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Abstract— This paper presents a new (geometrical) approach
to the computation of polyhedral positively invariant sets for
general (possibly discontinuous) nonlinear systems, possibly
affected by disturbances. Given a β -contractive ellipsoidal set E ,
the key idea is to construct a polyhedral set that lies between the
ellipsoidal sets βE and E . A proof that the resulting polyhedral
set is positively invariant (and contractive under an additional
assumption) is given, and a new algorithm is developed to con-
struct the desired polyhedral set. An advantage of the proposed
method is that the problem of computing polyhedral invariant
sets is formulated as a number of Quadratic Programming
(QP) problems. The number of QP problems is guaranteed to
be finite and therefore, the algorithm has finite termination.
An important application of the proposed algorithm is the
computation of polyhedral terminal constraint sets for model
predictive control based on quadratic costs.

Index Terms— Positively invariant sets, Contractive sets,
Model predictive control, Stability, Robust stability.

I. INTRODUCTION

Positively invariant sets and contractive sets have been

used in many control theoretical problems, such as synthesis

of stabilizing controllers, computation of domains of attrac-

tion and robustness analysis, e.g. see [1] and [2] for a com-

prehensive overview. In particular, positively invariant sets

play a very important role in the design of stabilizing Model

Predictive Controllers (MPC). For example, the terminal cost

and constraint set approach in MPC [3] requires that the

terminal set is positively invariant under some appropriate

local feedback.

The most utilized types of invariant sets are ellipsoidal
invariant sets, which have a simple representation, but can

be less flexible than polyhedral invariant sets, which, in

turn, can be arbitrarily complex. Polyhedral invariant sets

are preferred in various cases due to the fact that they

are often derived from physical constraints on state and

control variables, which makes them a better approximation

of reachable sets and of domains of attraction for dynamical

systems. Moreover, a polyhedral domain of attraction is more

suitable for use in an optimization problem. Indeed, for

model predictive control based on quadratic costs where,

in order to guarantee stability, one has to constrain the

terminal state to a terminal set, which can be naturally
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chosen as an ellipsoidal sublevel set of a constructed (local)

quadratic Lyapunov function (which is needed as terminal

cost). However, if an ellipsoidal set is used as the terminal

set, then the MPC optimization problem becomes a quadrat-
ically constrained Quadratic Programming (QP) problem in

case linear prediction models are used (or a mixed integer

quadratically constrained QP problem, if piecewise affine

prediction models are used), which is usually not tackled by

standard solvers. If a polyhedral invariant set is employed

instead, then the MPC optimization problem is a QP (or

mixed integer QP) problem. Since most MPC algorithms

with an a priori stability guarantee are based on quadratic

costs, e.g. see the survey [3] for an overview, a lot of effort

has been put in developing new approaches for computing

polyhedral positively invariant sets. Significant advances in

the computation of polyhedral invariant sets were recently

obtained in [4], [5] for linear systems affected by additive

disturbances and in [6] for linear systems affected by para-

metric uncertainties. Promising results were also reported for

linear systems subject to input saturation [7] and piecewise

affine systems [8], [9].
In this paper we consider the problem of constructing a

polyhedral positively invariant set when an ellipsoidal one

is already available, which is the case for MPC based on

quadratic costs, as mentioned before. Given a β -contractive1

ellipsoidal set E , the key idea is to construct a polyhedral

set that lies between the ellipsoidal sets βE and E . We

prove that the resulting polyhedral set is positively invariant

(and contractive if an additional requirement is satisfied). The

problem of fitting a polyhedral set between two ellipsoidal

sets (with one ellipsoidal set contained in the interior of the

other ellipsoidal set) is solved in the current paper by treating

the ellipsoidal sets as sublevel sets of quadratic functions

and constructing a PieceWise Affine (PWA) function that

approximates the “outer” quadratic function well enough, i.e.

so that its graph lies between the graphs of the two quadratic

functions. A solution to the original problem is then obtained

by retrieving a suitable sublevel set of the resulting PWA

function.
One of the advantages of the proposed algorithm is that

it requires the solution of a finite number of QP problems

and its computational complexity is bounded. This bound

guarantees that the algorithm has finite termination. Also, due

to its unique geometrical approach, which is independent of

the system dynamics, the method is applicable to a wide class

1A set E is a β -contractive set for an arbitrary discrete-time system, if
for all initial conditions in E , the state obtained after one discrete-time step
lies in the set βE .
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of systems, including linear systems affected by disturbances

or subject to input saturation, switched linear systems under

arbitrary switching and piecewise linear systems defined on

conical regions in the state-space.

The paper is organized as follows. The problem statement

and the proposed solution are presented in Section II. The

algorithm for constructing the desired polyhedral set is given

in Section III and computational complexity aspects are ad-

dressed in Section IV. Illustrative examples are presented in

Section V and the conclusions are summarized in Section VI.

A. Notation and basic definitions

Let R, R+, Z and Z+ denote the field of real numbers,

the set of non-negative reals, the set of integer numbers

and the set of non-negative integers, respectively. For a set

S ⊆ Rn, we denote by ∂S the boundary of S , by int(S )
its interior and by cl(S ) its closure. For some points of

S , i.e. (θ0, . . . ,θn), let Co(θ0, . . . ,θn) denote their convex

hull. For any real λ ≥ 0, the set λS is defined as {x ∈
Rn | x = λy for some y∈S }. A polyhedron (or a polyhedral

set) is a set obtained as the intersection of a finite number

of open and/or closed half-spaces. A piecewise polyhedral

set is the union of a finite number of polyhedra. Given

(n + 1) affinely independent points (θ0, . . . ,θn) of Rn, i.e.

(1 θ�
0 )�, . . . ,(1 θ�

n )� are linearly independent in Rn+1, we

define a simplex S as

S � Co(θ0, . . . ,θn) � {x ∈Rn | x =
n

∑
l=0

μlθl ,
n

∑
l=0

μl = 1,

μl ≥ 0 for l = 0,1, . . . ,n}.
A function f : Rn → R is a quadratic function if f (x) :=
x�Px +Cx + α for some P ∈ Rn×n, C ∈ R1×n and α ∈ R.

A quadratic function f is strictly convex if and only if P >
0. An ellipsoid (or an ellipsoidal set) E is a sublevel set

(corresponding to some constant level f0 ∈ R+) of a strictly

convex quadratic function, i.e. E := {x ∈ Rn | f (x) ≤ f0}.

Let Ω1, . . . ,ΩN denote a polyhedral partition of Rn, i.e. Ωi
is a polyhedron (not necessarily closed) for all i = 1, . . . ,N,

Ωi ∩Ω j = /0 for i 	= j and ∪i=1,...,NΩi = Rn.

Definition I.1 A function f : Rn → R with f (x) = x�Pix +
Cix + αi when x ∈ Ωi, i = 1, . . . ,N is called a PieceWise
Quadratic (PWQ) function. A function f̄ : Rn → R with

f̄ (x) = Hix + ai when x ∈ Ωi, for some Hi ∈ R1×n, ai ∈ R,

i = 1, . . . ,N is called a PieceWise Affine (PWA) function.

A piecewise ellipsoidal set is a sublevel set of a piecewise

quadratic function with matrices Pi > 0 for all i = 1, . . . ,N.

II. PROBLEM STATEMENT AND PROPOSED SOLUTION

Consider the discrete-time perturbed nonlinear system:

xk+1 = G(xk,wk,vk), k ∈ Z+, (1)

where xk ∈ Rn, wk ∈ W ⊂ Rp and vk ∈ V ⊂ Rq are the state

and an unknown parametric uncertainty and disturbance
input, respectively, and W and V are known, bounded sets.

G : Rn ×Rp ×Rq → Rn is an arbitrary, possibly discontinu-

ous, nonlinear function. For simplicity, we assume that the

origin is an equilibrium in (1) for zero disturbance input,

meaning that G(0,w,0) = 0 for all w ∈ W.

Definition II.1 For a given 0≤ λ ≤ 1, a set P ⊆Rn is called

a (robust) λ -contractive set for system (1) if for all x ∈ P
it holds that G(x,w,v) ∈ λP for all w ∈ W and all v ∈ V.

For λ = 1 a (robust) λ -contractive set is called a (robust)
positively invariant set.

For a set P ⊆ Rn, let Q1(P) := {x ∈ Rn | G(x,w,v) ∈
P, ∀w ∈ W,∀v ∈ V} denote the (robust) one-step control-

lable set for system (1), with respect to P .

In this paper we address the problem of computing polyhe-

dral Positively Invariant (PI) sets and polyhedral contractive

sets for system (1).

Problem II.2 Suppose that a (piecewise) ellipsoidal β -

contractive set with β ∈ [0, 1) is known for system (1).

(i) Construct a (piecewise) polyhedral PI set for system (1);

(ii) Construct a (piecewise) polyhedral λ -contractive set with

λ ∈ [0,1) for system (1).

Note that systematic solutions to obtain β -contractive (piece-

wise) ellipsoidal sets are available in the literature for many

relevant subclasses of (1), such as linear systems subject to

input saturation [10], linear systems affected by parametric

uncertainties [11] and/or additive disturbances [1], piecewise

affine systems [12]. Typically, they are obtained as sublevel

sets of quadratic (PWQ) Lyapunov functions, which can be

calculated efficiently via semi-definite programming.

Most of the existent methods for solving Problem II.2

are based on recursive algorithms that compute one-step

controllable or one-step reachable sets [13] and they are

applicable to perturbed linear systems. For example, see

the forward procedure presented in [13] (extensions of this

method to piecewise affine systems were proposed in [8],

[9]), the backward procedure introduced in [14] or the

reachability based algorithm given in [1]. Although these

algorithms do not require that an ellipsoidal contractive set

is known, existence of a quadratic Lyapunov function (and

thus, existence of an ellipsoidal contractive set) can be used

to prove finite termination for the forward procedure, e.g.

see [8].

In this paper we generalize results from [15] to obtain a

novel solution to Problem II.2. In [15] (see Lemma 4.1 and

Lemma 4.2), where perturbed linear systems are considered,

it was shown that a polyhedral set contained in between two

convex sublevel sets of a Lyapunov function is positively

invariant and λ -contractive. The result of [15] is extended

in the theorem presented below to a wide class of systems,

which includes, for example, any PWQ stabilizable system.

Theorem II.3 Consider system (1) and let E ⊆ Rn be a

β -contractive set for system (1), for some β ∈ (0,1), that

contains the origin in its interior.
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(i) Suppose there exists a set P ⊆ Rn that satisfies βE ⊂
P ⊂ E . Then, P is a PI set for system (1) and 0 ∈ int(P);

(ii) Let βE ⊂ λP ⊂ P ⊂ E for some2 λ ∈ (0,1). Then,

P is a λ -contractive set for system (1) and 0 ∈ int(P).
Moreover, Q1(λP) is a λ -contractive set for system (1) and

E ⊂ Q1(λP).

Proof: (i) For any x∈P ⊂ E it follows that G(x,w,v)∈
βE ⊂ P for any w ∈ W and any v ∈ V due to the fact that

E is a β -contractive set for system (1). Hence, P is a PI

set for system (1). Since E contains the origin in its interior,

βE contains the origin in its interior and thus, 0 ∈ int(P);
(ii) Applying the same reasoning as above we have that

for any x ∈ P ⊂ E it follows that G(x,w,v) ∈ βE ⊂ λP
for any w ∈ W and any v ∈ V due to the fact that E is a β -

contractive set for system (1). Hence, P is a λ -contractive

set for system (1) and 0 ∈ int(P);
Moreover, from the fact that for any x ∈ E it holds that

G(x,w,v) ∈ βE ⊂ λP for any w ∈ W and any v ∈ V, it

follows that E ⊂Q1(λP). Since P ⊂ E , we have that P ⊂
Q1(λP) and thus, λP ⊂ λQ1(λP). Then, for any x ∈
Q1(λP) we have that G(x,w,v)∈ λP ⊂ λQ1(λP) for any

w ∈ W and any v ∈ V. Hence, Q1(λP) is a λ -contractive

set for system (1) and E ⊂ Q1(λP).
Note that the results of Theorem II.3 also apply to certain

types of non-convex sets E and P , i.e. piecewise ellipsoidal

and piecewise polyhedral sets, respectively (see [16] for an

illustrative example). Also, a λ -contractive polyhedral set

P can be obtained without the additional hypothesis of

Theorem II.3-(ii). Indeed, if E is β -contractive with β ∈
(0,1) we can solve the “tighter” inclusion

√
βE ⊂ P ⊂ E .

Then, we obtain

βE ⊂
√

βP ⊂ P ⊂ E ,

which is the hypothesis of Theorem II.3-(ii) with λ =
√

β .

The case of interest in this paper is, as stated in Prob-

lem II.2, when E is a piecewise ellipsoidal set and P is a

piecewise polyhedral set. By Theorem II.3, it is sufficient to

construct a piecewise polyhedral set P that lies between the

piecewise ellipsoidal sets βE and E to obtain a solution to

Problem II.2. In the next section we present an algorithm for

solving this problem of computational geometry.

Remark II.4 The result E ⊂ Q1(λP) (of Theorem II.3-

(ii)) is relevant when the state of system (1) is constrained

in a compact polyhedral set X ⊂ Rn with 0 ∈ int(X). Then,

given the largest β -contractive piecewise ellipsoidal set con-

tained in X, a larger, piecewise polyhedral, λ -contractive set

can be simply obtained by computing the set Q1(λP)∩X.

III. “SQUARING THE CIRCLE”

In this section we present a solution to the problem of

fitting a piecewise polyhedral set P between two piecewise

ellipsoidal sets where one is contained in the interior of the

2Note that the result also holds when β = 0 and λ = 0 but in this case
P does not necessarily contain the origin in its interior.

other, i.e. βE � E , with β a number3 in (0,1). In case E is

an ellipsoid, the main idea is to treat the sets E and βE as

sublevel sets of two quadratic functions fE (x) and fβE (x),
respectively, that correspond to a certain constant (level) f0 ∈
R+, i.e. E := {x ∈ Rn | fE (x) ≤ f0} and βE := {x ∈ Rn |
fβE (x) ≤ f0}. Then, we compute a PWA function f̄ that

satisfies fβE (x) > f̄ (x) ≥ fE (x) for all x ∈ Rn. The desired

polyhedral set is obtained as P := {x ∈ Rn | f̄ (x) ≤ f0}.

In the piecewise quadratic case we assume that the poly-

hedral partitioning {Ω j | j ∈S } (S is a finite set of indexes)

consists of cones, which ensures that βΩ j ⊆ Ω j. We write

E as:

E =
⋃

j∈S

(E j ∩Ω j) with E j � {x ∈ Rn | fE j(x) ≤ f0},

where fE j := x�Pjx +Cjx+α j is a strictly convex quadratic

function for all j ∈ S . Then, we construct a PWA function

f̄ j(x), as in the quadratic case mentioned above, such that

fβE j(x) > f̄ j(x) ≥ fE j(x) for all x ∈ Rn and for all j ∈ S .

Then, a piecewise polyhedral set P that satisfies βE ⊂P ⊂
E is simply obtained as

P =
⋃

j∈S

(P j ∩Ω j) with P j � {x ∈ Rn | f̄ j(x) ≤ f0}.

Indeed, as P j is a polyhedral set that satisfies βE j ⊂ P j ⊂
E j, j ∈ S , we obtain

P =
⋃

j∈S

(P j ∩Ω j) ⊂
⋃

j∈S

(E j ∩Ω j) = E .

Since βE j ⊂P j and βΩ j ⊆ Ω j for all j ∈S , we have that:

βE = β

( ⋃
j∈S

(E j ∩Ω j)

)
=

⋃
j∈S

β (E j ∩Ω j) =

=
⋃

j∈S

(βE j ∩βΩ j) ⊆
⋃

j∈S

(P j ∩Ω j) = P.

As the PWQ case can be split into a finite number of

quadratic instances of the problem, in the following we

consider only the quadratic case, i.e. when the set E is a

sublevel set of a strictly convex quadratic function fE .

Next, choose P ∈ Rn×n (with P > 0) and f0,αE ∈ R (with

f0 > αE ) such that E is the sublevel set of fE (x) := x�Px+
αE , corresponding to the level f0. Then, we have that βE
is the sublevel set of fβE (x) := x�Px + αβE , corresponding

to the level f0, where αβE := (1 − β 2) f0 + β 2αE > αE .

Consider now an initial polyhedron P0 ⊂ Rn that contains

E . Let (θ̃0, .., θ̃m), with m ≥ n, be the vertices of P0. An

initial set of simpleces S0
1, . . . ,S

0
l0

that contains these points

is determined by Delaunay triangulation [17]. Then, for every

simplex S0
i := Co(θ 0

0i, . . . ,θ
0
ni), i = 1, . . . , l0, the following

operations are performed.

Algorithm III.1 1) Let k = 0.

2) For every simplex Sk
i , i = 1, . . . , lk, construct the matrix

Mk
i �

[
1 1 . . . 1

θ k
0i θ k

1i . . . θ k
ni

]
.

3The case β = 0 is trivial: any P ⊂ E with 0 ∈ int(P) works.
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3) Set vk
i � [ fE (θ k

0i) fE (θ k
1i) . . . fE (θ k

ni) ]� and construct

the function f̄ k
i (x) := (vk

i )
�(Mk

i )
−1

[
1

x

]
.

4) Solve the QP problem:

Jk∗
i � min

x∈Sk
i

{
Jk

i (x) � fβE (x)− f̄ k
i (x)

}
, (2)

and let xk∗
i := argminx∈Sk

i
Jk

i (x).
5) If Jk∗

i > 0 for all i = 1, . . . , lk, then Stop. Other-

wise, for all Sk
i , i = 1, . . . , lk, for which Jk∗

i ≤ 0

build new simpleces Si
0,S

i
1, . . . ,S

i
n defined by the

vertices (xk∗
i ,θ k

1i, . . . ,θ
k
ni), (θ k

0i,x
k∗
i , . . . ,θ k

ni), . . . and

(θ k
0i, . . . ,θ

k
ni,x

k∗
i ), respectively. Increment k by one, add

the new simpleces Si
0,S

i
1, . . . ,S

i
n to the set of simpleces

{Sk
i }i=1,...,lk and repeat the algorithm recursively from

Step 2.

Algorithm III.1 computes a simplicial partition of a given

initial polyhedral set P0 that contains the ellipsoidal set

E , by splitting a single simplex Sk
i into n + 1 simpleces.

This is done by fixing a new vertex xk∗
i which is obtained

by solving the QP problem (2), and by calculating a new

PWA approximation over the new set of simpleces. The steps

of Algorithm III.1 are repeated for all resulting simpleces,

until Jk∗
i > 0 for all simpleces. At every iteration k, a tighter

PWA approximation of the quadratic function fE is obtained.

Algorithm III.1 proceeds in a typical branch & bound way,

i.e. branching on a new vertex xk∗
i , and bounding whenever

it finds a simplex Sk
i for which it holds that Jk∗

i > 0.
Suppose Algorithm III.1 stops. At the k̄-th iteration4 for

some k̄ ∈ Z+, the following PWA function is generated:

f̄ (x) � f̄ k̄
i (x) when x ∈ Sk̄

i , i = 1, . . . , lk̄
� Hk̄

i x+ak̄
i when x ∈ Sk̄

i , i = 1, . . . , lk̄, (3)

where lk̄ is the number of simpleces obtained at the end

of Algorithm III.1 and Hk̄
i x+ak̄

i = (vk̄
i )

�(Mk̄
i )

−1

[
1

x

]
. The

PWA function f̄ constructed via Algorithm III.1 is a continu-

ous function. Moreover, for x = ∑n
j=0 μ jθ ji with ∑n

j=0 μ j = 1,

the corresponding functions f̄ k̄
i satisfy:

f̄ k̄
i (x) = f̄ k̄

i

(
n

∑
j=0

μ jθ ji

)
=

n

∑
j=0

μ j fE (θ ji),

which, by strict convexity of fE , implies that f̄ k̄
i (x) ≥ fE (x)

for all x ∈ Sk̄
i and all i = 1, . . . , lk̄. Hence, f̄ (x) ≥ fE (x) for

all x ∈ P0. Since the stopping criterion defined in Step 4 of

Algorithm III.1 assures that at the end of the entire procedure

the optimal value Jk̄∗
i of the QP problem (2) will be greater

than zero in every simplex Sk̄
i , i = 1, . . . , lk̄, it follows that

fE (x) ≤ f̄ (x) < fβE (x), ∀x ∈ ∪i=1,...,lk̄ Sk̄
i .

Then, the sublevel set of f̄ given by

P �
⋃

i=1,...,lk̄

{x ∈ Sk̄
i | Hk̄

i x+ak̄
i ≤ f0}

4The existence of a finite k̄ will be proven in Section IV.

Fig. 1. Illustration of the proposed solution for constructing the polyhedral
invariant set P .

satisfies βE ⊂ P ⊂ E . Indeed, note that for x ∈ P it holds

that

f̄ (x) ≤ f0 ⇒ fE (x) ≤ f̄ (x) ≤ f0 ⇒ x ∈ E ,

and for x ∈ βE it holds that

fβE (x) ≤ f0 ⇒ f̄ (x) < fβE (x) ≤ f0 ⇒ x ∈ P.

The desired polyhedral set P (see Figure 1) satisfying βE ⊂
P ⊂ E , is obtained as the convex hull of the vertices of P .

Indeed,

βE ⊂ P ⊂ P ⇒ βE ⊂ P

and, by the convexity of E , it holds that

P � Co(P) ⊆ Co(E ) = E .

Note that the computation of the vertices of P and of

their convex hull can be performed efficiently using, for

instance, the Geometric Bounding Toolbox (GBT) [18]. Also,

an ellipsoidal β -contractive set with β ∈ (0,1) as small

as possible is desirable, as this will result in a polyhedral

positively invariant (λ -contractive) set of lower complexity.

Remark III.2 The λ -contractive case: the approximation

error ε̄ := maxx∈P0
[ f̄ (x)− fE (x)] obtained at the end of

Algorithm III.1 is upper bounded by the allowed maximum

error defined as εmax := minx∈P0
[ fβE (x)− fE (x)] > 0. Thus,

the Stop criterion of Algorithm III.1 can be set as Jk∗
i > δ

for some δ ∈ (0,εmax), instead of just Jk∗
i > 0, to create a

gap between P and βE . A larger δ will result in a smaller

λ ∈ (0,1) for which it holds that βE ⊂ λP ⊂ P ⊂ E . The

number of vertices of P tends to infinity, P recovers the

ellipsoidal set E and λ tends to β when δ tends to εmax.

IV. AN ESTIMATE OF THE COMPUTATIONAL

COMPLEXITY

Algorithm III.1 computes at every iteration k a tighter

PWA approximation f̄ k of the given strictly convex quadratic

function fE . It stops when the approximation error obtained

at the k-th iteration of the algorithm satisfies

εk � max
x∈P0

[ f̄ k(x)− fE (x)] ≤ εmax, k ∈ Z+.
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Indeed, if the above inequality holds for some finite k̄ ∈ Z+,

then for all x ∈P0 it holds that f̄ k̄(x)− fE (x) < εmax, which

implies that f̄ k̄(x) < fE (x) + εmax ≤ fβE (x). Consider now

the following assumption.

Assumption IV.1 The optimum xk∗
i obtained in Step 4 of

Algorithm III.1 for every simplex Sk
i , i = 1, . . . , lk, k ∈ Z+,

satisfies xk∗
i ∈ int(Sk

i ).

In [19], the authors proved that under Assumption IV.1 the

error εk committed at the k-th iteration of the algorithm is

such that

εk−1

4
≤ εk ≤ εk−1

2
, ∀k ∈ Z+ \{0}.

The algorithm builds recursively a tree where in each node

it stores the vertices of the current simplex Sk
i and the pairs

(Hk
i ,ak

i ) such that f̄ k(x) = Hk
i x + ak

i , for all x ∈ Sk
i , i ≥ 1,

k ∈ Z+. If the value of Jk∗
i for the current simplex is less

than zero, then Algorithm III.1 splits Sk
i in n + 1 simpleces

and adds a new level to the tree. The height of the tree can

be easily computed once the values of the initial error ε0 :=
maxx∈P0

[ f̄ 0(x)− fE (x)] and of the allowed maximum error

εmax are known, which yields the following upper bound on

the complexity of Algorithm III.1.

Theorem IV.2 Suppose that the initial polyhedral set P0, the

initial error ε0 and the desired final approximation error εmax

are known. Furthermore, suppose Assumption IV.1 holds5.

Then, the following bound holds on the height ξT of the tree

generated by Algorithm III.1:

ξT ≤
⌈

log2

ε0

εmax

⌉
,

where �a� denotes the smallest integer larger than a ∈ R.

Note that the height ξT of the tree and the number of

nodes give the number of simpleces for which the steps of

Algorithm III.1 have to be performed. This in turn yields the

number of QP problems that have to be solved, which is of

order l0(n + 1)
⌈

log2
ε0

εmax

⌉
, where l0 is the initial number of

simpleces and n is the dimension of the state-space. Hence,

Algorithm III.1 always terminates in finite time.

V. EXAMPLES

In this section we present two examples to illustrate the

effectiveness of the new algorithm for computing polyhedral

positively invariant sets.

A. Linear systems subject to input saturation

Consider the following linear system subject to input

saturation [10]:

xk+1 = Axk +Bsat(uk), k ∈ Z+, (4)

5If xk∗
i lies on a facet of Sk

i for some i ≥ 1, k ∈ Z+, the same result holds
with some minor modifications to the splitting strategy.
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Fig. 2. Polyhedral (solid line) and ellipsoidal (dashed line) invariant sets.

where A =
[

0.8876 −0.5555
0.5555 1.5542

]
, B =

[−0.1124
0.5555

]
and sat(uk) :=

sgn(uk)min(1, |uk|). In [10], a quadratically stabilizing state-

feedback control law for system (4), i.e. uk = Fxk, with

F = [−0.7651 −2.0299], and a quadratic Lyapunov function

V (x) = x�Px with P =
[

5.0127 −0.6475
−0.6475 4.2135

]
were calculated.

Since this control law does not take into account the input

saturation, the maximal feasible domain of attraction for

the closed-loop system is given by the ellipsoidal sublevel

set EF of V , corresponding to the level f0 = 0.8237, see

Figure 2. To obtain a larger ellipsoidal domain of attraction

for the feedback F , we employed the LMI technique of [10],

which yielded the new feedback matrix H = [−0.2 −1.4] that

takes into account the effect of saturation and establishes the

enlarged ellipsoidal domain of attraction EH (i.e. the sublevel

set of V , corresponding to the level f0 = 2) for system (4)

in closed-loop with uk = Fxk.

Next, we employed the method developed in this paper

in order to calculate a polyhedral set P such that βEH ⊂
P ⊂ EH , where β = 0.95 is the contraction factor of EH .

The resulting polyhedron is λ -contractive with λ = 0.98 and

has 65 vertices. The set P and the enlarged polyhedral do-

main of attraction Q1(λP), which contains the (ellipsoidal)

domain of attraction EH , are plotted in Figure 2 together

with the closed-loop state trajectory for the initial state

x0 = [0.5434 0.4938]�. The polyhedral set Q1(λP) can now

be used as the terminal set in an MPC algorithm based on

quadratic costs. The resulting MPC constrained optimization

problem for system (4) is a QP problem, while if EH would

be used as the terminal set, the MPC optimization problem

would be a quadratically constrained QP problem. Moreover,

since EH ⊂ Q1(λP), the MPC optimization problem with

Q1(λP) as terminal set will have a larger feasible set in

general, see, for example, the survey [3].

B. Linear systems subject to additive disturbances

Consider the following discrete-time triple integrator af-

fected by additive disturbances:

xk+1 = Axk +Buk + vk, k ∈ Z+, (5)
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Fig. 3. Polyhedral invariant set and state trajectory for system (5) in
closed-loop with u = Kx and randomly generated disturbances v in V.

where A =

[
1 Ts

T 2
s
2

0 1 Ts
0 0 1

]
, B =

⎡
⎣ T 3

s
3!

T 2
s
2
Ts

⎤
⎦, Ts = 0.8, vk ∈ V is

the additive disturbance input, and V = [−0.1, 0.1] ×
[−0.1, 0.1]× [−0.1, 0.1]. We calculated a robust stabilizing

state-feedback control law for system (5), i.e. uk = Kxk,

with K = [−1.1739 − 2.4071 − 2.0888], together with a

robust quadratic Lyapunov function V (x) = x�Px with P =[
14.4684 13.5850 4.0221
13.5850 17.4375 5.4581
4.0221 5.4581 2.5328

]
. The procedure presented in this paper

was employed to calculate a polyhedral set P such that

βE ⊂P ⊂ E , where E is the sublevel set of V , correspond-

ing to the level f0 = 20, and the contraction factor is β = 0.8.

The resulting set P is λ -contractive with λ = 0.9 and has

56 vertices. A plot of P is given in Figure 3 together with

a plot of the closed-loop system state trajectory obtained for

x0 = [−3 2 2]� and randomly generated additive disturbance

inputs.

VI. CONCLUSIONS

A new method for computing (piecewise) polyhedral posi-

tively invariant and contractive sets was developed based on a

geometrical argument. The novelty of the proposed approach

consists of formulating the problem of computing polyhedral

invariant sets as solving a number of QP problems. This

was achieved by observing that any polyhedral set that lies

between two ellipsoidal sets βE and E with E β -contractive

for some β ∈ (0,1) is positively invariant (and contractive

if an additional condition is satisfied). A new algorithm

based on QP was developed in order to construct the desired

polyhedral set. A guarantee that the number of QP problems

that need to be solved is always finite was also given. This

fact establishes finite termination for the algorithm.

The method works for a wide class of systems, including

linear systems affected by parametric uncertainties and/or

additive disturbances, linear systems subject to input satu-

ration and certain relevant classes of hybrid systems. The

algorithm presented in this paper has already been used in

[16] to calculate a polyhedral terminal constraint set for a

hybrid MPC scheme based on quadratic costs, which is an

important application.
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