = η(k)s

and η(k) ≥ 0 as in (10). 2
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4.2 Self-optimizing robust nonlinear MPC
For any x ∈ X let Wx := {g(x)w | w ∈ W} ⊂ Rn (note that 0 ∈ Wx) and

assume that X ∼ Wx 6= ∅. Let λ̄ := [λ1, . . . , λE ]> and let J(λ̄) : RE → R+ be
a function that satisfies α4(‖λ̄‖) ≤ J(λ̄) ≤ α5(‖λ̄‖) for some α4, α5 ∈ K∞; for
example, J(λ̄) := maxi=1,...,M ‖λ̄iW

−1
i ‖.

Problem 4.2 Let α3 ∈ K∞, J(·) and a CLF V (·) be given. At time k ∈ Z+ measure
the state x(k) and minimize the cost J(λ1(k), . . . , λE(k)) over u(k), λ1(k), . . . , λE(k),
subject to the constraints

u(k) ∈ U, λe(k) ≥ 0, f(x(k), u(k)) ∈ X ∼ Wx(k), (11a)
V (φ(x(k), u(k), 0))− V (x(k)) + α3(‖x(k)‖) ≤ 0, (11b)

V (φ(x(k), u(k), we))− V (x(k)) + α3(‖x(k)‖)− λe(k) ≤ 0, ∀e = 1, E. (11c)

2

Let π(x(k)) := {u(k) ∈ Rm | (11) holds} and let

x(k + 1) ∈ φcl(x(k), π(x(k)), w(k)) := {φ(x(k), u, w(k)) | u ∈ π(x(k))}

denote the difference inclusion corresponding to system (4) in “closed-loop” with the
set of feasible solutions obtained by solving Problem 4.2 at each k ∈ Z+.

Theorem 4.3 Let α1, α2, α3 ∈ K∞ of the form specified in Theorem 2.3, a continuous
and convex CLF V (·) and a cost J(·) be given. Suppose that Problem 4.2 is feasible
for all states x in X. Then the difference inclusion

x(k + 1) ∈ φcl(x(k), π(x(k)), w(k)), k ∈ Z+ (12)

is ISS(X, W).

Proof: Let x(k) ∈ X for some k ∈ Z+. Then, feasibility of Problem 4.2 ensures that
x(k + 1) ∈ φcl(x(k), π(x(k)), w(k)) ⊆ X for all w(k) ∈ W, due to g(x(k))w(k) ∈
Wx(k) and constraint (11a). Hence, Problem 4.2 remains feasible and thus, X is a
RPI set with respect to W for system (12). From Theorem 4.1 we also have that V (·)
satisfies (2b) with σ(s) := η(k)s and η(k) as in (10). Let

λ∗ := sup
x∈X,u∈U,e=1,...,E

{V (φ(x, u, we))− V (x) + α3(‖x‖)}.

Due to continuity of V (·), compactness of X, U and boundedness of φ(·, ·, ·), λ∗ exists
and is finite (the sup above is a max if φ(·, ·, ·) is continuous in x and u). Hence,
inequality (11c) is always satisfied for λe(k) = λ∗ for all e = 1, . . . , E, k ∈ Z+, and
for all x ∈ X, u ∈ U. This in turn, via (10) ensures the existence of a η∗ ∈ R>0 such
that η(k) ≤ η∗ for all k ∈ Z+. Hence, we proved that inequality (8) holds for all x ∈ X
and all w ∈ W. Then, since X is RPI, ISS(X,W) follows directly from Theorem 2.3. 2

Remark 4.4 An alternative proof to Theorem 4.3 can be obtained by simply applying
the reasoning used in the proof of Theorem 2.6. Hence, inherent ISS can be established
directly from constraint (11b). Also, notice that in the proof of Theorem 4.3 we used
a worst case evaluation of λe(k) to prove ISS. However, it is important to observe that
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compared to Problem 2.5, nothing is lost in terms of feasibility, while Problem 4.2,
although it inherently guarantees a constant ISS gain, it provides freedom to optimize
the ISS gain of the closed-loop system, by minimizing the variables λ1(k), . . . , λE(k)
via the cost J(·). As such, in reality the gain η(k) of the function σ(·) can be much
smaller for k ≥ k0, for some k0 ∈ Z+, depending on the state trajectory x(k). 2

In Theorem 4.3 we assumed for simplicity that Problem 4.2 is feasible for all
x ∈ X; in other words, feasibility implies ISS. Whenever Problem 4.2 can be solved
explicitly (see the implementation paragraph below), it is possible to calculate the max-
imal RPI set for the closed-loop dynamics that is contained within the explicit set of
feasible solutions. Alternatively, we establish next an easily verifiable sufficient condi-
tion under which any sublevel set of V (·) contained in X is a RPI subset of the set of
feasible solutions of Problem 4.2.

Lemma 4.5 Given a CLF V (·) that satisfies the hypothesis of Theorem 4.3, let V∆ :=
{x ∈ Rn | V (x) ≤ ∆}. Then, for any ∆ ∈ R>0 such that V∆ ⊆ X, if λ∗ ≤ (1− ρ)∆,
with ρ as defined in (3), Problem 4.2 is feasible for all x ∈ V∆ and remains feasible
for all resulting closed-loop trajectories that start in V∆.

Proof: From the proof of Theorem 4.3 we know that inequalities (11c) are feasible for
all x(k) ∈ X, u(k) ∈ U and e = 1, E by taking λ(k) = λ∗ for all k ∈ Z+. Thus, for
any x(k) ∈ V∆ ⊆ X, ∆ ∈ R≥0, we have that:

V (φ(x(k), u(k), w(k))) ≤ V (x(k))− α3(‖x(k)‖) + λ∗ ≤ ρV (x(k)) + λ∗

≤ ρ∆ + λ∗ ≤ ρ∆ + (1− ρ)∆ = ∆,

which yields φ(x(k), u(k), w(k)) ∈ V∆ ⊆ X. This in turn ensures feasibility of (11a),
while (11b) is feasible by definition of the CLF V (·), which concludes the proof. 2

Remark 4.6 The result of Theorem 4.3 holds for all inputs u(k) for which Problem 4.2
is feasible. To select on-line one particular control input from the set π(x(k)) and to
improve closed-loop performance (in terms of settling time) it is useful to also pe-
nalize the state and the input. Let F : Rn → R+ and L : Rn × Rm → R+ with
F (0) = L(0, 0) = 0 be arbitrary nonlinear functions. For N ∈ Z≥1 let ū(k) :=
(ū(k), ū(k + 1), . . . , ū(k + N − 1)) ∈ UN and JRHC(x(k), ū(k)) := F (x̄(k +
N)) +

∑N−1
i=0 L(x̄(k + i), ū(k + i)), where x̄(k + i + 1) := f(x̄(k + i), ū(k + i)) for

i = 0, N − 1 and x̄(k) := x(k). Then one can add this cost to Problem 4.2, i.e. at time
k ∈ Z+ measure the state x(k) and minimize JRHC(x(k), ū(k))+J(λ1(k), . . . , λE(k))
over ū(k), λ1(k), . . . , λE(k), subject to constraints (11) and x̄(k + i) ∈ X, i = 2, N .
Observe that the optimum needs not to be attained at each sampling instant to achieve
ISS, which is appealing for practical reasons but also in the case of a possibly discon-
tinuous value function. 2

Remark 4.7 Besides enhancing robustness, the constraints (11b)-(11c) also ensure
that Problem 4.2 recovers performance (in terms of settling time) when the state of the
closed-loop system approaches the origin. Loosely speaking, when x(k) ≈ 0, solving
Problem 4.2 will produce a control action u(k) ≈ 0 (because of constraint (11b) and the
fact that the cost JRHC(·)+J(·) is minimized). This yields V (φ(0, 0, we))−λe(k) ≤ 0,
e = 1, E, due to constraint (11c). Thus, solving Problem 4.2 with the above cost
will not optimize each variable λe(k) below the corresponding value V (φ(0, 0, we)),
e = 1, E, when the state reaches the equilibrium. This property is desirable, since it
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is known from min-max MPC [11] that considering a worst case disturbance scenario
leads to poor performance when the real disturbance is small or vanishes. 2

4.3 Decentralized formulation
In this paragraph we give a brief outline of how the proposed self-optimizing MPC

algorithm can be implemented in a decentralized fashion. We consider a connected
directed graph G = (S, E) with a finite number of vertices S and a set of directed
edges E ⊆ {(i, j) ∈ S × S | i 6= j}. A dynamical system is assigned to each vertex
i ∈ S, with the dynamics governed by the following equation:

xi(k + 1) = φi(xi(k), ui(k), vi(xNi
(k)), wi(k)), k ∈ Z+. (13)

In (13), xi ∈ Xi ⊂ Rni , ui ∈ Ui ⊂ Rmi are the state and the control input of the
i-th system, and wi ∈ Wi ⊂ Rli is an exogenous disturbance input that directly affects
only the i-th system. With each directed edge (j, i) ∈ E we associate a function vij :
Rnj → Rni , which defines the interconnection signal vij(xj(k)), k ∈ Z+, between
system j and system i, i.e. vij(·) characterizes how the states of system j influence the
dynamics of system i. The setNi := {j | (j, i) ∈ E} denotes the set of direct neighbors
(observe that j ∈ Ni 6⇒ i ∈ Nj) of the system i. For simplicity of notation we use
xNi

(k) and vi(xNi
(k)) to denote {xj(k)}j∈Ni

and {vij(xj(k))}j∈Ni
, respectively.

Both φi(·, ·, ·, ·) and vij(·) are arbitrary nonlinear, possibly discontinuous functions
that satisfy φi(0, 0, 0, 0) = 0, vij(0) = 0 for all (i, j) ∈ S × Ni. For all i ∈ S we
assume that Xi, Ui and Wi are compact sets that contain the origin in their interior.

Assumption 4.8 The value of all interconnection signals vij(xj(k)) is known at all
discrete-time instants k ∈ Z+ for any system i ∈ S.

From a technical point of view, Assumption 4.8 is satisfied, e.g., if all interconnection
signals vij(xj(k)) are directly measurable at all k ∈ Z+ or, if all directly neighboring
systems j ∈ Ni are able to communicate their local measured state xj(k) to system
i ∈ S. Consider next the following decentralized version of Problem 4.2, where the
notation and definitions employed so far are carried over mutatis mutandis.

Problem 4.9 For system i ∈ S let αi
3 ∈ K∞, Ji(·) and a CLF Vi(·) be given. At time

k ∈ Z+ measure the local state xi(k) and the interconnection signals vi(xNi
(k)) and

minimize the cost Ji(λi
1(k), . . . , λi

Ei
(k)) over ui(k), λi

1(k), . . . , λi
Ei

(k), subject to the
constraints

ui(k) ∈ U, λi
e(k) ≥ 0, φi(xi(k), ui(k), vi(xNi

(k)), 0) ∈ Xi ∼ Wxi(k), (14a)

Vi(φi(xi(k), ui(k), vi(xNi
(k)), 0))− Vi(xi(k)) + αi

3(‖xi(k)‖) ≤ 0, (14b)

Vi(φi(xi(k), ui(k), vi(xNi(k)), we
i ))− Vi(xi(k)) + αi

3(‖xi(k)‖)− λi
e(k) ≤ 0,

∀e = 1, Ei. (14c)

2

Let πi(xi(k), vi(xNi
(k))) := {ui(k) ∈ Rmi | (14) holds} and let

xi(k + 1) ∈φcl
i (xi(k), πi(xi(k), vi(xNi(k)), vi(xNi(k)), wi(k))

:= {φi(xi(k), u, vi(xNi(k)), wi(k)) | u ∈ πi(xi(k), vi(xNi(k)))}

denote the difference inclusion corresponding to system (13) in “closed-loop” with the
set of feasible solutions obtained by solving Problem 4.9 at each k ∈ Z+.
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Theorem 4.10 Let, αi
1, α

i
2, α

i
3 ∈ K∞ of the form specified in Theorem 2.3, continu-

ous and convex CLFs Vi(·) and costs Ji(·) be given for all systems indexed by i ∈ S .
Suppose Assumption 4.8 holds and Problem 4.9 is feasible for each system i ∈ S and
for all states xi in Xi and all corresponding vi(xNi). Then the interconnected dynami-
cally coupled nonlinear system described by the collection of difference inclusions

xi(k + 1) ∈ φcl
i (xi(k), πi(xi(k), vi(xNi(k)), vi(xNi(k)), wi(k)), i ∈ S, k ∈ Z+

(15)
is ISS(X1 × . . .× XS , W1 × . . .×WS).

The proof is omitted due to space limitations. Its central argument is that each contin-
uous and convex CLF Vi(xi) is in fact Lipschitz continuous on Xi [12], which makes∑

i∈S Vi(xi) =: V ({xi}i∈S) a Lipschitz continuous CLF for the global interconnected
system. The result then follows similarly to the proof of Theorem 2.6-(ii). Theo-
rem 4.10 guarantees a constant ISS gain for the global closed-loop system, while the
ISS gain of each closed-loop system i ∈ S can still be optimized on-line.

Remark 4.11 Problem 4.9 defines a set of decoupled optimization problems, implying
that the computation of control actions can be performed in completely decentralized
fashion, i.e. with no communication among controllers (if each vij(·) is measurable
at all k ∈ Z+). Inequality (14b) can be further significantly relaxed by replacing the
zero on the righthand side with an optimization variable τi(k) and adding the coupling
constraint

∑
i∈S τi(k) ≤ 0 for all k ∈ Z+. Using the dual decomposition method,

see e.g. [13], it is then possible to devise a distributed control scheme, which yields an
optimized ISS-gain of the global interconnected system in the sense that

∑
i∈S Ji(·)

is minimized. Further relaxations can be obtained by asking that the sum of τi(k) is
non-positive over a finite horizon, rather than at each time step. 2

4.4 Implementation issues
In this section we briefly discuss the ingredients, which make it possible to imple-

ment Problem 4.2 (or its corresponding decentralized version Problem 4.9) as a single
linear or quadratic program. Firstly, we consider nonlinear systems of the form (4) that
are affine in control. Then it makes sense that there exist functions f1 : Rn → Rn with
f1(0) = 0 and f2 : Rn → Rn×m such that:

x(k + 1) = φ(x(k), u(k), w(k)) := f1(x(k)) + f2(x(k))u(k) + g(x(k))w(k). (16)

Secondly, we restrict our attention to CLFs defined using the ∞-norm, i.e. V (x) :=
‖Px‖∞, where P ∈ Rp×n is a matrix (to be determined) with full-column rank. We
refer to [14] for techniques to compute CLFs based on norms.

Then, the first step is to show that the ISS inequalities (11b)-(11c) can be specified,
without introducing conservatism, via a finite number of linear inequalities. Since by
definition ‖x‖∞ = maxi∈Z[1,n] |[x]i|, for a constraint ‖x‖∞ ≤ c with c > 0 to be
satisfied, it is necessary and sufficient to require that ±[x]i ≤ c for all i ∈ Z[1,n].
Therefore, as x(k) in (11) is the measured state, which is known at every k ∈ Z+, for
(11b)-(11c) to be satisfied it is necessary and sufficient to require that:

± [P (f1(x(k)) + f2(x(k))u(k))]i − V (x(k)) + α3(‖x(k)‖) ≤ 0

± [P (f1(x(k)) + f2(x(k))u(k) + g(x(k))we)]i − V (x(k)) + α3(‖x(k)‖)− λe(k) ≤ 0,

∀i ∈ Z[1,p], e = 1, E,
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which yields 2p(E + 1) linear inequalities in the variables u(k), λ1(k), . . . , λE(k). If
the sets X, U and Wx(k) are polyhedra, which is a reasonable assumption, then clearly
the inequalities in (11a) are also linear in u(k), λ1(k), . . . , λE(k). Thus, a solution to
Problem 4.2, including minimization of the cost JRHC(·) + J(·) for any N ∈ Z≥1, can
be obtained by solving a nonlinear optimization problem subject to linear constraints.

Following some straightforward manipulations [10], the optimization problem to be
solved on-line can be further simplified as follows. If the model is (i) piecewise affine
or (ii) affine and the cost functions JRHC(·) and J(·) are defined using quadratic forms
or infinity norms, then a solution to Problem 4.2 (with the cost JRHC(·) + J(·)) can
be obtained by solving (i) a single mixed integer quadratic or linear program (MIQP
- MILP), or (ii) a single QP - LP, respectively, for any N ∈ Z≥1. Alternatively, for
N = 1 and quadratic or ∞-norm based costs, Problem 4.2 can be formulated as a
single QP or LP for any discrete-time nonlinear model that is affine in the control
variable and the disturbance input.

5 Illustrative example
Consider the nonlinear system (13) with S = {1, 2}, N1 = {2}, N2 = {1}, X1 =
X2 = {ξ ∈ R2 | ‖ξ‖∞ ≤ 5}, U1 = U2 = {ξ ∈ R | |ξ| ≤ 2} and W1 = W2 = {ξ ∈
R2 | ‖ξ‖1 ≤ 0.2}. The dynamics are given by:

φ1(x1, u1, v1(xN1), w1) :=

[
1 0.7
0 1

]
x1 +

[
sin([x1]2)

0

]
+

[
0.245
0.7

]
u1 +

[
0

([x2]1)
2

]
+ w1,

(17a)

φ2(x2, u2, v2(xN2), w2) :=

[
1 0.5
0 1

]
x2 +

[
sin([x2]2)

0

]
+

[
0.125
0.5

]
u2 +

[
0

[x1]1

]
+ w2.

(17b)

The technique of [14] was used to compute the weights P1, P2 ∈ R2×2 of the CLFs
V1(x) = ‖P1x‖∞ and V2(x) = ‖P2x‖∞ for α1

3(s) = α2
3(s) := 0.01s and the lin-

earizations of (17a), (17b), respectively, around the origin, in closed-loop with u1(k) :=
K1x1(k), u2(k) := K2x2(k), K1,K2 ∈ R2×1, yielding

P1 =

[
1.3204 0.6294
0.5629 2.0811

]
, K1 =

[
−0.2071 −1.2731

]
,

P2 =

[
1.1356 0.5658
0.7675 2.1356

]
, K2 =

[
−0.3077 −1.4701

]
.

Note that the control laws u1(k) = K1x(k) and u2(k) = K2x2(k) are only employed
off-line, to calculate the weight matrices P1, P2 and they are never used for controlling
the system. To optimize robustness, 4 optimization variables λi

1(k), . . . , λi
4(k) were

introduced for each system, each one assigned to a vertex of the set Wi, i = 1, 2, re-
spectively. The following cost functions were employed in the optimization problem,
as specified in Remark 4.6: J i

RHC(xi(k), ui(k)) := ‖Qi
1φi(xi, ui, vi(xNi

), 0)‖∞ +
‖Qixi(k)‖∞ + ‖Riui(k)‖∞, Ji(λi

1(k), . . . , λi
4(k)) := Γi

∑4
j=1 |λi

j(k)|, where i =
1, 2, Q1

1 = Q2
1 = 4I2, Q1 = Q2 = 0.1I2, R1 = R2 = 0.4, Γ1 = 1 and Γ2 = 0.1.

For each system, the resulting linear program has 7 optimization variables and 42
constraints. During the simulations, the worst case computational time required by
the CPU (Pentium 4, 3.2GHz, 1GB RAM) over 400 runs was 5 milliseconds, which
shows the potential for controlling networks of fast nonlinear systems. In the sim-
ulation scenario we tested the closed-loop system response for x1(0) = [3, −1]>,
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Figure 1: States, inputs and first optimization variable histories for each system.

x2(0) = [1, −2]> and for the following disturbance scenarios: w1(k) = w2(k) =
[0, 0]> for k ∈ Z[0,40] (nominal stabilization), wi(k) takes random values in Wi,
i = 1, 2, for k ∈ Z[41,80] (robustness to random inputs), w1(k) = w2(k) = [0, 0.1]>

for k ∈ Z[81,120] (robustness to constant inputs) and w1(k) = w2(k) = [0, 0]> for
k ∈ Z[121,160] (to show that asymptotic stability is recovered for zero inputs).

In Figure 1 the time history of the states, control input and the optimization vari-
ables λ1

1(k) and λ2
1(k), assigned to w1

1 = w1
2 = [0, 0.2]>, are depicted for each sys-

tem. In the state trajectories plots, the dashed horizontal lines give an approximation
of the bounded region in which the system’s states remain despite disturbances, i.e. ap-
proximately within the interval [−0.2, 0.2]. In the input trajectory plots the dashed line
shows the input constraints. In all plots, the dashed vertical lines delimit the time inter-
vals during which one of the four disturbance scenarios is active. One can observe that
the feedback to disturbances is provided actively, resulting in good robust performance,
while state and input constraints are satisfied at all times, despite the strong nonlinear
coupling present. In the λ1 plot, one can see that whenever the disturbance is acting on
the system, or when the state is far from the origin (in the first disturbance scenario),
these variables act to optimize the decrease of each Vi(·) and to counteract the influence
of the interconnecting signal. Whenever the equilibrium is reached, the optimization
variables satisfy the constraint Vi(φi(0, 0, we

i )) ≤ λi
e(k), e = 1, . . . , 4, as explained

in Remark 4.7. In Figure 1, the λ1 plot, the values V1(φ1(0, 0, w1
1)) = 0.2641 and

V2(φ2(0, 0, w1
2)) = 0.2271 are depicted with dashed horizontal lines.
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6 Conclusions
In this article we studied the design of robust MPC schemes with focus on adapting the
closed-loop ISS gain on-line, in a receding horizon fashion. Exploiting convex CLFs
and disturbance bounds, we were able to construct a finite dimensional optimization
problem that allows for the simultaneous on-line (i) computation of a control action
that achieves ISS, and (ii) minimization of the ISS gain of the resulting closed-loop
system depending on the actual state trajectory. As a consequence, the proposed robust
nonlinear MPC algorithm is self-optimizing in terms of disturbance attenuation. So-
lutions for establishing recursive feasibility and for decentralized implementation have
also been briefly presented. Furthermore, we indicated a design recipe that can be used
to implement the developed self-optimizing MPC scheme as a single linear program,
for nonlinear systems that are affine in the control variable and the disturbance input.
This brings the application to (networks of) fast nonlinear systems within reach.
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