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Abstract: High-tech motion system development is driven by increasingly accurate and fast
positioning requirements. Feedforward compensation together with high bandwidth feedback
control are essential to achieve these ever tightening performance demands. In particular, online
adaptation of the feedforward parameters, to correct for small position dependencies and slow
variations, is crucial to approach zero error tracking. The aim of this paper is a framework
that provides robust recursive learning of feedforward parameters for any bounded reference
trajectory. The convergence of the parameter learning strategy exploits the difference in time-
scale between the parameter variation rate and the bandwidth of the servo controlled system.
This enables to describe a servo-error-based objective function for varying trajectories as a static
sector bounded nonlinearity. Subsequently, the circle criterion is employed to derive stability
guarantees on the learning with explicit robustness to reference trajectory variation. A numerical
case study demonstrates that a significant performance improvement can be achieved.

Keywords: Iterative and repetitive learning control, Extremum seeking and model free
adaptive control, Continuous time system estimation

1. INTRODUCTION

High-tech motion systems, such as wafer stages in lithogra-
phy machines (Butler, 2011; Heertjes et al., 2020), Atomic
Force Microscopes (Kara-Mohamed et al., 2015), or in-
dustrial flatbed printers (Blanken et al., 2020), execute
positioning tasks with extreme demands on throughput
and accuracy. To achieve fast and accurate positioning,
these systems heavily rely on FeedForward (FF) compen-
sation alongside high bandwidth Feedback (FB) control.
Typical FF compensation for position reference trajec-
tory induced disturbance forces includes acceleration and
snap FF compensation parameters, see Boerlage et al.
(2004); Boerlage (2006). Moreover, careful design of the
set-point trajectory is needed to balance fast movements
with moderate excitation of the mechanical structure, see
Lambrechts et al. (2005); Biagiotti and Melchiorri (2012).

1.1 Motivation for online feedforward parameter learning

Small variations in the system, e.g., due to slow thermal
transients, leads to limited accuracy that is achievable with
offline calibration of the FF parameters. Simultaneous
online estimation of the sub-optimal parameters over a
receding horizon of past data and immediate adaptation of
the FF parameters, to correct for position dependency and
slow variations, is needed to approach zero error tracking.

1.2 Overview of learning strategies

To enhance the tracking performance of high-tech motion
systems beyond what can be achieved with constant FF

parameters, learning strategies are explored that can im-
prove the future control performance by evaluating the
actual measured tracking performance.

Iterative Learning Control (ILC) is a learning approach
(Arimoto et al., 1984) that improves the control perfor-
mance of systems that perform a repeating positioning
task by mapping the measured servo error along one iter-
ation to a compensation trajectory for the next iteration,
see Bristow et al. (2006) for an overview, and Rotariu
et al. (2008) for application of ILC to high-tech motion
systems. A known challenge for ILC is to achieve sufficient
robustness of the learning to variations of the set-point
(Rotariu et al., 2008; van Zundert et al., 2016). Although
high-tech motion systems are designed for specific tasks,
unfortunately, exact repetition of reference trajectories
can often not be guaranteed in complex motion systems.
Moreover, the system properties may vary within the time-
scale of a typical repeating positioning task.

In van de Wijdeven and Bosgra (2010); Hoelzle et al.
(2011); Bolder and Oomen (2015); van Zundert et al.
(2016), the robustness of ILC to set-point variations is
enhanced by the introduction of basis functions. Basis
functions map the reference signal with a relatively small
parameter set to the FF signal. Hence, the application of
basis functions strongly reduces the dimensionality of the
mapping from servo error to control input by capturing
the behaviour of the system induced by the reference
trajectory using a condensed output space. An example
basis function is the derivative operator that provides
higher-order derivatives of position, i.e., acceleration, jerk,
snap, etc.
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The application of basis functions is also explored in the
data-driven Iterative Feedback Tuning (IFT) approach,
see van de Meulen et al. (2008); Baggen et al. (2008);
Cao et al. (2020), for results in the context of motion
systems, and Hjalmarsson (2002) for a general overview.
IFT constructs an objective function based on the inner
product of a measured servo error over a selected interval.
In Boeren et al. (2015), it is demonstrated that the IFT
application to FF parameter tuning in van de Meulen et al.
(2008); Baggen et al. (2008), is in essence a least-squares
solution to a parameter identification problem, however,
with a regressor that contains correlated measurement
noise leading to bias. To avoid bias in the parameter
estimation, the utilization of basis function is further
investigated in Boeren et al. (2015, 2017) and it is shown
that the application of basis functions can be viewed
in the context of Instrumental Variable (IV) parameter
identification, see Söderström and Stoica (1984).

To summarize, effective learning strategies are developed
for systems that operate with a batch repetitive servo task
in which it is well understood that the exploitation of the
set-point characteristics in the form of IV enables bias-free
optimal compensation parameter estimates. Nevertheless,
the optimization of parameters that vary with a time-
scale shorter than the batch task cannot benefit from these
iterative learning approaches.

The optimal FF controller must reflect the reciprocal of the
system dynamics. Therefore, adaptive control approaches
provide learning of FF parameters on the basis of plant
input (force) and output (position) measurements (But-
ler, 2012; Mooren et al., 2019). Parameter adaptation is
obtained by solving this parameter estimation problem
recursively in, e.g., a least-squares fashion. Unfortunately,
recursive parameter adaptation based on both input and
output data is sensitive to bias in the parameter estimation
due to measurement noise in the output signal. In Mooren
et al. (2019), the bias due to measurement noise is partly
mitigated by the application of a low-pass filter. In Mooren
et al. (2022), an IV approach for recursive FF estimation is
developed. This leads to consistent estimates, yet requires
a detailed specification of statistical properties.

The aim of the current paper is to develop a deterministic
recursive learning approach. To overcome the dependency
between parameter estimation and recursive parameter
adaptation, a continuous-time approach is developed that
exploits time-scale separation and resembles Extremum
Seeking Control (ESC) Krstić and Wang (2000); Nešić
et al. (2012). ESC provides optimization by online esti-
mation of the local derivative of a constructed objective
functional and to adjust the control input by, e.g., a steep-
est descent feedback control. Time-scale separation plays
a pivotal role in the convergence analysis of ESC where
the parameter updating is required to be slow compared
to the derivative parameter estimation.

1.3 Contribution

The main contributions of this paper is to provide a
continuous-time parameter learning framework that is ro-
bust to any bounded set-point trajectory. The second con-
tribution is to showcase the FF parameters optimization
framework in a numerical case study.

1.4 Organization

The organisation of this article is as follows. Section 2
provides a description of the control design for high-tech
motion systems. Section 3 provides the main result which
is a novel learning framework. A numerical case study
is given in Section 4. Finally, conclusions are drawn in
Section 5.

2. CONTROL DESIGN FOR HIGH-TECH MOTION
SYSTEMS

This section describes a typical control design for high-tech
motion systems. To achieve accurate tracking, the design
includes a combination of FB and FF control and set-
point Trajectory Planning (TP), see Fig. 1 for a schematic
overview of the control design.

Cfb(s)

θd
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G(s)

u y
−

+

+

Cff
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uff
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m̂+ θas2

TP

Fig. 1. Schematic overview of the controlled system G(s)
with feedforward Cff and feedback Cfb.

2.1 Plant dynamics

For the design of the FB and FF control in high-tech
motion systems it is convenient, see Boerlage et al. (2004);
Boerlage (2006); Heertjes et al. (2017), to decompose the
plant description in:

G(s) =
1

ms2
+Gflex(s). (1)

Here, m ∈ R is the mass, and the n flexible modes of
Gflex ∈ C are described by the transfer function:

Gflex(s) =

n∑
i=2

φi
m (s2 + 2ξiωis+ ω2

i )
, (2)

in which ωi is the i-th resonance frequency, ξi is the modal
damping of the i-th flexible mode, and φi ∈ [−1, 1] the
mode gain. The compliance of the mechanical structure
provides the static contribution:

Gflex0 := Gflex(0) ∈ R. (3)

2.2 Feedforward compensation of the plant dynamics

Feedforward compensation is employed to enhance the
tracking performance. A common FF strategy is to com-
pensate the reciprocal rigid-body plant behavior which is
known as mass or acceleration FF by m̂s2. Here, m̂ is an
estimate of the plant’s mass obtained by offline calibration.
The difference between the offline estimate and the true
(unknown) mass is described by:

θa := m− m̂. (4)

Assumption 1. Offline calibration of the mass parameter
can provide a good estimate m̂ such that

∣∣1− m
m̂

∣∣� 1.
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Implementation of acceleration FF in flexible systems
cannot remove the tracking error completely. Further
improvement of the tracking performance is obtained by
snap FF (Boerlage et al., 2004; Boerlage, 2006), which
compensates for the static contribution of all flexible
modes:

θd := −m̂2Ĝflex0. (5)

The FF compensation parameters can now be collected in
θ ∈ R1×2:

θ := [θa θd]
>, (6)

such that the following FF controller is obtained:

Cff (s, θ) := (m̂+ θa) s2 + θds
4. (7)

This FF controller can be parameterized in terms of basis
functions as follows:

Cff (s, θ) = m̂s2 +

2∑
i=1

Ψi(s)θi, (8)

in which θi ∈ R is the “ith” scalar element of θ and with
the basis functions:

ψ1(s) = s2, (9)

ψ2(s) = s4. (10)

2.3 Feedback control

Feedback control is employed to reject unknown distur-
bances, measurement noise, and FF model mismatch.

The FB can be represented by an idealized Proportional,
Integral, Derivative (PID) controller appended with a
second order low-pass filter, see, e.g., Heertjes et al. (2020):

Cpid(s) =
kds

2 + kps+ ki
s

·
ω2
lp

s2 + 2βlpωlps+ ω2
lp

, (11)

where kd, kp and ki are the PID FB parameters, respec-
tively, ωlp the low-pass filter cut-off frequency, and βlp the
filter damping ratio. To maximize disturbance rejection
the aim is to achieve a high control bandwidth ωb, i.e.,
where |Cfb(jωb)G(jωb)| = 1.

The flexible modes (2) are usually bandwidth limiting.
Notch filtering can be employed to enhance the control
bandwidth:

Cnotch(s) =

q∏
i=1

(
s2 + 2βz,iωz,is+ ω2

z,i

s2 + 2βp,iωp,is+ ω2
p,i

)
, (12)

in which, βz,i and βp,i are the damping parameters, and
ωp,i and ωz,i are the notch, pole, and zero frequency of
the qth notch filter, respectively. The FB controller is thus
given by:

Cfb(s) = Cpid(s)Cnotch(s). (13)

The transfer function

e = S(s)r, (14)

in which

S(s) =
1

1 +G(s)Cfb(s)
, (15)

describes the sensitivity of the FB controller.

Assumption 2. A parametrization of (11) and (12) is avail-
able that for system (1) provides stable closed-loop be-
haviour, i.e. where all poles of (15) are located in the open
left half of the complex plane.

Consider, e.g., Heertjes et al. (2020) for heuristic design
rules to parameterize (11) and (12).

2.4 Closed-loop behavior

The transfer function of the controlled system including
FF that relates the reference r to the control error e is

H(s, θ) = S(s)(1−G(s)Cff (s, θ)). (16)

Using Assumption 1 and 2, and implementing (7) in (16)
leads to the transfer function approximate

H(s, θa, θd) ≈ −S(s)
θa
m̂︸ ︷︷ ︸

Ha(s,θa)

−S(s)
θds

2

m̂︸ ︷︷ ︸
Hd(s,θd)

, (17)

which describes the contribution of the scalar FF controller
parameters θa and θd in the servo error signal e as function
of the set-point r accurately in the frequency range up to
the first resonance frequency of the plant.

2.5 Trajectory planning

Motion systems require the movement of one position to
another. Point-to-point TP entails the calculation of an
allowable time-optimized trajectory r ∈ R connecting the
current position to a desired future position while avoiding
the excitation of the resonance dynamics of the plant and
accounting for force and power limitations of the actuators.

Lemma 3. If the set-point trajectory for a motion system
described by (1) is restricted to point-to-point moves with
the same velocity at the begin and end of the trajectory
and with bounds on the first four time-derivatives of
position, then the time-optimal trajectory is symmetric
and can be calibrated such that the frequency content
of the set-point is small compared to the first resonance
frequency of the plant.

Proof. Time-optimal trajectories with bounds on the first
four time-derivatives of position are obtained by calculat-
ing the switching times of the piece-wise constant snap
values. The time intervals for a trajectory are completely
described by four time intervals: td̄, tj̄ , tā, tv̄, the constant
snap, jerk, acceleration and velocity interval, respectively,
see Lambrechts et al. (2005):

td̄ =
j̄

d̄
, (18)

tj̄ =
ā

j̄
− td̄, (19)

tā =
v̄ − 2d̄t3

d̄
− 3d̄t2

d̄
tj̄ − d̄td̄t2j̄

d̄t2
d̄

+ d̄td̄tj̄
. (20)

Here, the constant parameters v̄, ā, j̄ and d̄ are bounds
on the velocity, acceleration, jerk and snap, respectively.
Hence, the distance covered without the constant velocity
phase is fixed:

xa = 8d̄t4d̄ + 16d̄t3d̄tj̄ + 10d̄t2d̄t
2
j̄ + 2d̄td̄t

3
j̄ + d̄t2d̄t

2
ā

+ d̄td̄tj̄t
2
ā + 6d̄t3d̄tā + 9d̄t2d̄tj̄tā + 3d̄td̄t

2
j̄ tā, (21)

and the constant velocity time interval is given by

tv̄(x̄) =
x̄− xa
v̄

. (22)
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So, the reference trajectory is fully characterized as a func-
tion of travel distance only. The frequency content of the
set-point trajectory r can be expressed as the convolution
of unit impulse function ζ with a concatenation of low-pass
filters in which the cut-off frequencies are directly related
to the time intervals (19)-(20) and (22), i.e., ωv̄ = 2π

tv̄
,

ωā = 2π
tā

, ωj̄ = 2π
tj̄

, and ωd̄ = 2π
td̄

, see Biagiotti and

Melchiorri (2012). The frequency response of the filter
composing the TP is given by

Q(s, x̄) =
x̄

s

(
1

tv̄(x̄)

1− e−stv̄(x̄)

s

)(
1

tā

1− e−stā
s

)
·(

1

tj̄

1− e−stj̄
s

)(
1

td̄

1− e−std̄
s

)
. (23)

The parameters v̄, ā, j̄ and d̄ can be calibrated such that
the cut-off frequency of (23) is small with respect to the
resonance frequencies in (2). 2

Commonly, the velocity v̄ and acceleration ā bounds are
directly linked to physical limitations of the actuators
while the bounds on jerk and snap can be tuned to
reduce excitation of flexible modes of the mechanical
structure (Biagiotti and Melchiorri, 2012). Note that, time
optimality of the trajectory is only guaranteed for point-
to-point moves with active bounds on the first four time-
derivatives of position. Hence, it is found that, a time-
optimized trajectory for the rest-to-rest case with bounds
on the first four derivatives of position can avoid the
excitation of the resonance dynamics of the plant and
account for force and power limitations of the actuators
(Lambrechts et al., 2005; Biagiotti and Melchiorri, 2019).

3. PARAMETER LEARNING FRAMEWORK

This section contains the main result which is the learning
framework that provides online adaptation of the FF
parameters, to correct for position dependency and time-
varying plant behavior.

Note that the parameter learning problem is more involved
than the parameter estimation problem: Rather than hav-
ing the objective to estimate the model parameters that
explain the system behavior the aim is to estimate and
adjust parameters in the system leading to control error
improvements in future times.

Eq. (31)
θi θLSi

Ω

Hi(s, θi)
e

r

Fi(s)

ζ

Q(s)
Ĥi(s, θ

IV
i )

ϕi

rθLS
i

= 0

Fig. 2. System representation of the learning feedback
interconnection with parameter estimation Ω and
parameter adaptation by Fi.

The adaptation of parameters affects, however, the estima-
tion of parameters in future times. Hence, a dependency is
obtained in the form of a FB interconnection between, on
one hand, the parameter estimation that involves the true

FB controlled system, the set-point trajectory as external
input, and a parameter estimation algorithm, and, on the
other hand, the parameter adaptation, see Fig. 2 for a
schematic overview of the FB interconnection.

Here, a learning framework is described that exploits time-
scale separation to deal with this dependency by using a
two-step recursive approach of relatively fast parameter
estimation followed by relatively slow parameter adapta-
tion.

A problem statement is formulated in Section 3.1. The
parameter estimation algorithm is further discussed in
Section 3.2 and the parameter adaptation in Section 3.3.
Moreover, a sketch of the stability analysis of the FB
interconnection is provided in Section 3.4.

3.1 Problem description

Offline calibration of θ provides limited accuracy. The
required adaptation with respect to the offline calibrated
FF parameters is estimated by evaluating the control error
e(t) in past times on contributions from sub-optimal FF
parameter settings. The learning control objective is to
minimize the servo error between the reference signal and
the system output by approximating the solution

θ?(t) = arg min
θ(t)

∫ t

−∞
e2(τ, θ(τ))dτ, (24)

in (7), where θ?(.) is the optimal FF parameter signal.

To limit the solution space, a constant parameter estimate
is considered in a receding horizon of past measurement
data. In this context, we can construct the parameter
estimation problem with solution:

θ?|T = arg min
θ

∫ t

t−T
e2(τ, θ)dτ, (25)

in which, θ?|T is a vector of constant parameters for (6)
that provides the best fit in the considered horizon of past
data. The length of the horizon T gives rise to a trade-off:
A short horizon enables a fast adaptation of θ, however,
also leads to a larger variation in the parameter estimate.

3.2 Parameter estimation

The parameter estimation problem is thus to find a pre-
diction of the tracking error e (the dependent variable)
as defined in (17) given information about the set-point
trajectory r (the regressor).

The basis function parameterization of the FF controller
(8) in combination with a set-point defined in Lemma 3
allows to consider a scalar prediction error for each FF
parameter separately:

εa(t, θδa) = e(t, θ)− ẽa(ϕa(t), θδa), (26)

εd(t, θ
δ
d) = e(t, θ)− ẽd(ϕd(t), θδd), (27)

in which, the tracking error e is possibly corrupted with
measurement noise while ẽa and ẽd are a function of the
regressors ϕa(t) and ϕd(t) and depend on the parameter
offsets θδa and θδd, respectively. To keep the notation short,
in the remainder of the paper the subscript i is used to
indicate both the acceleration a and snap d subscripts.
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Remark 4. Point-to-point moves defined in Lemma 3
with the begin and end velocity the same results in∫ t
t−Tm a(τ)dτ =

∫ t
t−Tm j(τ)dτ =

∫ t
t−Tm d(τ)dτ = 0, where

Tm is the time span of the move. Hence, cross correlation
of error ea by θd and vice versa is avoided when considered
over one or multiple moves.

To avoid bias in the parameter estimates due to measure-
ment noise, it is required that the prediction error εi is
independent of a particular set of past data (Ljung, 1987;
Boeren et al., 2015, 2017). This can be achieved by the
application of an additional correlation signal, which is
also called IV. The IV signal should be designed in a way
that it correlates with the regression variable r(t) but is
uncorrelated with measurement noise.

Let us now choose to describe the predictor ẽi with a linear
regression model (Ljung, 1987):

ẽi(t, θ
δ
i ) = ϕi(t)θ

δ
i , (28)

in which the regressor ϕi(t) is defined as

ϕi(t) = Ĥi(t, θ
IV
i )r(t). (29)

Here, θIVi ∈ R is a selected sub-optimal compensation
parameter with property θIVi > θ?i and regressor signal ϕi
is obtained by convolution of set-point r with an estimate
Ĥi of system Hi defined in the right hand side in (17).
Note that, signal ϕi resembles a tracking error estimate
that is typical for the selected sub-optimal parameter θIVi .

Assumption 5. There exists a parameter θi for which the
system Hi(s, θi) in (17) can be approximated by a low-
order continuous-time rational form parametric model
approximation:

Ĥi(s, θi) =

∑nq
r=0 qrs

r∑np
r=0 prs

r
θi, (30)

for which supω∈[0 ωT ] |Hi(jω, θi)− Ĥi(jω, θi)| < εH . Here,
εH > 0 is a positive constant, ωT is the frequency up
to which accurate system information is available, and
qr, pr ∈ R.

The purpose of Assumption 5 is to ensure that, on a
horizon T = 1

ωT
, an accurate estimate of the (scaled) servo

error is obtained while the system’s fast dynamics can be
disregarded.

Remark 6. The dynamics of high-tech motion systems can
be accurately described by 1

ms2 in the frequency region
up to the first resonance while the low-frequent dynamics
of the FB controller are known and described by (11).
Furthermore, the bandwidth of the FB is typically also
limited by the resonance frequencies of the plant. So, for
high-tech motion systems, it is relatively easy to obtain
an accurate estimate of the controlled system at least up
to the frequency for which rigid-body dynamics hold. The
required receding horizon length T is thus directly related
to the properties of the mechanical structure. Accurate es-
timates of the controlled system in the resonant frequency
range is more involved however provides opportunities to
further shorten the receding horizon length to enable faster
parameter estimation.

The size of the prediction error εi can be measured using
a quadratic norm over the horizon of past data, providing
a least-squares problem with objective function:

Vi(t, θ
δ
i ) =

1

T

∫ t

t−T

(
e(τ, θ)− ϕi(τ, θIVi )θδi

)2
dτ. (31)

Since (31) is quadratic in the parameter θδi , setting the
derivative of Vi with respect to θδi equal to zero provides
a sufficient condition for optimality leading to parameter
estimate:

θLSi (t) =
1∫ t

t−T ϕ
2
i (τ)dτ

∫ t

t−T
ϕi(τ)e(τ, θ)dτ. (32)

Note that, the parameter estimate θLSi depends on the
set-point trajectory excitation within the moving average
window and therefore can be time-varying.

3.3 Parameter adaptation

Objective for the learning framework is to adapt the
FF parameters given the parameter estimate θLSi to im-
prove the servo performance in future time. Due to the
dependency of the recursive parameter estimation with
the parameter adaptation, immediate application of θLSi
is not possible as it affects the parameter estimation in
future time. Therefore, consider a learning framework that
includes adaptation of the FF parameter based on a linear
dynamic system:

ẋθi(t) =Aixθi(t)−BiθLSi (t), (33)

θi(t) =Cixθi(t) (34)

with transfer function

Fi(s) = −Ci(sI −Ai)−1Bi, (35)

where the input of this system is the parameter estimate
θLSi and the output is the adapted FF parameter θi. Here,
xθi ∈ RNθ , and Ai, Bi, and Ci are to be designed state-
space matrices of appropriate size.

3.4 Convergence of the learning framework

The parameter estimation (32) and adaptation (33)-(34)
describe a FB interconnection, see again Fig. 2. Time-scale
separation provides a way to demonstrate stability of this
FB interconnection.

Against this backdrop, the learning control framework is
calibrated to operate at two time-scales:

• slowest - the parameter adaptation of θi,
• fastest - the parameter estimation of θLSi .

Next, a sketch of the convergence analysis is given:

(1) it can be demonstrated using singular perturbation
theory that, if the time-scale of the moving horizon in
(32), and update rate of θ in (33)-(34), are separated,
then the parameter estimation reduces to a memory-
less nonlinear function,

(2) it can be demonstrated that, if the set-point tra-
jectory r is bounded and is evaluated over a fixed
horizon, then the parameter estimation mapping Ω is
a memory-less sector bounded nonlinear function,

(3) it can be demonstrated that, by connecting the above
steps, the requirements of the application of the
circle criterion are met and the above steps can
be aggregated in a theorem for recursive online FF
parameter updating.
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4. CASE STUDY

This section provides a numerical case study that illus-
trates the learning framework. Figure 3 displays an exam-
ple with force input u and position output y. The following
parameters are used: m1 = m3 = 1 kg and m2 = 2 kg,
k = 4 · 107 N/m and damping d = 20 Ns/m.

m1 m2

yu

m3

d d

k k

Fig. 3. Three body example.

Furthermore, the idealized PID representation of the FB
controller (11) is used, with the following parameteriza-
tion: kd = 1.5708 · 103, kp = 5.9218 · 105, ki = 3.10 · 107,
βlp = 0.5 and ωlp = 250 Hz. Besides two notch filters
are tuned with βp = 0.005, βl = 0.1, ωnt1 = 1000 Hz
and ωnt2 = 1420 Hz. Leading to a control bandwidth of
ca. 100 Hz. The control system is implemented using a
sampling time Ts = 1 · 10−4 s. The FF control entails
acceleration and snap compensation as in (7).

System estimates according to (17) can be generated
where, θIVa = 1.5m̂, θIVd = −m̂2 1

ω2
nt1

, and the approximate

sensitivity function is given by:

Ŝ(s) =
1

1 + Ĝ(s)Cfb(s)
=

s5 + 2βlpωlps
4 + ω2

lps
3

s5 + 2βlpωlps4 + ω2
lps

3 +
kdω2

lp

m̂ s2 +
kpω2

lp

m̂ s+
kiω2

lp

m̂

, (36)

which includes the known PID and low-pass parameters
and the estimated system mass m̂ = 1.02(m1 + m2 +
m3). The moving average length is based on the control
bandwidth, i.e., T = 0.01 s.

Figure 4 shows the regressor signals during the first move.
The learning is applied during consecutive varying moves,
see top plane in Fig. 5. The bottom plane of Fig. 5 shows
the absolute tracking error. The updated FF parameters
are displayed in Fig. 6. It can be seen that the tracking
error improves with several orders of magnitude and the
FF parameters converge to a value close to the theoretical
optimal value. The remaining servo error is due the mis-
match of the estimated sensitivity with the true sensitivity
function. Further improvement could also be obtained by
using six-ed order set-point trajectories in combination
with higher-order FF compensation.

5. CONCLUSIONS

This article studied a continuous-time learning framework
for online optimization of feedforward (FF) parameters.
This framework utilizes a model of the controlled plant in
combination with basis functions and selected sub-optimal
FF parameters as instrumental variables to recursively es-
timate the optimal FF parameters. Time-scale separation,
between the relatively fast dynamics of parameter estima-
tion in a feedback controlled plant and a relatively slow
parameter updating, is exploited to reduce the parameter

Fig. 4. Normalized acceleration and snap trajectories
(dashed, from top to bottom) and normalized regres-
sor signals (solid).

Fig. 5. Set-point trajectory (top) and control error im-
provement (bottom).

estimation to a memory-less nonlinear function. Further-
more it is sketched that, this nonlinear function is sector
bounded. To this end, the circle criterion is applicable to
demonstrate convergence with explicit robustness to set-
point variations. A numerical case study exemplifies the
findings. Future work will focus on providing a rigorous
proof for the convergence analysis of the learning frame-
work as well as extending the framework to learning of
nonlinear disturbance compensation parameters, e.g., to
compensate friction or reluctance disturbance forces.
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