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Summary

In this thesis we consider observer design and identification techniques for
certain classes of hybrid systems. Hybrid systems are a broad class of dyna-
mical systems that arise when the discrete behavior (usually described by a
finite state machine) and continuous behavior (usually described by differen-
tial or difference equations) interact. These systems are typically nonlinear,
non-smooth and multi-modal. Examples of hybrid dynamics can be found
in many fields and disciplines, such as embedded systems, process control,
automated traffic-management systems, electrical circuits, mechanical and
bio-mechanical systems, biological and bio-medical systems and economics.

We will present a novel constructive observer design procedure for a class
of nonsmooth dynamical systems, namely systems of Lur’e type with a mo-
notone multivalued mapping in the feedback path. Examples of such systems
include various classes of hybrid systems, such as relay systems, linear com-
plementarity systems, electrical circuits with switching elements and certain
piece-wise affine systems. Under the assumptions that the observed system is
well behaved and certain LMI conditions are satisfied, we will prove that the
proposed observers are well-posed (i.e. that there exists a unique solution to
the observer dynamics), and that the observer asymptotically recovers the
state of the observed system. The results are illustrated on an experimental
case study of a drill-string setup.

We also present a novel observer design procedure for a class of bi-modal
piece-wise affine systems, in both continuous and discrete time. We propose
Luenberger-type observers, and derive sufficient conditions for the obser-
vation error dynamics to be globally asymptotically stable. The derived
conditions imply that the system dynamics is continuous over the switching
plane. When the dynamics is discontinuous, we derive conditions that gu-
arantee that the relative estimation error will be asymptotically bounded
with respect to the state of the observed system. The presented theory is
illustrated with several academic examples and an experimental example of
a piecewise linear beam with a one-sided spring.

The second part of the thesis focuses on on identification methods for hy-
brids systems and starts with an experimental case study in the identification
of the electronic component placement process in pick-and-place machines.
Unilateral contact and saturation phenomena characterize the discrete dy-
namics of the system. Furthermore, the mode switch cannot be measured
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and identification algorithms for hybrid systems, that are capable to recon-
struct both the modes and the switching law, must be applied. Piece-Wise
AutoRegressive eXogenous (PWARX) models, which consist of a number of
ARX modes together with the partition of the regressor space into regions
where each model is valid are identified using a clustering-based procedu-
re. The reconstructed models are able to capture the relevant dynamics of
the experimental setup. This case study yields many practical insights into
hybrid system identification, and highlights the need for incorporating the
available a priori knowledge into the identification procedure.

Motivated by the need for incorporating a priori knowledge, a novel pro-
cedure for the identification of hybrid systems in the class of PWARX systems
is developed. The presented method facilitates the use of available a priori
knowledge on the system to be identified, but can also be used as a black-box
method. We treat the unknown parameters as random variables, described
by their probability density functions. The identification problem is posed
as the problem of maximizing the total probability that the observed data
is generated by the identified model. A particle filtering method is used
for the numerical implementation of the proposed procedure. A modified
version of the multi-category robust linear programming (MRLP) classifi-
cation procedure, which uses the information derived in the previous steps
of the identification algorithm, is used for estimating the partition of the
PWARX map. The proposed procedure is applied for the identification of a
component placement process in pick-and-place machines.



Introduction
1.1 Hybrid systems 1.4 Identification of hybrid
1.2 Piecewise affine systems systems
1.3 Observer design for 1.5 Experiments
hybrid systems 1.6 Overview

In this thesis we will present methods for observer design and identifi-
cation for certain classes of hybrid systems. In this chapter we will discuss
the relevance of the problems treated in this thesis, and discuss connections
with the existing literature.

1.1 Hybrid systems

Hybrid systems are a broad class of dynamical systems that arise when the
discrete behavior (usually described by a finite state machine) and continuous
behavior (usually described by differential or difference equations) interact.
This means that in the operation of a hybrid system several discrete states
(modes) can be distinguished, while different laws govern the evolution of
the continuous state in each of the discrete modes (cf. figure 1.1). Examples
of hybrid dynamics can be found in many fields and disciplines, such as
embedded systems, process control, automated traffic-management systems,
electrical circuits, mechanical and bio-mechanical systems, biological and
bio-medical systems and economics.

Almost all modern consumer products (cars, home appliances, entertain-
ment products) are controlled by embedded software. Software control makes
it possible for manufacturers to design and produce flexible and economical
products with a multitude of functions. The controlled process (the car engi-
ne, the temperature in the refrigerator, the motor in the DVD drive) is time
continuous, while the control algorithm, implemented in software, takes the
form of a finite state machine, rendering the overall dynamics hybrid.

Examples of hybrid dynamics can also be found in mechanical systems
that display multi-modal behavior. For example, in mechanical systems
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mode 2

X(1)=f, (x(t),u(1),1)
W(1)=g, (x(1),u(t),1)

mode 1

X(1)=f, (x(t),u(1),1)
Y()=g, (x(1),u(t),)

mode 3

X(1)=f5 (x(t),u(1),1)
Y()=g3 (x(1),u(t),)

mode 5

X(1)=f5 (x(t),u(1),1)
W()=g5 (x(1),u(t),)

mode 4

X(1)=f (x(t),u(1),1)
()=, (x(1),u(1),t)

Figure 1.1: A hybrid system

with friction it is possible to make a clear distinction between stick and slip
phases. Other examples include mechanical systems with contacts, where
the evolution of the system depends on whether a contact is active or not.

Example 1.1.1 As an example of a hybrid mechanical system take the sim-
plified scheme of the mounting head of the pick-and-place machine, depicted
in figure 1.2 (Juloski et al. (2003b, 2004b)). This example originates from
an industrial case study, done for the pick-and-place machines manufactured
by Assembleon, Eindhoven.

The pick-and-place machine works as follows: the printed circuit board
(PCB) is placed in the working area of the mounting head. The mounting
head, carrying an electronic component (using, for instance, a vacuum pi-
pette), is navigated to the position where the component should be placed
on the PCB. Next, the component is placed, released, and the process is
repeated for the next component.

Figure 1.2 depicts the mounting head carrying the electronic component,
powered by the electric motor (force F ), together with supporting elements
(spring c1), and frictions (damper dj, dry friction fi). The total moving mass
is denoted by M. The lower part of the figure depicts the printed circuit
board (PCB), where the elasticity and damping of the PCB are represented
by the spring co and friction blocks dy and fs.

Assume now that the head is in the proper position above the place on
the PCB, where the component should be placed. The component should
be pressed against the PCB, with sufficient, but not excessive force, and
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Figure 1.2: Schematic representation of the mounting head of the pick-and-
place machine

subsequently released. Several modes can be distinguished:
o free mode - when the mounting head is not in contact with the PCB
e impact mode - the mounting head is in contact with the PCB

e upper saturation - the mounting head can not move upwards, due to
physical constraints

e lower saturation - the mounting head can not move downwards, due to
physical constraints

During normal operation of the pick-and-place machine only switching bet-
ween free and impact modes occurs. In the case of an error (for example, if
there is no PCB present under the head) saturations may occur.

Hybrid models can also be used to describe many complex nonlinear pro-
cesses, by combining several simple models together with laws that govern
the switching between these models. Any nonlinear dynamical system can be
approximated, up to an arbitrary accuracy, with a piecewise affine system,
that consists of several affine dynamics, and a state-dependant switching law
(Sontag (1981)). As an example, in Del Vecchio et al. (2003) it is demon-
strated that the complex human motions can be decomposed into a sequence
of elementary building blocks, each being a linear dynamical systems.
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Due to their ubiquity and many potential applications, hybrid systems
attracted a lot of attention in the control community recently (Morse et al.
(1999); Antsaklis and Nerode (1998); Antsaklis (2000)). Numerous results
on modelling, analysis, verification and control appeared in the literature.
Several studies on fundamental system theoretic properties such as well-
posedness, stability, controllability and observability also appeared recently
for some classes of hybrid systems.

Most of these developments start with an assumption that the accurate
quantitative model of the hybrid system is readily available, and that all
states, continuous and discrete, can be measured. Relatively less attention
has been paid to the following problems:

e The observer design problem: given a hybrid system together with
input/output measurements construct an estimator /observer such that
the current state is estimated as accurately as possible

e The identification problem: given input-output data generated by a
hybrid system, construct a model within a pre-defined class of hybrid
models, that explains the data as accurately as possible.

Such observer design and identification problems show up in a wide va-
riety of situations in the practice of control, robotics, computer vision, and
machine learning, when accurate models of a complex physical process are of-
ten impossible to obtain from first principles and/or only a limited number of
variables are measured. Recently, finding effective solutions to state estima-
tion and identification problems of hybrid systems has become an ever pres-
sing issue in numerous emerging applications such as recognition of human
gaits from video, segmentation of dynamic textures, piecewise approxima-
tion of nonlinear dynamics, fault detection, mode detection in autonomous
navigation and multi-agent localization and mapping.

Therefore, in this thesis we will discuss methods to solve observer design
and identification problems for certain classes of hybrid systems.

1.2 Piecewise affine systems

A vast majority of results literature on hybrid systems deals with hybrid
systems where continuous dynamics in each of the modes is linear or affi-
ne. Classes of switched linear systems and piecewise affine (PWA) systems
receive special attention.

Piecewise affine systems comprise several affine dynamics, and a state
dependent mode switching law. Continuous time piecewise affine systems
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have the following form:

.r(t) = A@:E(t) + Blu(t) =+ a;

y(t) = Cix(t)+ Diu(t) +ci, for [igg ] € X (1.1)

where t € RT and z(t) € R" is the state vector, u(t) € R? is the input
vector and y(t) € R™ is the measurement vector. Matrices A;, B;, C; and
vectors a;, ¢; are assumed to be of appropriate dimensions, and the index set
of modes is denoted with I. {X;};c; C R™*? is a partition of R"*? space into
a finite number of closed polyhedral cells with pairwise disjoint interiors.

The literature on piecewise affine systems is broad, and here we list only
a few references. A number of techniques are developed for:

e well posedness analysis (Camlibel and Schumacher (2002), Imura and
van der Schaft (2000)),

e stability analysis (Johansson and Rantzer (1998a), Decarlo et al. (2000)),

e controllability and observability analysis (Bemporad et al. (2000a);
Vidal et al. (2003b); Babaali and Egerstedt (2004); Collins and van
Schuppen (2004)),

e control (Rantzer and Johansson (2000); Rodrigues et al. (2000); Ro-
drigues and How (2001); Hedlund and Rantzer (2002)),

o verification (Bemporad et al. (2000c)) and

e approximation of nonlinear systems with PWA systems (van Bokhoven
(1981); Angelis (2001)).

In addition, under mild assumptions discrete-time PWA systems are equi-
valent to several other hybrid modelling formalisms (Heemels et al. (2001)),
such as mixed logic dynamical systems (Bemporad and Morari (1999)), linear
complementarity systems (van der Schaft and Schumacher (1996); Heemels
(1999); Heemels et al. (2000)), and min-max-plus-scaling systems (De Schut-
ter and van den Boom (2001)), which makes the transfer of techniques and
tools from one class to another possible.

We will study observer design and identification techniques mainly for
subclasses of PWA systems.
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1.3 Observer design for hybrid systems

The first topic that will be considered in this thesis is the observer design
for hybrid systems. Loosely speaking, the goal of an observer is to obtain an
estimate of the current state of the hybrid system, given the model and the
input-output data.

The state estimation problem for hybrid systems has been considered
before. Observer designs for switched linear systems when the currently
active mode is known were presented in Alessandri and Coletta (2001a,b,
2003); Iulia Bara et al. (2000); Schinkel et al. (2003). We will briefly present
one such design below.

A more difficult case, when the discrete mode is not known is presented
in Balluchi et al. (2002). In that work the proposed observers use discrete in-
puts and outputs of the discrete-time hybrid plant, augmented with discrete
signals derived from the continuous measurements when necessary, to obtain
an estimate of the mode. Subsequently, the estimate of the continuous state
can be obtained, for example, using the techniques of Alessandri and Coletta
(2001a,b, 2003); Iulia Bara et al. (2000). The designed observers correctly
identify the mode of the plant after a finite number of time steps, and the
continuous observation error exponentially converges to a bounded set.

Another approach, based on moving horizon estimation was presented
in Ferrari-Trecate et al. (2002). This approach is applicable to the general
class of discrete-time piecewise affine systems, but it is computationally de-
manding, which may be an obstacle for implementing it in applications with
limited computational resources.

For the observer to function properly, the underlying system has to be
observable. Observability is the property of the observed system that ensures
that the state of the system can be uniquely recovered from the measure-
ments of the system’s outputs, for any input signal. Precise definitions of
observability and results for some classes of piecewise affine and switched
systems can be found in Bemporad et al. (2000a), Collins and van Schuppen
(2004), Babaali and Egerstedt (2004), Vidal et al. (2003a).

In this thesis we will present observer designs for two classes of hybrid
systems. We will first consider systems of Lur’e type with a set-valued non-
linearity in the feedback path. Mechanical systems with dry friction are an
important practical example that belongs to this class. The second consi-
dered class is a class of bimodal piecewise affine systems. The dynamics
of several practical systems, such as suspension bridges and building cranes
belongs to this class. We will consider the case when the discrete mode is
not known. The considered class of systems has a more restricted structu-
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re than the classes of hybrid systems studied in Balluchi et al. (2002) and
Ferrari-Trecate et al. (2002). However, we propose more direct and less
computationally demanding approach to state estimation.

When the discrete mode of the hybrid system is known, the observer
design simplifies considerably. Consider the continuous-time switched linear
system:

(t) = Agwpz(t) + Bypu(t)

y(t) = Couyx(t) (1.2)
for t > 0 where z(t) € R™ is the state vector, u(t) € RP is the input vector,
y(t) € R™ is the measurement vector, and o : [0,00) — {1,2,...,N} is a
switching function that maps time into an index set {1,2,..., N}, where

N > 1 is the number of modes. The switching sequence is arbitrary, but
known, i.e. the value o(t) is available at each time t.

A switching observer for the system (1.2) can be taken in the following
form:

2(t) = Ap2(t) + Boyult) + Loy (9(t) —y(t), ¢>0
§(t) = Cop(t) (1.3)
The observer design consists in determining observer gains L; for indices
ie{l,2,...,N}.
The design of the observer (1.3) is straightforward. The dynamics of the
estimation error e := x — & is given by:

é(t) = (Agt)y — Lo Cog)e(t)- (1.4)

The estimation error is governed by a switched system. To ensure stability
of the error dynamics it is not sufficient to stabilize each of the modes sepa-
rately, as the switching among several stable systems may still yield unstable
behavior (Branicky (1998)).

To ensure stability under arbitrary switching we search for a common
quadratic Lyapunov function (for details see Liberzon et al. (1999); Johans-
son and Rantzer (1998a)) of the form

V(e) = e Pe,
where P = P > 0, such that
V(e(t) <0,

along the trajectories of (1.4), when e # 0. This yields the following propo-
sition:
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U —p| X=Ax+Bu-Gwl—py
y=Cx

T
4

Figure 1.3: Lur’e system

Proposition 1.3.1 (Alessandri and Coletta (2001a)) Consider the system
(1.2) and the observer (1.3). If there exist a symmetric positive definite
matrix P and observer gains Ly, ..., Ly such that:

(A; — LiC))"P+ P(A; — LiC;) <0, i=1,2,...,N, (1.5)
then the estimation error (1.4) is globally asymptotically stable'.

Proposition 1.3.1 gives an answer to the question how to design the ob-
server when the current mode of the hybrid system is known. But, how to
design the observer when the current mode of the observed system is not
known?

To gain some insight into this problem we will consider a linear system
interconnected in a feedback configuration with a static nonlinearity (see
figure 1.3). This class of systems is known as Lur’e systems (Vidyasagar
(1993)).

We start by considering the case studied in Arcak and Kokotovié¢ (2001).
Consider the locally Lipschitz nounlinear system:

(t) = Ax(t)+ Bu(t) + Gy(Hz(t))
y(t) = Cx(t) (1.6)

where z(t) € R? y(t) € R™, u(t) € RP, H € R™" and the static nonlinear
function ~ : R +— R satisfies a slope bound condition:

y(v) = y(w)

v —w

0< <b, Yv,weRv#uw. (1.7)

Yfor a definition of global asymptotic stability see e.g. Vidyasagar (1993)
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U —pp| X=Ax+Bu-Gw|—py
y=Cx

Figure 1.4: Relay system

For this system a Luenberger-type observer (1.6) of the form:

F(t) = Aa(t)+ Bu(t) + L) — y(®) + Gy(Ha(t) + K (3(t) — y(1)))
§(t) = Ci) (18)

was chosen.

The design of an observer (1.8) consists of finding gains L and K, such
that the estimation error dynamics e = z — % is stable. The solution is given
by the following proposition.

Proposition 1.3.2 (Arcak and Kokotovi¢ (2001)) If a matrix P = PT > 0,
a constant v > 0 and observer gains L and K can be found such that:

(A+LO)"P+ P(A+ LC)+vI PG+ (H+KCO)T <0 (19
G'P+(H+KC) —2/b = '

then the estimation error is globally exponentially stable.

Several classes of hybrid systems, such as relay systems (figure 1.4), linear
complementarity systems and electrical circuits with switching elements can
be described as Lur’e-type systems, but the nonlinearities in the feedback
path are neither smooth, nor locally Lipschitz. This poses serious problems,
as even the existence and uniqueness of solutions is not guaranteed any more,
and the proposition 1.3.2 does not apply.

How to design the observer for these classes of systems? Intuitively, one
might set b = oo in (1.9), and try to design the observer by solving the
resulting matrix inequality. Will this approach yield an useable observer?
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The answer to the previous question is “Yes”. However, to establish an
observer design procedure and formally prove that it is correct we have to
resort to the framework of convex analysis (Tyrell Rockafellar (1970); Ty-
rell Rockafellar and Wets (1998)) and differential inclusions (Aubin and Cel-
lina (1984); Brezis (1973)). We will consider absolutely continuous solutions,
as this is the standard solution concept used in the literature on differenti-
al inclusions. The main problems are to characterize the set of admissible
nonlinearities, to prove that the designed observers have solutions and that
solutions are unique, and finally, that the observers indeed provide an esti-
mate of the state of the observed system. These problems will be studied
further in chapter 2.

To see how the result of proposition 1.3.2 can be applied for another class
of hybrid systems, consider the case of system (1.6) with:

v(Hz) = max(0, Hx).

This nonlinearity satisfies (1.7) with b = 1. Then the system (1.6) is equiva-
lent to:

i) = A1x(t) + Bu(t), if Hz(t) <0
| Agx(t) + Bu(t), if Hz(t) >0
y(t) = Cux(t), (1.10)

where Ay = Ay + GH, and the observer (1.8) becomes

A1)+ Bult) + L0 0
by Hi() + K(§(0) - (1) <0
0+ B+ LG o)

it Hi(t)+ K(y(t) —y(t) >0

gty = Ci(t) (1.11)

The system (1.10) is a bimodal piecewise linear system, where the vector
field that governs the evolution of the system is continuous over the switching
plane Hx = 0. The observer (1.11) is a bimodal piecewise linear system, with
a continuous vector field. Moreover, the observer (1.11) does not require the
information about the currently active linear dynamics of the system (1.10),
yet it is still able to recover the state of the observed system.

How to treat the more general case, when the observed system and the
designed observer are discontinuous? Proposition 1.3.2 does not provide an
answer to this question. We will address this question in chapter 3.
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1.4 Identification of hybrid systems

As discussed in section 1.1 the second main problem considered in this the-
sis is the identification of hybrid systems. The goal of identification is to
construct a model of the system within a given model class, based on the
input-output data. Research on the identification of hybrid systems has been
mainly concerned with the construction of PieceWise AutoRegressive eXo-
genous (PWARX) models, which form a subclass of piecewise affine (PWA)
systems. In this thesis we will also be concerned with the identification of
PWARX models.

As will be discussed in the sequel, the PWARX identification problem
can be cast as a problem of piecewise affine regression. The problem of PWA
regression has been considered before, mainly in the neural networks com-
munity, and to date several approaches exist (see Roll et al. (2004) for an
overview). As pointed out in Roll et al. (2004) most of the existing approa-
ches can construct only continuous maps, while the approaches that allow for
discontinuities started appearing only recently (Ferrari-Trecate et al. (2001,
2003); Bemporad et al. (2003); Vidal et al. (2003b)). We are mainly inte-
rested in methods that can construct discontinuous maps.

PWARX models are a hybrid generalization of classical ARX models,
obtained when the regressor space is partitioned into a finite number of
convex polyhedral regions, and an ARX model is defined over each of the
regions. A PWARX model has the form:

y(k) = f(x(k)) + e(k), (1.12)

where e(k) is an unmeasured disturbance term, and

, — -

o7 f if 2 € Xy
flz) =4 (1.13)
0 31; ifxe X,

is a piece-wise affine map, and x(k) is a vector of regressors, defined as

e(k)= [y(k—1) o yk-no). u(k-DT . u(k—n,,)T}T

(1.14)
In (1.14) y(k) € R and u(k) € RP represent the measured output and the
input of the system, respectively. We will assume that the model orders n,
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and ny are given. The sets &} are assumed to be convex polyhedrons, with
mutually non-intersecting interiors.

The identification task consists of determining the unknown parameters
of the piecewise affine map f (i.e. 1,...,05, X1,..., Xs), given the data set
{(z(k),y(k))} _,. Thus, the PWARX identification problem coincides with
the PWA regression problem (Ferrari-Trecate et al. (2003)).

Example 1.4.1 As an illustration consider the following PWA map:

05 0.5}[:1”],&3:50
[—1 2]“],1m>0.

The map (1.15) is depicted in figure 1.5. The data set for identification,
consisting of pairs (z(k), y(k)) for k =1,2,...,100, is depicted in figure 1.6.
If we assume that the number of modes s = 2 is given, the identification task
is to determine parameters 61, #2 and to estimate the regions of the regressor
space X7, Xo, where each of the submodels is valid. Note that in this case
the region estimation amounts to finding a point z¢p € R that separates &}
from Xs. In the original map (1.15) 2o = 0.

f2) = (1.15)

o0

1.5

Figure 1.5: Piecewise affine map

If the regions X} and Xy were known, the identification problem would
boil down to two linear regression problems. In our example it is possible
to do a direct search for xg, so as to get a good model, but this becomes
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Figure 1.6: Collected data set

infeasible for higher dimensional maps and/or maps with higher number of
submodels.

Another possible approach is to try to classify the data first, i.e. to as-
sign each data pair (z(k),y(k)) to one of the submodels, and to determine
the parameters 6; and 0y subsequently. When the classification problem is
solved, the problem of region estimation is to find polyhedral surfaces in
the regressor space that mutually separate different groups of data points.
The latter problem has been studied extensively in the pattern recognition
community, and can be solved using techniques such as support vector ma-
chines (SVM) (Vapnik (1998)) or multi-category robust linear programming
(MRLP) (Bennet and Mangasarian (1994)).

In our example, we have s = 2 modes, T' = 100 data points and the
total number of possible data classifications is 2'%0 = 1.26 - 10%°. Finding
the optimal classification is in most cases computationally infeasible, and
therefore suboptimal techniques have to be considered. Here, we will briefly
present three existing procedures: the clustering-based procedure (Ferrari-
Trecate et al. (2003)), the greedy procedure (Bemporad et al. (2003)) and
the algebraic procedure (Vidal et al. (2003b)).

The rationale behind the clustering-based procedure is that regressors
that lie close to each other in the regressor space are likely to belong to the
same region, and consequently to the same ARX model. For each data pair
(x(k),y(k)) alocal data set Cy, is built, containing ¢ > n,+np+1 nearest data
points. For each local data set Cj, a parameter estimate §F can be obtained,
using e.g. least squares criterion. Parameter estimates obtained from local
data sets that belong to the same ARX submodel will be similar, i.e. they
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will form a cluster in the parameter space. Suboptimal clustering techniques
are subsequently used to recover s clusters in the parameter space. The
mapping of the data points onto the parameter space is bijective. The data
points that belong to the same cluster are classified to the same mode. The
clustering procedure will be treated in more detail in section 4.3.

In the greedy procedure a bound § > 0 on the prediction error is selected.
Each data pair (z(k),y(k)) should satisfy

ly(k) =6 [ z(k)T 1]7|<6, Vk=1,...,T, (1.16)

for some 6;. The system of linear inequalities (1.16) is in general infeasible for
a single parameter vector 0, hence, it should be partitioned in the minimal
number of feasible subsystems 5, and the corresponding parameter vectors
{6;};_, should be determined. Unfortunately, the problem of partitioning
(1.16) into a minimal number of feasible systems of inequalities is NP-hard,
and only a suboptimal algorithm based on thermal relaxations is proposed
to solve it. The outcome is the set of parameter vectors {6;};_,. Data point
(x(k),y(k)) is classified to the mode i if it satisfies (1.16) for 0;.

Example 1.4.2 Assume that we identified the PWA map from example
1.4.1 using the greedy procedure on the given data set, and that the para-
meter vectors 61 and 65 were estimated perfectly. In the figure 1.7 we plotted
the data set for the PWA map (1.15), together with the chosen bound on
the prediction error § = 0.2. Most of the data points satisfy (1.16) for only
one parameter vector. However there are a few points (around (1,1)) that
satisfy (1.16) for both parameter vectors. How to classify those points? If
incorrectly classified, those data points can foil the region estimation.

In Bemporad et al. (2003) data points satisfying (1.16) for more than
one 6; are called undecidable. Undecidable points are discarded during the
region estimation. While discarding undecidable points is arguably better
than wrongly classifying them, we still loose the information that those points
may carry.

The algebraic procedure (Vidal et al. (2003b)) approaches the problem
of identifying a PWARX model as an algebraic geometric problem. In the
noiseless case (e = 0) the data pair (z(k),y(k)) satisfies the equality

y(k) — [ 2())T 1176, =0 (1.17)

for one of the parameter vectors 6;. Hence, the equality

S

[Tk 67 [T 1]7) =0, (1.18)

i=1
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05k

Figure 1.7: Data set with error bounds

always holds. In Vidal et al. (2003b) it is shown that parameters ¢; can be
recovered as a solution of a system of polynomial equations resulting from
(1.18). Data pair (z(k),y(k)) is classified to the submodel p satisfying the
rule:

p(k) = arg min (y(k) — [ 2(k)T 1] 6,)% (1.19)

1<i<s

Example 1.4.3 Consider again the example 1.4.2 and assume that parame-
ters 01 and 0y are identified perfectly using the algebraic procedure. Then,
it is probable that the classification rule (1.19) will wrongly classify some of
the “undecidable” data points. (see Niessen et al. (2004) for details)

If noise is present in the identification data set, then solving the set of
polynomial equations (1.18) frequently gives complex numbers as parameter
values, and the procedure fails. As a consequence, the applicability of the
algebraic procedure seems to be limited in practical situations.

We will start our study in hybrid identification with an experimental case
study in chapter 4. We will use the clustering-based procedure to identify
the model of the electronic component placement process in pick-and place
machines (cf. figure 1.2). This experimental work will demonstrate that
identification is indeed a viable way of obtaining hybrid models in practice,
and will also show the need for incorporating the a priori knowledge into the
identification procedures.

Example 1.4.4 Consider again figure 1.2. Although the mode switch does
not always occur at a fixed height of the head (because of the dynamics of
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the PCB), with a degree of certainty data points below? a certain height may
be attributed to the free mode, and, analogously data points above a certain
height may be attributed to the impact mode. Data points that belong to
saturations can also be distinguished. We would like to use this information
on the modes of the physical system and to force the identification procedure
to identify the model where modes can be interpreted in terms of free, impact
and saturation modes of the physical system.

None of the three procedures presented above is equipped to include such
requirements. In chapter 5 we will develop a novel identification procedure,
that is able to handle the provided a priori knowledge. In our procedure
the unknown parameters are treated as random variables, and described
with probability density functions. The available a priori knowledge may
be formulated by choosing the a priori probability density function of the
parameter. We will classify the data one point at a time, and refine the a
priori information using Bayes’ rule. We will also provide a way to use the
“undecidable” data points, without discarding them (cf. examples 1.4.2 and
1.4.3).

1.5 Experiments

To bridge the gap that exists between the theory and practice we include
three experimental case studies to complement the theoretical results of the
thesis. This will demonstrate the applicability of the presented theoretical
results.

In chapter 2 we will present a case study on a drill-string setup. This
experimental setup is realized at the Dynamics and Control Technology labo-
ratory at the Mechanical Engineering Department of the Eindhoven Univer-
sity of Technology. A number of friction induced and vibration phenomena
can be observed in the setup. An accurate model of the setup was obtained
by Mihajlovi¢ et al. (2004). For our purposes we will use a simplified model
in the form of Lur’e system with a non-smooth set-valued friction law. Our
model can describe some of the friction induced phenomena, most notably
friction induced slip-stick oscillations. Slip-stick oscillations have a hybrid
character, as slip and stick modes can be clearly distinguished. We will de-
sign and implement an observer and demonstrate that the designed observer
is able to accurately reconstruct the unmeasured states of the setup, under
the conditions captured by the model. Practical systems with similar dy-

2Position axis is pointing downwards. See chapter 4 for details.
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namics, for example, are deep-sea oil-drilling equipment with a drill-string,
and rotor mechanical systems with dry friction.

In chapter 3 we will design an observer for a piecewise linear beam with
a one-sided spring. This experimental setup is also realized at the Dynamics
and Control Technology laboratory at the Mechanical Engineering Depart-
ment of Eindhoven University of Technology. Starting from a finite element
model and using model reduction techniques the model of the setup was
obtained in the form of a bimodal piecewise linear system with continuous
dynamics. We will demonstrate that the designed observer is able to recon-
struct the state of the system with the accuracy that is commensurate to
the accuracy of the model. Practical systems with similar dynamics are, for
example, suspension bridges and building cranes.

In chapters 4 and 5 we will identify the process of the electronic com-
ponent placement in pick-and-place machines. This experimental setup was
realized at the Electrical Engineering Department of the Eindhoven Uni-
versity of Technology, in collaboration with the company Assembleon from
Eindhoven. Unilateral constraints and saturation phenomena characterize
the hybrid dynamics of the process. We will obtain models of the process in
the PWARX form, first with the clustering-based procedure and subsequent-
ly with our newly developed identification procedure. We will demonstrate
that PWARX models are able to capture the dynamics of the setup. We
will also demonstrate how to use physical insights and a priori knowledge in
order to improve the results of the identification.

1.6 Overview

The main results of this thesis are presented in four chapters, which are based
on published or submitted papers. In chapter 2 we will design observers of
Luenberger type for the class of Lur’e systems with set valued maps in the
feedback path. We will present novel theoretical analysis which proves that
the designed observers are well-posed (i.e. that there exists exactly one
solution to the observer dynamics) and that they asymptotically reconstruct
the state of the observed system. Our results will be illustrated on the
experimental case study with a drill-string setup.

In chapter 3 we will consider a class of bimodal piecewise affine systems,
and propose a novel constructive procedure for the design of Luenberger
type observers. When the dynamics of the observed system is continuous,
the proposed observers are able to asymptotically reconstruct the state, i.e
the estimation error dynamics is globally asymptotically stable. In the case
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of discontinuous dynamics the obtained observers have bounded estimation
error with respect to the state of the observed system. We will illustrate
our results by several academic examples, and an experimental example of a
piecewise linear beam with a one sided spring.

In chapter 4 we present an experimental study in the identification of an
electronic component placement process in pick-and-place machines. We will
identify hybrid models of the process, using the clustering-based procedure.
We will show that the identified models are able to capture the relevant
dynamics of the experimental setup. This case study yields many practical
insights into hybrid system identification, and highlights the need for incor-
porating the available a priori knowledge into the identification procedure.

In chapter 5 we will develop a new identification procedure that is able to
include the provided a priori knowledge. We will treat the unknown model
parameters as random variables, and describe them with their probability
density functions. The available a priori knowledge may be formulated by
choosing the a priori probability density function of the parameter. Sub-
sequently, the identification algorithm will process the provided data set
and recursively compute the a posteriori probability density functions of the
parameters using Bayes’ rule. We will present a modification of the multica-
tegory robust linear programming procedure, which uses information from
the classification phase of the algorithm. We will also demonstrate how to
identify the model of the electronic component placement process using the
newly derived procedure.

In chapter 6 we summarize the main results and conclusions of the thesis.
We also offer some ideas and directions for future research.
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Observer Design for Lur’e Systems with
Multivalued Mappings

2.1 Introduction 2.4 Main results
2.2 Preliminaries 2.5 Experimental example
2.3 Problem statement 2.6 Conclusions

In this paper we present a constructive observer design procedure for a
class of nonsmooth dynamical systems, namely systems of Lur’e type with
a monotone multivalued mapping in the feedback path. Examples of such
systems include various classes of hybrid systems, such as relay systems,
linear complementarity systems, electrical circuits with switching elements
and certain piece-wise affine systems. Under the assumption that the obser-
ved system is well behaved, we prove that the proposed observers are well-
posed (i.e. that there exists a unique solution to the observer dynamics), and
that the observer asymptotically recovers the state of the observed system.
The results are illustrated on an experimental case study with a drill-string
setup.

This chapter is based on Juloski et al. (2004a). The experimental work
presented in section (2.5) was preformed together with N. Mihajlovi¢, and is
also a part of his PhD work.

2.1 Introduction

In this paper an observer design procedure for systems of Lur’e type with
maximal monotone multivalued mapping in the feedback path (see figure
2.1) is developed. A multivalued or set-valued mapping is a mapping that
assigns a set of possible values to its input argument, and the output of the
mapping can be any value in this set. The requirements that the mapping
is maximal and monotone generalize the usually considered concept of con-
tinuous, sector bounded nonlinearity (Vidyasagar (1993)). Systems of the
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considered type may arise as a natural consequence of modelling (e.g. mo-
dels of friction phenomena, ideal diodes), or the used solution concept (e.g.
Filippov solutions (Filippov (1988))).

u—pp| X=Ax+Bu-Gw|—py
y=Cx

o
>

Figure 2.1: Lur’e type system with maximal monotone multivalued mapping

Examples of systems obtained by interconnecting linear dynamics in a
feedback configuration with maximal monotone mapping, as in figure 2.1,
include various classes of hybrid systems: certain piece-wise linear systems
(Sontag (1981); Johansson and Rantzer (1998b)) (fig. 2.2a), linear relay
systems Johansson et al. (1999) (figure 2.2b), linear complementarity systems
(Heemels et al. (2000); van der Schaft and Schumacher (1998, 1996)) (figure
2.2¢), and electric circuits with switching elements (e.g. ideal diodes, fig.
2.2¢, MOS transistors, characteristic in fig. 2.2d).

Two observer structures are proposed in the paper, which are based on
rendering the linear part of the error dynamics strictly positive real (SPR).
As the considered class of systems and the proposed observers are non-
smooth, tools of nonsmooth analysis are needed to formally analyze and
prove their properties . Since the considered systems can be non-Lipschitz,
existence and uniqueness of solutions (i.e. well-posedness) of the system and
observer is not guaranteed. Under the natural assumption that there exists
a solution of the observed system, it is proven that there exists a solution
of the proposed observer, and that this solution is unique. Well-posedness
of the system is an important theoretical question, and, from a practical
standpoint, if an observer is to be numerically implemented, well-posedness
is necessary to ensure the proper behavior of the implementation.

From the existence of solutions to both the observed system and the
observer, the existence of solutions to the error dynamics follows. It is further
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a) A by A

—-a —b

Figure 2.2: Examples of maximal monotone mappings

shown that the observer recovers asymptotically the state of the observed
system (i.e. that the error dynamics is globally asymptotically stable). These
results are illustrated on the experimental drill-string setup, with the set-
valued dry friction with Stribeck effect (Mihajlovi¢ et al. (2004)).

Stability of Lur’e type systems with SPR linear part and the discon-
tinuous nonlinearity has been studied in Yakubovich (1964,1965), but the
problem of existence and uniqueness of solutions for this systems was not
considered. Existence and uniqueness of solutions, as well as stability of au-
tonomous Lur’e type systems with maximal monotone nonlinear mappings
have been studied in Brogliato (2004). The main results in this paper ge-
neralize results from Brogliato (2004) to the case of systems with external
inputs.

An observer design methodology for Lur’e type systems with locally Lip-
schitz slope restricted nonlinearities was studied before in Arcak and Ko-
kotovi¢ (2001). However, since nonsmooth and non-Lipschitz nonlinearities
are allowed in the system studied here, the results of Arcak and Kokotovi¢
(2001) are not applicable, and we have to resort to a framework of convex
analysis, to establish an observer design procedure for the considered class
of systems.

The paper is structured as follows. In section 2.2 some basic concepts
of convex analysis and differential inclusions are given. The material in this
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section is taken from Tyrell Rockafellar (1970); Aubin and Cellina (1984);
Brezis (1973). In section 2.3 the observer design problem is formally stated.
Section 2.4 contains the main results of the paper. The experimental example
of the drill-string system is presented in section 2.5, and conclusions are
presented in section 2.6.

2.2 Preliminaries

With £} [0,00) and £2Z [0,00) we denote the Lebesgue spaces of locally
integrable and square integrable functions defined on [0, o).

A mapping p: X — Y, where X, Y C R, is said to be multivalued if it
assigns to each element xz € X a subset p(z) C Y (which may be empty). The
domain of the mapping p(-), dom p is defined as domp = {z|x € X, p(x) #

(}. We define the graph of the mapping p as:
Graphp = {(z,z") | 2* € p(z)}. (2.1)
A multivalued mapping p is said to be monotone, if
Vi, 29 € domp, Vzi € p(z1)Vay € p(xe) (2] — 5,21 —x2) >0, (2.2)

where (-, -) denotes the inner product. For example, the set-valued mapping
depicted in figure 2.3 is monotone. It is easy to see that the condition (2.2)
is satisfied for every x1,x2 € R.

\j

Figure 2.3: Monotone mapping

A multivalued mapping p is said to be maximally monotone if its graph
is not strictly contained in the graph of any other monotone mapping. In
other words, maximality means that new elements can not be added to
the Graph p without violating the monotonicity of the mapping. All the
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examples in figure 2.2 are maximal monotone mappings. The monotone
mapping depicted in the figure 2.3 is not maximal. Namely, by adding any
pair of the form (0,a) where —1 < a < 1 to the graph of this mapping, we
can obtain a monotone mapping whose graph strictly contains a graph of
the mapping depicted in the figure 2.3. Maximally monotone “completion”
of the mapping from figure 2.3 is depicted in the figure 2.2b.

A differential inclusion (DI) is given by an expression of the form

i€ F(t,x) (2.3)

where F' is a set-valued mapping, that associates to the state x of the system
and time ¢ the set of admissible velocities. An absolutely continuous (AC)
function x : Rt — R" is considered to be a strong solution of the DI (2.3) if
(2.3) is satisfied almost everywhere. A point x is a fixed point (equilibrium)
of the DI (2.3) if:

0 € F(t,xg), Vt (2.4)

For an exposition on differential inclusions see e.g. Aubin and Cellina (1984).
An important result concerning differential inclusions of the form

x(t) € —A(z(t)), =(0) € domA (2.5)

where A is a maximal monotone mapping is that there exists a unique strong
solution z, defined on [0, 00) (Brezis, 1973, section 3.1), (Aubin and Cellina,
1984, chapter 3).

To generalize the previous result to nonautonomous DIs we consider the
system of the form:

x(t) € —A(x(t)) + u(t), =x(0) € dom A (2.6)

where A is a multivalued mapping and the external input signal v € E}OC [0, 00).
Following (Brezis, 1973, section 3.2) we define a continuous function x to
be a weak solution to (2.6) if there exist sequences u, € L} [0,00) and

loc
xy, € C[0,00) such that z,, is a strong solution to
En € —A(zn(t)) + un,

up, — uin L} [0,00) sense and x,, — z uniformly on [0, 00).

loc
Proposition 2.2.1 (Brezis, 1973, theorem 3.4) For the case when the map-
ping A in (2.6) is maximal monotone mapping there exists a unique weak
solution z to (2.6) for every u € L} [0, c0).

loc
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The proof of the proposition 2.2.1 is based on Yoshida approximations
(Aubin and Cellina (1984); Brezis (1973)). Given A > 0 and the maximal
monotone multivalued mapping A, Yoshida approximation Ay is globally
Lipschitz! maximal monotone single-valued map, with the property that
Ay — A in a certain sense, as A — 0. It is further shown that solutions x)
of the differential equation?

Ty = —A)\(.%,\) +u

uniformly converge to the unique weak solution of the differential inclusion
(2.6), as A — 0.

A difference between weak and strong solutions is that the weak solution,
while continuous, is not necessarily absolutely continuous. However, the
following holds:

Proposition 2.2.2 (Brezis, 1973, proposition 3.2): For the case when the
mapping A in (2.6) is a maximal monotone mapping we have the following
properties:

e If a strong solution to (2.6) exists, it is unique

e Any AC function x which is a weak solution to (2.6) is also a strong
solution to (2.6).

Following (Wen, 1988, theorem 1), we call a linear system

t = Ax+ Bu
= C(Cu,

where B has full column rank (i.e. Ker{B} = (), strictly positive real (SPR)
if there exist a P=PT >0and a Q = Q" > 0 such that:

PA+A"P=-Q (2.7a)
B'P=C (2.7b)

!with Lipschitz constant 1/\
2as the mapping A is globally Lipschitz these solutions exist and are unique
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2.3 Problem statement

Consider the system whose state space equations are given by the following
differential inclusion (see figure 2.1):

&= Ax — Gw + Bu (2.8a)
w € o(Hx) (2.8b)
y=Cux (2.8¢)

where Hz(0) € dom g and A € R™" B € R™™ G € R™! is full column
rank, H € R>™ and C € RP*"™. The mapping o : R — R’ is assumed to be
maximally monotone.

Remark 2.3.1 Certain multivalued mappings o(:) that are not monotone,
can be transformed into monotone mappings by using loop transformation
technique (see for instance (Vidyasagar, 1993, section 5.6.2)) . An example
of such a mapping is given in figure 2.5, section 2.5. With loop transforma-
tion, a new mapping is defined, as g(z) = o(z) — Mz, where M is a matrix
of appropriate dimensions, chosen so that the mapping p(z) is maximal mo-
notone. If we then replace the system matrix A in (2.8) by A = A - GMH,
we obtain a system (2.8) that satisfies the above mentioned assumptions.

We assume that for the system (2.8) the following holds.

Assumption 2.3.2 For all initial states x(0) such that Hz(0) € dom p and
inputs u € L} [0,00) of interest, we assume that the system (2.8) has a

strong solution.

For a given system (2.8) one can check the existence of solutions using
some of the general results that are available in the literature (Aubin and
Cellina (1984); Brezis (1973)). Results on existence and uniqueness of solu-
tions to particular instances of (2.8) (e.g. complementarity systems, relay
systems, piecewise linear systems) can also be found in the literature (Hee-
mels et al. (2000); Pogromsky et al. (2003); Filippov (1988); van der Schaft
and Schumacher (1998, 1996); Camlibel and Schumacher (2002); Camlibel
et al. (2003)).

The first proposed observer ( “basic” observer scheme) for the system
(2.8) has the following form:

i =(A—LC)i — G+ Ly + Bu (2.9a)
W € o(Hi) (2.9b)
j=C% (2.9¢)
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where L € R"*? and H#(0) € dom o(-).
The second proposed observer ( “extended” observer scheme) has the
following form:

&= (A—LC)i— G+ Ly + Bu (2.10a)
w € o((H — KC)z + Ky) (2.10b)
§=Ci (2.10c)

where K € R™P and 2(0) are such that (H — KC)2(0) + Ky(0) € dom o(-).

The basic observer is a special case of the extended observer with K = 0.
The reason for treating these two cases separately is that the well-posedness
conditions for the two proposed observers (i.e. conditions for the existence
and uniqueness of solutions) are somewhat different. Also, the well-posedness
proofs are more readable if the cases are treated separately. Stability of the
error dynamics will be treated only for the case of the extended observer, as
the result for the basic observer follows then immediately.

2.4 Main results

The problem of observer design consists in finding the gain L (L, K, res-
pectively) which will guarantee that there exists a unique solution & for
the observer dynamics on [0,00), and that &(t) — z(¢) as t — oo. In
this section we will prove that if I and K are chosen such that the triple
(A— LC,G,H) (respectively (A — LC,G,H — KC)) is SPR the obtained
observer (2.9) ((2.10), respectively) will satisfy the mentioned requirements.

Before we prove this we will first show how the gains L and K can be
computed such that (A — LC,G, H — KC) is SPR. This can be achieved by
solving the matrix inequality:

(A—LC)'P+P(A-LC) < 0O (2.11a)
G'P = H-KC. (2.11b)

Inequality (2.11) is a linear matrix inequality in variables P,K LT P. For
necessary and sufficient conditions for the existence of solutions for (2.11),
see for instance, Arcak and Kokotovi¢ (2001) and references therein.

To prove that the SPR property of (A — LC,G,H — KC') guarantees
the well-posedness of the observer, we start of with two lemmas on well-
posedness. Note that well posedness of the observers (2.9) and (2.10) is also
essential in ensuring the proper behavior of a numerical implementation.
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Lemma 2.4.1 Consider the system (2.8) under assumption 2.3.2, and the
observer (2.9). If the triple (A— LC,G, H) is SPR, then the observer dyna-
mics (2.9) has a unique weak solution on [0, 00).

Proof: Since the triple (A — LC, G, H) is SPR and G has full column
rank there exist P, () that satisfy (2.7). Introduce the change of variables in
(2.9):

»=Ri (2.12)

where RR = P. Then, (2.9) transforms into:

4= R(A— LC)R 'z — RGw + RBu + RLy (2.13a)
e o(HR '2) (2.13b)
j=CR 12z (2.13¢)

Since H#(0) € dom p(-), we have HR™'2(0) € dom o(-). Define the map-
ping f: R® — R™ as f(2) = R™'H o(HR™'2). Note that using the SPR
condition (2.7b), (2.13) can now be written as:

$€ R(A— LC)R 'z — f(2) + RBu + RLy (2.14)

where z € dom f(-). From the SPR condition (2.7b) it follows that H and
HR~! have full row rank, and together with the fact that o is maximal
monotone we have that f is maximal monotone as well (Tyrell Rockafellar
and Wets, 1998, theorem 12.43).

From the SPR condition (2.7a) it follows that R(A — LC)R™! + R(A —
LCOT)R™! is negative definite. Hence the mapping z — —R(A— LC)R™ 'z +
f(2) is maximal monotone (Tyrell Rockafellar and Wets, 1998, corollary
12.44). Since the control signal u lies in £} [0,00), by assumption 2.3.2,

and y is AC, and hence y € £lloc[0, o0), existence and uniqueness of weak
solutions to (2.14) and (2.9) follow from proposition 2.2.1. [

Remark 2.4.2 The proof of lemma 2.4.1 extends the proof of lemma 1 in
Brogliato (2004) to the non-autonomous case.

In the following lemma we address the questions of well-posedness of the
extended observer scheme.

Lemma 2.4.3 Consider the system (2.8), under assumption 2.3.2, and the
observer (2.10). If the triple (A — LC,G,H — KC) is SPR, the observer
dynamics (2.10) has a unique weak solution on [0, c0).
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Proof:  Since the triple (A — LC,G,H — KC) is SPR and G has full
column rank there exist P, that satisfy (2.7). Introduce the change of
variables:

z=R(d+g), (2.15)
in (2.10), where, as before, RR = P and define

g=(H—-KO)"(H—-KC)(H - KC)")'Ky. (2.16)

From the SPR condition it follows that H — KC has full row rank (as H —
KC = G'P), and hence the inverse in (2.16) exists. Note that the part of
the expression on the right hand side of (2.16) is a pseudo-inverse of H —KC.
In the same way as in the proof of lemma (2.4.1), (2.10) transforms into:

2€ R(A—LC)R 'z — f(2) + RBu+ RLy + Ry (2.17)

where z(0) € dom f(-) The multivalued mapping —R(A — LOYR™ 'z + f(2)
is maximal monotone by similar arguments as in the proof of lemma 2.4.1.
By assumption we have u € L} [0,00), y € L} _[0,00). Moreover, y is AC

and thus it follows that g € £}, [0,00). By virtue of proposition 2.2.1, (2.17)
and hence (2.10) posses a unique weak solution. ]

From lemmas 2.4.1 and 2.4.3 it follows that both proposed observers
have, at least, weak solutions. To ensure the existence of strong solutions
more stringent assumptions have to be imposed on the original system and
proposed observers. If we consider again the inclusion (2.17), conservative
sufficient conditions for existence of strong solutions are given for instance

in (Brezis, 1973, theorem 3.6), which state that:
e uc LY[0,00), y € L]0, 00)

e there exists a proper convex lower semicontinuous function £ with
&(z) > 0, for all z and some ¢, such that:

~R(A— LC)R™ 2+ f(2) = 0¢(2) (2.18)

where 0¢ denotes the subdifferential of £ (for details see Brezis (1973);
Tyrell Rockafellar (1970); Tyrell Rockafellar and Wets (1998)). For
(2.18) to hold, it is required that the mapping z — —R(A—LC)R™1z+
f(2) satisfies a property called maximal cyclic monotonicity. In our
case this would mean that R(A — LC)R™! is symmetric positive semi-
definite as shown in (Tyrell Rockafellar, 1970, chapter 24), and that
o0 can be written as ¢ = Jp for some proper lower semicontinuous
function ¢ (Tyrell Rockafellar, 1970, theorems 24.8, 24.9).
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It is of interest to further explore the relation between weak and strong solu-
tions of observers (2.9) and (2.10). However, we see the issue of weak versus
strong solutions as largely technical, as the only additional requirement that
needs to be imposed on weak solutions to get strong solutions is absolu-
te continuity, which is needed to ensure that the solution is differentiable
almost everywhere. Therefore, we make the following assumption.

Assumption 2.4.4 Weak solutions for observers (2.9) and (2.10) are AC
(and thus, weak solutions are strong solutions by proposition 2.2.2).

For the extended observer (2.10) the observation error e := x — Z dyna-
mics can be formed as:

é=(A—LC)e— G(w— ) (2.19a)
w € o(Hz) (2.19b)
wepHT+ K(y—19)) (2.19¢)

Note that the point eq is a fixed point (equilibrium) of system (2.19) for
a given z-trajectory if it satisfies the following inclusion for all ¢ > 0:

0€ (A—LC)ey— Glo(Hz(t)) — o(HZ(t) + KCey)] (2.20)

where Z(t) = x(t) — eg. The following theorem states the main result of the
paper.

Theorem 2.4.5 Consider the observed system (2.8) under assumption 2.3.2,
the extended observer (2.10), where the triple (A— LC,G,H — KC') is SPR,
under assumption 2.4.4, and the observation error dynamics (2.19). The
point e = 0 is the unique fixed point of the observation error dynamics
(2.19) and is globally exponentially stable.

Proof: Note that ey = 0 is indeed a fixed point of (2.19). For ey = 0,
x = &, and since the arguments of the o(-) mappings in (2.19b),(2.19¢) are
the same it follows that 0 € o(Hxz(t)) — o(Hz(t) + KCep) for all t > 0, and
hence ey = 0 satisfies the inclusion (2.20).

Next, we show that ey = 0 is the only fixed point. From (A — LC)ey €
G(o(Hzx) — o(Hz + KCeq)) for all t > 0 it follows that P(A — LC)eg €
PG(o(Hx(t)) — o(Hz(t) + KCep)) for some t. Using the SPR condition
(2.7b) we get the following condition for the fixed point eq:

eg P(A— LC)ey = ((H — KC)ep) " (w — )
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where w € o(Hz(t)) and w € o(Hz(t) + KCep). From the SPR condition
(2.7a) it follows that ej P(A — LC)ep < 0. From the monotonicity condition
(2.2) for o(-) it follows that e] P(A — LC)eq = ((H — KC)eg) " (w — 1) > 0.
Hence, ep = 0 is the only solution of the inclusion (2.20).

To show that the unique fixed point ey = 0 is globally exponentially
stable consider the Lyapunov function V = %eTPe. Since by assumption
2.3.2 x is AC, and by assumption 2.4.4 £ is AC it follows that e is also AC,
and é exists almost everywhere. Hence, V is also AC, and the derivative 1%
exists almost everywhere. V satisfies:

V=e'Pé
=¢' P((A— LC)e — G(w —0))
1 1
= —ieTQe —e(H-—KC) (w—w) < —§eTQe
for some w, W satisfying (2.19b),(2.19¢). From
t
VO VO - [ T Oe(rir
0
it follows that the AC function of time V' is nonincreasing, and

t
%)\mm(P)eT(t)e(t) <V(0) - % /0 Amin (Q)e T (Fe(r)dr

where Ay () denotes the minimal eigenvalue. From Gronwall’s lemma (Vi-
dyasagar (1993)):

1 Amin(Q)

“Amin(P)e (t)e(t) < V(0 _omne e ) 2.22

nin(P)e (e(t) < VIO exp (-39 (222)
This proves the exponential convergence of the observation error. ]

Remark 2.4.6 Solutions Z(-) of the observers (2.9) and (2.10) can be obtai-
ned using some of the numerical methods for solving differential inclusions.
See e.g. the survey article Dontchev and Lempio (1992). To give one nu-
merical method, we aim to approximate the solution &(-) of the DIs (2.9)
and (2.10) with a piecewise constant function 7(-), where n(t) = n(t) for
t € [tkytrs1), tge1 — tp = h, for a given step size h. From the proofs of
lemmas 2.4.1 and 2.4.3 if follows that both observers are of the form:

i€ —Alt, i) (2.23)
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where A(-,-) is a maximal monotone mapping. In particular, for this class
of DIs the approximations of the (unique) solution with good numerical
properties (e.g. no chattering) can be computed using implicit Runge-Kutta
methods (Kastner-Maresch (1991)). For instance, the implicit midpoint rule
takes the following form:

Mtkn) € (ts) = RA( + by S((0) + (i), (2:29)

which has first order of convergence as a function of h, on time intervals
where the solution % is 2 times continuously differentiable. See Dontchev
and Lempio (1992); Kastner-Maresch (1991) for more details and numerical
methods with higher order of convergence.

2.5 Experimental example

In this section we will present an experimental case study on a drill-string
setup. Practical systems with similar dynamics are, for example, deep-sea
oil-drilling equipment with a string, and rotor mechanical systems with dry
friction.

The experimental setup with a drill-string was realized by Mihajlovié¢
et al. (2004). A simplified scheme of the setup with is depicted in figure 2.4.
The setup consists of a power amplifier, a DC motor, two rotational discs
(upper and lower), a low stiffness string, and an additional rubber break,
applied to the lower disc. The input voltage u is fed to the to the DC motor,
via the power amplifier. The DC-motor is connected, via the gear box, to
the upper disc. The upper and lower discs are connected via a low stiffness
steel string. The angular positions of the upper and lower discs are measured
using incremental encoders. The angular velocities of both discs are obtained
by differentiation of the angular positions and filtering the resulting signals
using the low-pass filter with a cut-off frequency of 200Hz.

In Mihajlovi¢ et al. (2004) it was shown that the dynamics of the expe-
rimental setup can be accurately described by the following model:

il = X9 — I3 (2.25&)
km k 1

. ko 1
T3 € —lxl — —lerl(CE’:;), (2.250)
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DC motor

drill
string

D)

Figure 2.4: Schematic representation of the drill-string setup

where 7 is the difference in angular positions of the discs, a2 is the angular
velocity of the upper disc and z3 is the angular velocity of the lower disc.
The measured variable is taken to be y = x;.

Tfru(-) and Tfp(-) denote the friction moments at the upper and the
lower disc, respectively. Tt (-) is dominated by the viscous friction, and
for simplicity, is here taken to be equal to by,z2. The friction moment at
the lower disc T'(-) is a dry friction with the Stribeck effect, i.e. negative
damping appears at a certain range of angular velocities. To describe this
friction torque a set-valued characteristic based on neural networks is used
in Mihajlovi¢ et al. (2004):

(Tstior + T1(1 = troormr) + To(1 — {romgr)) sign(@s) + b

Tri(as) for x3 # 0
fri\xr3) =
" [_Tstickly Tstickl]

for x3 =10
(2.26)
Numerical values of the parameters in (2.25) and (2.26) are given in table
2.1. The set valued friction law (2.26), with parameter values from table 2.1
is depicted in figure 2.5.

For the purpose of simulation the input signal w in (2.25) is chosen to
be a constant signal, u = 2V. It is easy to check that for the chosen input
signal the system (2.25) satisfies the conditions of (Filippov, 1988, theorem
2.7.1), and hence has a solution on a arbitrarily long time interval for every
initial condition xg, i.e. the system (2.25) satisfies assumption 2.3.2.

The friction mapping depicted in figure 2.5 is not monotone, but by using
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Ju 0476555 | 70 0.1642Nm
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Tabel 2.1: Parameter values of the model (2.25), (2.26)
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Figure 2.5: Dry friction characteristic

the technique described in remark 2.3.1, can be transformed to a monotone
one. The new friction mapping is defined as T.(w) = Tp(w) — nw, where
n = —0.02 is the maximal negative slope of the graph in figure 2.5. The
system matrix A is replaced by A = A — nGH.

We will design the observer (2.10). Observer design of the form (2.10)
for system (2.25) entails finding gains L and K such that the triple (A —
LC,G,H — KC) is SPR. The following values for P, Q,L and K are found:

0.8044 0.0299  0.0660
P=1 0029 0.1104 -0.0000 |,
0.0660 —0.0000 0.0326

0.5483  —0.0000 —0.0000
Q@ = | —0.0000 0.9706 —0.0361 |,
—0.0000 —0.0361 0.0921
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L=[24768 51993 —26.2200 |, K = —2.0254.

We will show simulations for the initial state for the system taken as
2(0) =1[0 0 0]" and for the observer as #(0) = [3 3 3]'. The solution of
the system (2.25) is constructed using the dedicated technique for simulating
friction based on the switched friction models presented in Leine et al. (1998).
The solution of the observer (2.10) is computed using the implicit midpoint
rule (2.24).

The simulation results are depicted in the figure 2.6 and the estimation
error is depicted in figure 2.7. When a constant input voltage is applied (i.e.
a constant torque is applied to the upper disc) slip-stick oscillations in the
angular velocity of the second disc x3 occur due to the negative damping
in the friction law (2.26). During this oscillations the velocity of the third
disc alternates between 0 (stick phase), and a positive value (slip phase).
As guaranteed by the theory, the designed observer is able to provide the
correct estimate of the state. Moreover, based on (2.22) we can provide a
bound on the decrease of the squared estimation error. This is indicated by
the dashed line in figure 2.7. The estimation error does not converge to zero,
but oscillates around a small residual value (~ 1073). This residual error
can be attributed to the numerical errors of the schemes that are used to
simulate the system and the observer.

The responses of the experimental setup were measured as well, under the
same conditions as for simulations, and the designed observer is applied for
the state estimation. The results are depicted in figure 2.8. The experimental
estimation error is depicted in figure 2.9, together with the theoretical bound
(2.22).

Experimental results show that the designed observer is able to provide
accurate estimate of the states of the experimental setup. The estimation
error does not converge to zero, but oscillates around the value of ~ 107!,
This residual error can be attributed to model errors.

2.6 Conclusions

In this paper we consider an observer design for Lur’e type systems with
maximal monotone multivalued mappings in the feedback path. In contrast
with the previous work on nonlinear observer design, the considered class of
systems in nonsmooth and the standard theory does not apply. Even the
existence and uniqueness of solutions is not a priori guaranteed.

We proposed two observer structures, together with a constructive de-
sign method. The approach taken in the paper is based on rendering the
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Figure 2.6: Responses of the system (solid) and the observer (dashed): x;

(upper), xo (in the middle), x3 (lower) under the constant input voltage

Figure 2.7: The norm of the estimation error(solid) and the envelope of the
error norm (2.22) (dashed)

linear part of the observation error dynamics SPR, by choosing appropriate
observer gains. Under the natural assumption that the observed system has
a solution, and that the control input belongs to a certain admissible class,
it is shown that there exists a unique solution for the estimated state, and
that the observer recovers the state of the original system asymptotically.
The relevance and applicability of the presented results is demonstrated on
the experimental case study with a drill string setup.



40 Observer Design for Lur’e Systems with Multivalued Mappings

_5 I I I I I
0 1 3 5 6
t[s]
6 ‘
g 4k '/ S 7
S
2 :
0 Il Il Il Il Il
0 1 2 3 4 5 6
20 ts]
o ~
5 10" i
BONN
><(") '
0 \ - -
- Il Il Il Il Il
0 1 2 3 4 5 6
t[s]

Figure 2.8: Measured response (solid) and the estimation (dashed): x1 (up-
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Figure 2.9: The norm of the experimental estimation error(solid) and the
theoretical bound of the error norm (2.22) (dashed), in logarithmic scale

Future work will investigate the observer design for more general solution
concepts (e.g. solution concepts that allow for state jumps), and the appli-
cability of the proposed observers for state feedback controller design. Also,
further investigation of numerical methods and the development of software
tools for computing solutions for differential inclusions is of great practical
interest.
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3.5 Sliding mode analysis

In this chapter we present observer design procedures for a class of bi-
modal piece-wise affine systems, in both continuous and discrete time. We
propose Luenberger-type observers, and derive sufficient conditions for the
observation error dynamics to be globally asymptotically stable, in the case
when the system dynamics is continuous over the switching plane. When
the dynamics is discontinuous, we derive conditions that guarantee that the
relative estimation error with respect to the state of the observed system will
be asymptotically small. The presented theory is illustrated with several
academic examples and experimental example of a piecewise linear beam
with a one sided spring.

This chapter is based on Juloski et al. (2002) and Juloski et al. (2003a).
The experimental work presented in the example 3.6.1 was performed to-
gether with A. Doris, and is also a part of his PhD work.

3.1 Introduction

In this chapter we present observer design procedures for a class of bimodal
piecewise linear systems, in both continuous and discrete time. The systems
of the considered class comprise two linear dynamics with the same input
distribution matrix. The characteristic feature of our approach is that the
state reconstruction is performed on the basis of input and measured output
signals only, while the information on the active linear dynamics (or mode)
is not required.
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Observer designs for the case when the mode of the hybrid system is
known, in continuous and discrete time, are presented in Alessandri and
Coletta (2001a,b); Iulia Bara et al. (2000). The proposed observers are of
Luenberger type, and achieve global asymptotic stability of the observation
€rTor.

A more difficult case, set in discrete time, when the discrete mode is not
known, was considered in Balluchi et al. (2002). The proposed observers use
discrete inputs and outputs of the hybrid plant, augmented with discrete
signals derived from the continuous measurements when necessary, to obtain
the estimate of the mode. Subsequently, the estimate of the continuous state
can be obtained, for example, using the techniques of Alessandri and Coletta
(2001a,b); Tulia Bara et al. (2000). The designed observers correctly identify
the mode of the plant after a finite number of time steps, and the continuous
observation error exponentially converges to a bounded set. The class of
systems considered in this chapter does not have discrete inputs and outputs
and therefore we propose a more direct approach for state estimation.

Another approach to state estimation for discrete time hybrid systems,
based on moving horizon estimation, was considered in Ferrari-Trecate et al.
(2002). This approach is applicable to the general class of piecewise affi-
ne systems, but it is computationally demanding (mixed integer quadratic
programming problems), which may be an obstacle for implementing it in
applications with limited computational resources. Observers presented here
exploit the structure of the considered class of piecewise affine systems, and
can be implemented in a numerically efficient way.

For the observer to function properly, the underlying system has to be
observable. Loosely speaking, the observability is the property that ensures
that the state of the observed system can be recovered from the measure-
ments of the system output, for any input signal. Precise definitions of
observability and results for some classes of piecewise affine and switched
systems can be found in Bemporad et al. (2000a), Collins and van Schuppen
(2004), Babaali and Egerstedt (2004), Vidal et al. (2003a).

In this chapter we will be interested in Luenberger-type observers. In
this case the state estimation error dynamics, defined by interconnecting the
bimodal system with the bimodal observer has four modes. Contrary to the
classical Luenberger observer for linear systems and to the case when the
mode is known, the error dynamics is not autonomous, but depends on the
state of the observed system, and hence, indirectly, on the control input.
Global asymptotic stability of the estimation error may still be achieved, in
particular when the bi-modal system is continuous over the switching plane.
In the case of a discontinuous system, our approach guarantees that the norm
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of the error will asymptotically not exceed a certain bound, relative to the
bound on the state of the observed system.

In the case when the system has continuous dynamics over the switching
plane, it may be represented as a Lur’e type system with a max(0, -) nonli-
nearity in the feedback path (see, for instance Vidyasagar (1993)). Observer
design for Lur’e type systems, when the signal that enters the nonlinearity
in the feedback path is not measured, is presented in Arcak and Kokotovié¢
(2001). A link to this result will be established.

The observers which we consider here are designed for situations where
the state of the system (continuous state or discrete mode) is of independent
interest (e.g. for diagnostics or discrete mode change detection). Output
feedback controller design (which implicitly consists of an observer part and
a state feedback part) was presented in Rodrigues et al. (2000) and Rodrigues
and How (2001). It is not straightforward to extract the observer design from
the proposed control methodology.

The chapter is organized as follows. In section 3.3 we introduce the con-
sidered class of bi-modal piecewise affine systems. In section 3.4 we present
the observer design procedures, for continuous and discontinuous dynamics.
Sliding modes, for the continuous time case, are analyzed in section 3.5.In
section 3.6 we will present an experimental example with the piecewise linear
beam. The discrete time case is analyzed in section 3.7 and examples are
given in section 3.8. Conclusions are presented in section 3.9.

3.2 Preliminaries and notation

Definition 3.2.1 A function z : RT™ — R” is said to be bounded by a
constant T,q. > 0, if

[zl < Tmaz

forall t > 0, i.e. supycp+ [|2(t)|| < ZTmae. A function z is said to be eventually
bounded by Tpqy, if for all § > 0 there exists a Ty > 0 such that

lz()]| < Tmaz + 6,

for all t > Ty, i.e. limsup,_ o [|z(t)|| < Tmaz-

Definition 3.2.2 The sequence (x(0),z(1),x(2),...) is said to be bounded
by Tmagz if
VE>0 |z(k)| < Zmaz-
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The sequence (x(0), z(1),z(2),...) is said to be eventually bounded by qz,
if
V6 >0 Fko>0 Vk>ko |x(k)| < Zmaz+ 9.

ie. limsupy, o [|[2(k)] < Tmaz-

M7 denotes the transpose of the matrix M. For a square matrix M,
M > 0 means that M is symmetric i.e M = M " and positive definite. The
operators ker M and im M denote the kernel and the image of the matrix
M, respectively.
The operator col(-,-) stacks its operands into a column vector, i.e. for
V1 € Rn, Vo € R™
col(vy, v9) = [ U1 ] € R™™,
V2
In matrices we denote by (%) at position (i,7) the transposed matrix
element at position (j,1), e.g.
A B means A B
(x) C BT C |-

3.3 Problem statement

We consider the following system:

o JAa(t) + Bu(t), if HTa(t) <0
t) = {Agx(t) + Bu(t), if H z(t) >0 (3-12)

y(t) = Cx(t), (3.1b)

where z(t) € R™, y(t) € RP and u(t) € R™ are the state, output and the
input of the system, respectively in time t € R*. The input u : Rt — R™ is
assumed to be an integrable function. We will consider Filippov solutions of
the system (3.1) (Filippov (1988)). The matrices A, Ay € R"*" B € R™*™
C € RP*" and H € R™. The hyperplane defined by ker H' separates the
state space R" into the two half-spaces. The considered class of bimodal
piecewise linear systems has identical input distribution matrix B and output
distribution matrix C' for both modes.

Analogously, in the discrete time case we will consider the following sys-
tem:

| Awx(k) + Bu(k), if H z(k) <0
w(k+1)= {Agaz(k‘) + Bu(k), if H z(k)>0
y(k) = Cx(k), (3.2b)

(3.2a)
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where all matrices have the same dimensions as before, and k € N denotes
the time index.

Remark 3.3.1 It is possible to consider a somewhat more general class of
bimodal piecewise linear systems, where the output distribution matrices
would be different for each of the modes, and to derive observer design
procedure following the procedure presented here. Stability properties of
the designed observers remain the same as for the class studied here. For
reasons of ease of exposition, here we treat the classes (3.1) and (3.2).

Depending on the values of A1 and Ay we distinguish two situations:

1. the vector field of the system is continuous over the switching plane,
i.e. Ajxz = Asx, when HT'z=0. It is straightforward to show that in
this case:

Ay=A +GH' (3.3)

for some vector G of appropriate dimensions. In this case equation
(3.1a) can be rewritten as:

@ = Ajx + Gmax(0, H' z) + Bu,
or, in the discrete time case (3.2a)
z(k +1) = Ajz(k) + Gmax(0, H "z(k)) + Bu(k).

Moreover, from (3.3) it follows that rank(AA) = 1, where A A is defined
as
AA = Ay — As.

2. the vector field of the system is not continuous over the switching plane,
i.e. a parametrization as in (3.3) does not exist.

The problem at hand is to design a state estimation procedure, which,
on the basis of the known system model, input u, and measured output
y provides a state estimate 2, without directly measuring the mode of the
system.

Remark 3.3.2 Information on the currently active linear dynamics may be
available to the observer if H 'z can be reconstructed from the measured
output, i.e. H € imC'". In this case the results from Alessandri and Coletta
(2001a,b); Iulia Bara et al. (2000) apply.
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3.4 Main results for the continuous time case

As an observer for the system (3.1), we propose a continuous time bimodal
system with the following structure:

P Ayi+Bu+Li(y—7), fH 24+K'(y—9) <0 (3.42)
Ao+ Bu+ Loy —9), tH'2+K (y—9) >0 ‘
y=C1, (3.4b)

where Z(t) € R" is the estimated state at time ¢ and Lp, Ly € R™*P and
K e RP.
The dynamics of the state estimation error, e := x — 2, is then described

(A1 — L1C)e, H'z<0, H'2+K"(y—19) <0
. (A2 —LyCe+AAx, H'z<0, H'2+ K (y—9)>0 (3.5)
) (A —LiC)e—AAx, H'z>0, H'2+K"(y—9) <0 ‘
(A2 — LyC)e, H'z>0, H'2+K'"(y—19) >0,

where z satisfies (3.1a) and Z satisfies (3.4a). By substituting 2 =« — e in
(3.5), we see that the right-hand side of the state estimation error dynamics
is piecewise linear in the variable col(e, ).

Note that the error dynamics in the first and the fourth mode of (3.5) is
described by an n-dimensional autonomous state equation, while in the two
other modes the external signal x is present, which, by (3.1a), depends on
the input u. For given (open loop) input signals u : RT™ — R™ it is possible
to consider the evolution of the error e in (3.5) as a time varying switched
equation of the form

de .
dt( ) = fi(t,e(t)), 1=1,2,3,4. (3.6)

Hence, concepts and results of Lyapunov stability theory for hybrid systems
(see for instance Branicky (1998); Johansson and Rantzer (1998a); Vidyasa-
gar (1993)) can now be applied to equation (3.6).

The problems of observer design can now be formally stated as:

Problem 3.4.1 Determine the observer gains Lq, Ly and K in (3.4) such
that global asymptotic stability of the estimation error dynamics (3.5) is
achieved, for all functions = : Rt — R" satisfying (3.1) for some given
locally integrable u : Rt — R™.
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Problem 3.4.2 Determine 1 > 0, and L1, Ly and K in (3.4) such that for
all bounded trajectories x : R™ — R™ it holds that

lim sup [[e(#)[| < nlimsup [[z(#)]], (3.7)

t—oo t—oo

which means that if z(¢) is (eventually) bounded by Zy,qz, then e(t) should
be eventually bounded by nZmaz-

The constant 77 can be seen as an asymptotic upper bound of the esti-
mation error relative to the state, and it is desirable to design the observer
so that 7 is as small as possible.

3.4.1 Continuous dynamics

Consider system (3.1), observer (3.4), and the error dynamics (3.5).

Theorem 3.4.3 The state estimation error dynamics (3.5) is globally a-
symptotically stable for all x : Rt — R" (in the sense of Lyapunov), if
there exist matrices P > 0, L1, Lo, K and constants A1, s > 0, u > 0 such
that the following set of matrix inequalities is satisfied:

{ (Ay — LoC) TP+ P(Ay — LyC) + pl  PAA+Mi(H—-CTK)H' } < 0

AATP+XNIHHT - KTC) ~MHHT
(3.8a)
{ (Ay = LiC)"P+ P(A) — LiC)+pul —PAA+ X i(H-CTK)H' } < g
—AATP+X\iHH' - K'C) —NHHT =
(3.8b)

Remark 3.4.4 The inequalities (3.8a)-(3.8b) are nonlinear matrix inequa-
lities in {P, L1, L2, A1, Ao, u}, but are linear in {P, L{ P, L] P, A1, A2, u}, and
thus can be efficiently solved using available software packages (such as the
free software LMItool).

Proof: In order to guarantee that the system (3.5) is globally asymp-
totically stable it suffices to have a Lyapunov function V' (e) of the form

V(e) =e' Pe, (3.9)

where P > 0 is such that
V< —pe'e (3.10)

for some p > 0.
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Requirement (3.10) yields the following set of inequalities:
e {(A; = L1C) P+ P(A; — L1C) + pul}e <0, (3.11a)
for H'x <0,H"(z —e) <0,
[ e ]T [ (Ay — LyC) TP+ P(Ay — LyC) +ul PAA ][ e
z AATP 0 2
for H 2 <0,H"(z —e) >0,

[e r [ (A1 — L,C)TP + P(Ay — LC) + ul —PAA] [ e ]

T ~AATP 0 2 |50
(3.11c)
for H 'z > O,HT(m —e) <0,
e {(Ay — LoC) P + P(Ay — LoC) — pul}e < 0, (3.11d)

for H'x > 0,H T (z —¢€) > 0.

Note that requirements (3.11a)-(3.11d) can not be satisfied in the com-
plete (e, x) space unless AA = 0.

Regions of the (e, x) space where the second and the third linear dynamics
of the error (3.5) is active can be covered with the quadratic constraint in
the following way:

[ :(Z r [ éH(HTOKTc) _%(H;IgiK)HT } { ; } <0 (312

Inequality (3.12) is derived by multiplying the mode constraints:
e"H(H" (z —e) + K 'Ce) <0.

The quadratic constraint (3.12) is by construction negative in the region
of interest, 0 at the boundaries, and nonnegative elsewhere. Combining
(3.10) with (3.12), using the S-procedure (Boyd et al. (1994); Johansson
and Rantzer (1998a)), yields the inequalities (3.8a)-(3.8b). Note that ine-
qualities (3.11a) and (3.11d) are implied by (3.8a) and (3.8b) respectively,
and therefore can be omitted.

Note that the relaxed inequalities (3.8a),(3.8b) can be only negative se-
midefinite by construction (because —\;HH is negative semidefinite), but
that derivatives (3.11b),(3.11c) are guaranteed to be negative whenever the
appropriate dynamics is active and e # 0. Hence, the computed derivative
of the candidate Lyapunov function (3.9) is negative definite in e, and the
global asymptotic stability of the error dynamics (3.5) is guaranteed. [ |
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Suppose that a feasible solution to (3.8a)-(3.8b) exists. Assume that
M > 0 is a matrix. Since M < 0 and z' Mz = 0 imply that z € ker(M), it
follows that
col(0, h) € ker

(Ag — LyC) ' P+ P(Ay — LoC) +ul PAA+M\3(H-CTK)H'
AATP+NIHHT - KTC) ~MHHT

(and analogously for the inequality (3.8b)), where h € ker(HH ") = ker(H ")
Hence, we have that

ker(H') C ker(PAA) = ker AA,

since P > 0. From this inclusion it follows that the state evolution matrices
of the two modes are not independent, but are related via:

Ay = A, +GH'"

for some vector G of appropriate dimensions. This relation implies the con-
tinuity of the vector fields over the switching plane, as detailed in the section
3.3. Hence an equivalent representation of the continuous bi-modal system
(3.1) is:

& = Aix+ Gmax(0,z)+ Bu (3.13a)
z = H'z (3.13b)
y = Cu, (3.13¢)

which is a Lur’e system (Vidyasagar (1993)), with max(0,-) € [0, 1] nonline-
arity in the feedback path.

Observer design for this type of systems with slope restricted nonlineari-
ties was presented in Arcak and Kokotovi¢ (2001) (see also proposition 1.3.2).
Here we show that the observer design from Arcak and Kokotovi¢ (2001) is
a special case of our observer design. We will simplify our observer structure
by assuming the same gain L; = Lo = L for both modes and the same mul-
tiplicative constant A\; = A2 = A. Equation (3.8a) can then be transformed
into equation (3.8b), by pre-multiplying it with @ and post-multiplying it

with @, where
I 0
o=l 5

Equation (3.8b) can be represented as:

(A — LC)TP+ P(A1 — LC) + uI PG+ \H — CTK)

TT
G'P+XH'" -K'T0) —2X\I

T<0
(3.14)
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where
I 0
T [ - } |
Pre- and post-multiplication with a matrix 7" introduces a kernel in the
matrix inequality (3.14), but does not change feasibility conditions. The

condition (3.14) is therefore equivalent to the LMI condition obtained in
Arcak and Kokotovi¢ (2001) (up to the scaling constant \).

3.4.2 Discontinuous dynamics

Theorem 3.4.3 gives sufficient conditions for the solution of problem 3.4.1.
A drawback of the obtained result is that a necessary condition for the fea-
sibility of (3.8a)-(3.8b) is the continuity of the bi-modal piece-wise affine
system.

In order to give an approach for discontinuous systems as well we need
to consider the relaxed problem 3.4.2. The following theorem provides an
answer to this problem .

Theorem 3.4.5 The state estimation error dynamics (3.5) is eventually
bounded by a constant epq, (in the sense of definition 3.2.1), under the
assumption that x is eventually bounded by Tmq., if there exist matrices
P=P" >0, Ly, Ly and constants A\, \g,e > 0 and p,a > 0 such that the
following set of matrix inequalities is satisfied:

[ (AQ — LQC)TP AL AT T
FP(Ay— LoC) + () TAATFHSCHRH
AATP+ MAHHT - KT0) ~MHHT — ag?l
(3.15a)
[ (A1 — LiC)'P \ -
—~PAA+22(H-CTK)H
Y P(A) — 1,C) + (i + o)l S H-CK) 0
~AATP+2HHT - KT0) M HHT — ac?I
(3.15b)
Moreover, if
I < P <ol (3.16)

then

Cmaz < 4 /Eexmax. (3.17)
71
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Proof: Note that the matrix inequalities (3.15) are relaxations of (3.8)
by using the S-procedure with the quadratic constraint

lell* > &2, (3.18)

and the multiplication constant « (see Boyd et al. (1994); Johansson and
Rantzer (1998a)). Hence, they imply that the function V(e) = e' Pe satis-
fies:

V(e) < pe'e when lef® > &2l

For an arbitrary ¢ > 0, denote

Ve = sup  V(e).

max
HCH Saxmaz‘f'(;

Define the bounded set Ss by:
Ss={e € R" | V(e) < Vi..}.

Since V(e) < 0 for e € S, it follows that Sj is positively invariant i.e. if for
To >0
V(e(Th)) < Vipuw = V(e(t)) < Vipaw  Veom-

Moreover, Sy satisfies a strong variant of attractivity in the sense that
Ir>0 V(TH) < Vo

From (3.16) it follows that:
V2 < mlemar + 0

and consequently,

VssoInsoVist, e < %[exw +4].

This means that

€maz ‘= limsup |le(t)]| < 1/Esxmaz.
t—o0 il
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Remark 3.4.6 If there exists a feasible solution for the system of inequali-

ties
P>0 (3.19a)
(Ay — LiC)"P+ P(A; — L1O) + pul <0 (3.19b)
(Ay — LyC)"P 4+ P(Ay — LyC) + I <0 (3.19¢)

(which implies that the pairs (A;,C) and (Ag,C) are detectable) an e can
always be found such that (3.15a) and (3.15b) are feasible. Conditions (3.19)
are exactly the conditions required for the observer design in the case when
the current mode is known (Alessandri and Coletta (2001a,b)).

Remark 3.4.7 The equation
P>1T (3.20)

can be added to (3.15a), (3.15b) without changing feasibility. Namely, if
{P, L1, Lo, A1, A2, pi1, pro, €} is the feasible solution of (3.15a), (3.15b), so is
the scaled set {%R L17L2,7—11>'\1, %)\2', %,ul, %,ug,e}, and P* = %P > 1.
The second part of the double inequality (3.16) follows from:

P — I <0. (3.21)

Remark 3.4.8 Condition (3.18) can be stated in a more general form, when
||-]| is replaced by ||-||@. An interesting case is when |e|| is replaced by ||| p.
Then, given a certain 7gpe. > 0, existence of an observer that achieves bound
emaz < NspecTmaz follows from the feasibility of bilinear matrix inequalities

(BMI) similar in form to (3.15) and (3.20) with € = nspec. The drawback is
that BMIs can not be solved in an efficient way.

Remark 3.4.9 Equations (3.15) are bi-linear in the variables {P, L1, Lo, ¢,
A1, A2, i, }. When ¢ is fixed, with the same change of variables as in remark
3.4.4 we get a set of linear matrix inequalities.

Any feasible solution of the equations (3.15), (3.20) and (3.21) is a solution
for the problem 2a, with 7 = ,/92¢. An sub-optimal algorithm that aims to
minimize the value of n follows from theorem 3.4.5, and remarks 3.4.7 and
3.4.9. Under the conditions of remark 3.4.6 a minimal € can be found when
(3.15a), (3.15b) cease to be feasible. For a feasible value of ¢ close to the
infeasible value an optimization problem:

min 7o
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under (3.15a),(3.15b),(3.20),(3.21) is solved. Then emae < \/V26Tmaz-

Another problem that occurs is that the above minimization problem
frequently gives observer gains L1, Lo of an unacceptably high magnitude.
The “size” of the gains can be indirectly included in the optimization problem,
by adding the matrix inequalities like:

L{PLy < &1
Ly PLy < &l

Here, & and & are auxiliary constants, that bound the magnitude of terms
LlTPLl and L2TPL2, respectively. Values & and & can be added into the
optimization criterion, with appropriate weighting factors. The previous
inequalities can be transformed into LMIs using Schur complements.

3.5 Sliding mode analysis

All derivations so far were done with the implicit assumption that sliding
modes do not occur neither in the original system, nor in the designed ob-
server. In the discussion that follows we will show that the properties of
the designed observers are retained, under the presence of sliding modes, in
the system and in the designed observer. Note that even in the case when
the system dynarmics is continuous sliding modes may exist in the designed
observer. This is the special case of the following analysis.

We will consider sliding modes along the switching surface (H "2 = 0 for
the system and H "2 + K (§ —y) = 0 for the observer) under the assumption
that we have constructed an observer that satisfies equations (3.15), and
we are going to show that the estimation error remains eventually bounded.
The mode of the system where H'z < 0 ( H'z > 0) is referred to as the
first mode (second mode), and in an analogous way for the observer.

First, consider the case where sliding occurs in the designed observer
along the plane H'Z = 0. Then, the dynamics of the observer is given by a
convex combination of the constituting linear dynamics (i.e. we use Filippov
solutions as the formalization of the sliding dynamics (Filippov (1988))):

t = MAiZ+Bu+Li(y—9)}+
(1= M{A2& + Bu+ Ly(y — )},
j = O3, (3.22)

where A € [0, 1]. Consider next the situation where the system is in the first
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mode. Then the error dynamics is given by:

¢ = i—2=M(A4 —L1C)e} +
(1 — )\){(AQ — LQC)C + AA.%‘}, (323)

which is a convex combination of the first and the second mode of the error
dynamics (3.5). Since V(e) is negative when (3.18) holds, for both modes, it
is also negative for their convex combinations under (3.18). Hence, the error
is eventually bounded, as proven in theorem 3.4.5. A similar argument holds
when the system is in the second mode, and the observer is in the sliding
motion.

Consider now the case when a sliding mode exists on the switching plane
of the system. Then, the system dynamics is given by a convex combination
of the constituting linear dynamics:

&t = p{Aiz+ Bu}+ (1 - p){Asx + Bu}
= Czx (3.24)

where p € [0,1]. If the observer is in the first mode, the error dynamics is
given by:

¢ = i—2=p{(A —Li0C)e} +
(1—w{(A — LiC)e — AAzx}, (3.25)

which is a convex combination of the first and the third mode of the error
dynamics. Hence, V(e) is negative when (3.18) holds. A similar argument
holds for the case when the system is in the sliding mode, and the observer
is in the second mode.

Consider now the situation where there are sliding modes in both the
system and the observer. Then the dynamics of the system is given by (3.24)
and the dynamics of the observer is given by (3.22). The error dynamics
follows then as:

e = (M — )\){(AQ — LQC)@ + AA.’L'} +
(1 = p){(A2 = L2C)e} + M (A1 — L1C)e},
if u—X>0,and
e = ()\ — ,LL){(Al — LlC)e — AAZ‘} +

(1= M{(A2 = L2C)e} +
p{ (A1 — L1C)e}, (3.26)
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if A—p > 0. We see that the error dynamics is again given as a convex
combination of the modes of the error dynamics (3.5), and is, by a similar
argument as in the previous cases, eventually bounded.

To summarize the above analysis, we conclude that the estimation error
under sliding modes is eventually bounded.

3.6 Examples

In this section the presented theory will be illustrated by an experimental
example of a piecewise linear beam and an academic example.

Example 3.6.1 In this example we will present an experimental observer
design for a piecewise linear beam with a one-sided spring (Fey (1992); Heer-
tjes (1999)). Practical systems with similar dynamics are, for example, sus-
pension bridges and building cranes.

The experimental setup is depicted in figure 3.1. The schematic represen-
tation of the setup is given in figure 3.2. The setup consists of a metal beam
which is supported at both ends by leaf springs. A one-sided spring acts in
the middle of the beam. One-sided spring realized with another beam, which
is clamped at both ends and placed in parallel to the first one. When the
middle of the beam moves downwards it is in contact with the spring, when
it moves upwards the spring is not active. Therefore, two dynamic modes
may be distinguished in the motion of the beam.

motor

driving shaft mass unhalance
\ :

+ A
@ beam
=
I]::al' spring g ! E

one-zided spring W

0.63[m]

1.3[m]

Figure 3.1: Experimental setup

The beam is excited by a periodic force u, applied in the middle of the
beam. The force w is produced by a rotating mass unbalance, which is
driven by a tacho-controlled motor, that enables a constant rotation speed.
The force v can be measured with a piezoelectric force transducer.
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9 aci

N

| % |

Figure 3.2: Schematic representation of the experimental setup

The beam is modelled using the finite element method (FEM), and a
model with 111 degrees of freedom was obtained. Using a component mode
synthesis method (for details see Fey (1992); Heertjes (1999)), a reduced
model with 3 degrees of freedom (3-DOF) was obtained, and used for the
observer design.

The 3-DOF model contains two interface DOFS, ¢,;¢ and gge¢ which re-
present physical displacements of the middle of the beam, and at the location
of the additional actuator, respectively. Furthermore, the 3-DOF model con-
tains one generalized DOF, q¢, that accounts for the first eigenmode of the
beam. Note that adding more eigenmodes to the model might make the
model more accurate, at the cost of increased model complexity.

The equations of motion for the 3DOF model of the piecewise linear
beam can be written as:

M{+ Bj+ Kq+ ful(q) = hu, (3.27)

where ¢ = [Gmid  Gact q§]T, and h=[1 0 0]". The matrices M, B and
K are mass, damping and stiffness matrices, obtained from the reduction
method, and have the following numerical values:

4.4935 —2.3259 0.8713
M= | —-23259 7.6177 2.2290
0.8713 22290 2.3738

117.2507 —29.7689 41.5850
B=| —29.7689 104.1515 31.4193
41.5850  31.4193 36.5486

2.5282  —0.3453 1.0256
K =10°| —0.3453 1.0507 0.2961
1.0256  0.2961 0.6135
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The force f,,; represents the force of the one-sided spring:

knlhth if Qmia < 0

3.28
0e R3 if dmid > 07 ( )

fat(q@) = kpih min(0,h"q) = {

where k,; = 1.98 - 10°Nm ™! is the stiffness of the one-sided spring. The
relation between the states of the FEM model and the states of the 3-DOF

model is given by
p~T-q, (3.29)

where p denotes the states of the FEM model. The matrix T € R1X3 ig
obtained from the model reduction procedure and has the following structure:

T=lt|ta] [ tin], (3.30)

where t; € R3.
In a state space formulation the model (3.27) has the following form:

1) = {Alx(t)+Bu(t), if HT2(t) <0 (3:310)

Asz(t) + Bu(t), if H' z(t) >0,

where © = [qT qT]T, H = [hT 0 O O]T, and

s 0 I s 0 I
Y MY (K 4 ky) MBI P | —MT'K —MB |7

s 0]

Note that the model (3.31) has continuous dynamics over the switching plane
HTz =0.

We measured the displacement at two positions m; and mg along the
beam, using linear displacement transducers as sensors. The measured dis-
placements are denoted by y,,1 and ym2, respectively (cf. figure 3.2).

Note that the displacement in the middle of the beam g,,;4 is not me-
asured. Hence, it is not possible to deduce the currently active dynamics
(mode) of the system directly from the measurements. To incorporate the
measurements at position m; and ms in the model (3.31) we will add two
output equations:

yp = Ciz (3.31b)
y2 = Cur (3.31¢)
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where the matrices C1 and Cs have the following numerical values:
C1=[ —0.9579 12165 —0.2642 0 0 0 |,

Cy=[0.0801 —1.2013 —0.8670 0 0 0 |.
For the system (3.31) we design the observer of the following form:

: Aré+ Bu+ Li(ym1 — 1), i H'2<0
r = ) ] I (3.32a)
Aoz + Bu+ Lo(Yym1 —91), i H' >0
= Ciz (3.32b)
:IJQ = CQ@ (3.320)

Note that we use only the measurement y,,; in the observer equation. Me-
asurement ¥, will be used to verify the observer. (3.32a). Measurement
position my is chosen such that both pairs (41, C1) and (Ag, Cs) are detec-
table (cf. remark 3.4.6), as otherwise it is not possible to design the observer
using the presented theory. Observer design (finding gains L; and Lg) is
performed using the methodology from theorem 3.4.3, and we obtained the
following values:

Li=10*[ 00134 0.0145 —0.0353 0.5402 0.9448 —2.6460 |,

Lo =10 0.0134 0.0145 —0.0353 0.7989 1.0893 —2.8705 |'.

We performed experiments at two frequencies of the periodic excitation u:
15Hz and 35Hz. The results are depicted in figures 3.3 and 3.4, respectively.
In figure 3.3a) we plotted the (open-loop) prediction of yo obtained from
the model (3.31) versus the measured value y,2. In figure 3.3b) we plotted
the prediction ¢ obtained from the observer (3.32) versus the measured
value ypma. Finally, in figure 3.3c) we plotted the model prediction error
em = Y2 — Ymeo and the observer prediction error e, = 2 — ymo. The same
values are plotted in figures 3.4a,b,c), for the excitation frequency of 35Hz.

The error in the observer prediction of y,2 is, roughly, 1% relative to
the peak-to-peak magnitude of y,,2 at the frequency of 15Hz, and 6% at the
frequency of 35Hz. This is probably caused by the fact that the accuracy
of the model deteriorates as the frequency of the excitation w grows. The
quality of the state estimation crucially depends on the quality of the model.
It is of interest to investigate the ways to make the observer more robust
with respect to the modelling errors, possibly by making a tradeoff with the
rate of convergence.
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10 Excitation frequency 15Hz
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Figure 3.3: Excitation frequency of 15Hz a) Measured displacement y,,2 ver-
sus the model prediction yo b) Measured displacement y,,2 versus the obser-
ver prediction g2 ¢) Model prediction error e, versus the observer prediction
error e,

Example 3.6.2 To demonstrate also the theory for discontinuous vector
fields, we consider the bimodal system

A Bu, ifH'z<0
_ 1z + bu 1 Tx (3.33)
Asx+ Bu, ifH'x>0
y=Cu,
with:
—1 —0.2 -1 02
Al“[(12 ~1 }’Aﬁ“[ —0.2 (13]

B:[éyH:[éyC:[Oly

We see that the switching is driven by the first state variable x1, while zo is
measured. Hence, the discrete mode can not be reconstructed directly from
the measurements (cf. remark 3.3.2).
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Excitation frequency 35Hz

a, il
) 10 — Y,

—_,

1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5
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Figure 3.4: Excitation frequency of 35Hz a) Measured displacement y,,2 ver-
sus the model prediction yo b) Measured displacement y,,2 versus the obser-
ver prediction g2 ¢) Model prediction error e, versus the observer prediction
error e,

We will design an observer for the system (3.33) of the form:

8-
Il

Az +Bu+Li(y—19), ifH'2<0
Agd 4+ Bu+ La(y —9), ifH'2>0
Cz,

<<
Il

Linear matrix inequalities were solved using the LMItool (El Ghaoui and
Commeau (1999)). For the value of ¢ = 0.1, the following feasible solution

was obtained:
2.09 2.41
L= [4.38}’ LQ_[5.78]
with v = 1.3998, and nT.,e, =~ 0.12
An input signal that takes values in {—1,0, 41}, with a period of 1s was
applied to the system. The initial conditions for the system were chosen as
z(0)=[ -1 -1 ]T, and for the observer as #(0) = [ 1 1 ]T. Note that
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the system and the observer start in different modes. The simulation results
are shown in figure 3.5 and figure 3.6. In figure 3.5 we see that a sliding patch
exists in the interval [4.5,5.5]. From figure 3.7 we see that the observer error
remains within the determined bounds, as predicted by the analysis.

1

0,5%
o,e—:::
04 —
02f:

of -

0.8

0.6

0.4

0.2

Figure 3.6: System (solid) and observer (dotted) response for the state xo
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Figure 3.7: Norm of the error ||e|| (solid); Lyapunov function of the error
e! Pe (dotted) on log scale

3.7 Main results for the discrete time case

As an observer for the discrete time PWA system (3.2), we propose a bi-
modal system with the following structure:

sk 4 1) = § 120+ Bu(k) + Li(y(k) (k). if H (k) <0
Azt (k) + Bu(k) + La(y(k) — 4(k)), if H &(k) >0

(3.34a)

ylk) = Ci(k) (3.34b)

where Z(k) € R™ is the estimated state at time k and Ly and Lo € R™*P are
matrices.

Remark 3.7.1 We may consider the switching surface of the form:
H'i+K@{—y) =0

for the observer (3.34). In order to simplify the exposition we chose to treat
the case with K = 0. Derivation of results for K # 0 is straightforward.
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The dynamics of the state estimation error e = z — Z is then described
by

(A; — L10)e(k), HTx(k) <0,H 2(k) <0
(Ay — LoC)e(k) + AAx(k), HTx(k)<0,H"2(k) >0
e(k+1) = - T
(A1 — L1O)e(k) — AAx(k), H'xz(k)>0,H'z(k) <0
(Ag — LaO)e(k), H'z(k) > 0,H"2(k) >0,
(3.35)

where z(k) satisfies (3.2a) and #(k) satisfies (3.34a). By substituting & =
x — e in (3.35), we see that the right-hand side of the state estimation er-
ror dynamics is piece-wise linear in the variable col(e,z). The problems of
observer design can be formally stated as follows:

Problem 3.7.2 Determine the observer gains L, Ls in (3.34) such that glo-
bal asymptotic stability of the estimation error dynamics (3.35) is achieved,
for all sequences z(1),z(2), .. ., satisfying (3.2) for some given input sequence

u(l),u(2),....

Problem 3.7.3 Determine n > 0, and Lj, Ly in (3.34) such that for all
bounded sequences z(0),z(1),... satisfying (3.2) it holds that

limsup ||e(k)| < nlimsup ||z(k)]], (3.36)

k—oo k—o0
which means that if the sequence x is (eventually) bounded by %4z, then e
should be eventually bounded by nxmqz.
3.7.1 Continuous dynamics

In order to obtain stable error dynamics we search for a Lyapunov function
of the form
V(z) =z Pz, (3.37)

where P = P' > 0, such that:
Vie(k+1)) = V(e(k)) < —pe(k) Te(k), (3.38)

for e(k) # 0 and some p > 0. Considering the first and the fourth mode of
error dynamics (3.35), (3.38) becomes:

e {(A; — L1C)"P(A; — LL1CO) — P+ ul}e <0 (3.39a)

e {(Ay — LoC) " P(Ay — LyC) — P+ pul}e < 0 (3.39b)
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for each e # 0. Considering the second and third mode of the error dynamics
(3.35) we get the following inequalities:

TR st [0
3.39¢
R LN [P
(3.394)

Note that (3.39¢),(3.39d) can not be negative definite if AA # 0, because
the term in the lower right corner is always at least positive-semidefinite.
Inequalities (3.39a)-(3.39d) do not need to hold in the whole (e, x) space,
but only when the respective modes of the error dynamics are active. The
second and the third mode of (3.35) are active only when:

c"HH  (z —¢) <0. (3.40)

Combining (3.40) with (3.39¢),(3.39d) via S-procedure, and taking the Schur
complement of the obtained matrices leads to the following theorem.

Theorem 3.7.4 The state estimation error dynamics (3.35) is globally a-
symptotically stable if there exist matrices P > 0, L1, Ly constants A1, Aa > 0
and p > 0 such that the following set of matrix inequalities is satisfied:

[P 0 (A, — L,C)'P 0
0 P 0 (%)
(x) 0 P —pl (*) >0 (3.41)
_ N HgHT
T 27 . T
|0 AP AT - ey MHE
fori=1,2.

The previous result is applicable only to systems with continuous maps.
Indeed, the term in the lower right corner is positive semidefinite by con-
struction, and of rank at most 1. The following inclusion must hold (see
discussion after theorem 3.4.3 for details):

ker H ' C ker AA

which implies:
Ay =A +GH'

for some G of suitable dimensions.
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3.7.2 Discontinuous dynamics

In order to obtain results applicable for discontinuous maps we search for
another way to relax the requirements (3.39a)-(3.39d). Condition (3.38) will
be required when the appropriate dynamics is active and

lell* > &2l]. (3.42)

Combining (3.42) with (3.39¢),(3.39d) and (3.40) we get the following theo-
rem:

Theorem 3.7.5 Consider the system (3.2), observer (3.34) and the esti-
mation error dynamics (3.35). The state estimation error e is eventually
bounded by ep,q:, under the assumption that x is bounded by X,q. if there
exist matrices P > 0, Ly,Lo, and constants A1, Aa > 0 and p,a > 0 such
that the following set of matrix inequalities is satisfied:

[P 0 (A; — L,O)TP 0 T
0 P 0 ()
(x) 0 P—(p+a)l (%) >0
—INHHT
T .27 . T
I 0 AA'P C(—1)IAAT P(A; — LC) NHH +a6]_
(3.43)
for ¢ = 1,2. Moreover, if
Nl <P <ol (3.44)

then

emaz < 4 /Eexmax. (3.45)
7

The proof of the previous theorem is similar to the proof of continuous
time case (theorem 3.4.3).

Equation (3.45) explicitly gives an eventual upper bound of the estimati-
on error. The observer gains Iy and Ly can be determined so as to minimize
this upper bound , which amounts to minimizing 7,/ and e, under (3.43).
If it is possible to design Luenberger observers for both constituting linear
dynamics with a common Lyapunov function of the form (3.37), equations
(3.43) can always be made feasible for large enough e (cf. remark 3.4.6).

3.8 Examples

We present some examples of observer design the using developed theory.
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Example 3.8.1 Consider the system
Ayx(k) + Bu(k), if H x(k
s 1) = [ A1)+ Bu). () <0
Asx(k) + Bu(k), it H' z(k)>0
y(k) = Cx(k),

(3.46)

with the following parameter values:

)

cos(g)  sin(
—sin(3) cos(

|
|
e t]r=[t] =10 0

which is discontinuous over the switching plane. Note that the first state
determines the mode, while the second state is measured. Hence, the discrete
mode can not be determined directly from the measurements (cf. remark
3.3.2).

We will design an observer for the system (3.46) of the form:

wlxln
~—

cos(ZF)  sin(2
—sin(ZF) cos(?

Wl

«|

i+ 1) = § EE) + Bulk) + Ln(y(k) —g(k), if HT#(k) < 0
Asz (k) + Bu(k) + La(y(k) — 4(k)), if H'2(k) >0
j(k) = Ci(k)

Solving (3.43) with € = 0.1 we obtain the following values for the gains
of observer (3.34):

L= [ 0.8662 } Ly = [ 0.8662 }
0.5031 |’ 0.4982
with emer < 0.13Zm4, (equation (3.45)).

The simulation results are depicted in figure 3.8. The input is chosen
as a sequence of normally distributed random numbers, with zero mean and
variance 1. The initial state of the system (3.2) is 2(0) = [-1 —1]T, and
the the initial state of the observer (3.34) is #(0) =[5 5]'. Note that the
system and the observer start in different modes.
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Figure 3.8: The system (solid) and observer (dashed) response (upper: state
x1, lower: state )

Example 3.8.2 Consider the system
Arx(k if H"x(k
s 1)< [ A0, HTa() <0
Agx(k), it H'z(k)>0
y(k) = C(k),

(3.47)

with the following parameter values:

A [ 095 00475
=1 —0.0475 0.95

Ay =A]

1
H[O],C’[O 1].

The system evolution depends only on the initial state z(0). Both pairs
(A1,C), (A2, C) are observable. Consider two initial state vectors x!(0) =
[a b]T and 22(0) = [~a b]", where a > 0. The output sequences y' and
y? generated from x'(0) and 22(0), respectively, are the same for any k > 0,
while the state trajectories are not, when a # 0. In other words, the system
is unobservable (in the sense that state can not be uniquely determined from
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the measured output whenever the first component of the state differs from
0).
An observer of the form

ik 4 1) = Avie(k) + La(y(k) — g(k)), if H' (k) <0
Az (k) + La(y(k) — g(k)), if H 2(k) >0
(k) = C2(k)

is designed, using the methodology described in theorem (3.7.5). The follo-
wing observer gains were obtained:

;o _ [ —0.0495 7. _ [ 00455
Y= 08387 |0 27| 07495 |

while the best found error bound that can be guaranteed is €mar < 24Tmas-
The simulation is depicted in figure 3.9, with initial states z(0) = [0.2 4]"
and £(0) = [<0.3 4]T. We see that the state estimate 4 converges towards
the other possible state trajectory, starting in [0.2 4]T, yielding the sa-
me output. The observer makes the output injection error zero, and hence
recovers one corresponding state trajectory (not necessarily the real one).

1.5 T T T T T T
N |
, ﬁf/\
ok — |

I I I I
10 20 30 40 50 60 70

Figure 3.9: System (solid) and observer (dashed) response (upper: state x1,
lower: state x2)
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3.9 Conclusions

We have presented observer design procedures for a class of bimodal pie-
cewise linear systems both in continuous and discrete time. The proposed
observers are of Luenberger type, but, unlike the classical Luenberger obser-
ver, the estimation error dynamics is not autonomous. Sufficient conditions
for global asymptotic stability were derived. It turned out that these are
only feasible in the case when the system dynamics is continuous over the
switching plane. We recovered the observer design presented in Arcak and
Kokotovié¢ (2001), as a special case of our observer design, for the case when
the system dynamics is continuous.

For the case when the system dynamics is discontinuous over the swit-
ching plane we derive conditions that guarantee that the estimation error is
asymptotically bounded relative to the system state. The achievable relative
upper bound of the estimation error can be optimized. It is further shown
that the desired properties are retained under the presence of sliding modes
in the continuous time case. Theoretical results are illustrated by several
academic examples. The developed theory is also successfully applied to the
experimental case study of a piecewise linear beam. The main line of rea-
soning can be applied to more general classes of piece-wise affine systemns,
with the requirement that the input distribution matrix B is the same for
all constituting affine dynamics.

In effect, for the case of discontinuous dynamics we achieved input-to-
state stability of the observation error dynamics (Sontag (2000)), where the
state of the observed system x is considered as the external input. It remains
as an open problem whether it is possible to get global asymptotic stability
of the estimation error with a Luenberger observer structure, in the case of
discontinuous bimodal piecewise affine system.

Robustness of the designed observers with respect to the model uncer-
tainty is an important issue, which remains to be investigated. The future
work will also focus on utilizing the obtained observers for feedback stabili-
zation of the considered class of bimodal piecewise linear systems, as well as
on broadening the class of piecewise affine (and general hybrid) systems to
which the presented techniques are applicable. It is straightforward to form
the observer error dynamics for a general case of a piecewise affine system
(see (1.1) in chapter 1). To relax the requirements on the derivative of the
Lyapunov function an approach similar to Johansson and Rantzer (1998a)
can be used. The major difficulty, however, is to understand the conditions
implied by such relaxations (such as the continuity requirement impled by
relaxation used in the proof of the theorem 3.4.3).
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Data-Based Hybrid Modelling of the
Component Placement Process in
Pick-and-Place Machines

4.1 Introduction 4.5 Identification with
4.2 Experimental setup saturations
4.3 Identification algorithm 4.6 Conclusion

4.4 Identification with free
and impact modes

In this paper an experimental study in the identification of the electro-
nic component placement process in pick-and-place machines is presented.
Unilateral contact and saturation phenomena characterize the hybrid dyna-
mics of the system. Furthermore, the mode switch cannot be measured and
identification algorithms for hybrid systems, that are capable to reconstruct
both the modes and the switching law, must be used. Piece-Wise AutoRe-
gressive eXogenous (PWARX) models, which consist of a number of ARX
modes together with the partition of the regressor space into regions where
each model is valid are identified. Reconstructed models are able to cap-
ture the relevant dynamics of the experimental setup. Practical insights on
hybrid system identification and comments on possible improvements of the
identification algorithm complement the quantitative results.

This chapter is based on Juloski et al. (2003b) and Juloski et al. (2004b).

4.1 Introduction

In this paper an experimental study in the identification of the electronic
component placement process in pick-and-place machines is presented. Pick-
and-place machines are used to automatically place electronic components
on printed circuit boards (PCBs), and form a key part of an automated
PCB assembly line. A pick-and-place machine works as follows: the PCB
is placed in the working area of the mounting head; the mounting head,
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Figure 4.1: Fast component mounter (courtesy of Assembleon)

carrying an electronic component (using, for instance, a vacuum pipette),
is navigated to the position where the component should be placed on the
PCB; the component is placed, released, and the process is repeated with the
next component. A fast component mounter, consisting of twelve mounting
heads working in parallel, is shown in figure 4.1. The throughput of such a
configuration can be up to 96.000 placed components per hour (Assembleon
(2002)).

Consider the subtask of the component placement on the PCB. Assuming
that the mounting head, carrying the component, is in the right position abo-
ve the PCB, the component is pushed down until it comes in contact with
the PCB and then released. The PCB is not rigid, but, depending on the
material, has certain elasticity properties. The whole operation should be
as fast as possible (to achieve maximal throughput), while satisfying techno-
logical and safety constraints (e.g. the exerted forces must not damage the
component).

As detailed in section 4.2, during the placement process, switching bet-
ween different modes of operation occurs. This motivates the search for the
model in the form of a hybrid system. Research on hybrid systems identifica-
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tion has been mainly concerned with the reconstruction of Piece-Wise ARX
(PWARX) models, which can be further recast into piecewise affine (Sontag
(1981)), mixed logic dynamics (Bemporad and Morari (1999)) or linear com-
plementarity (Heemels et al. (2000)) systems. A PWARX model consists of
a finite number of ARX modes, together with a polyhedral partition of the
regressor space into regions where each mode is active. Several techniques
for identification of PWARX systems have been proposed (Ferrari-Trecate
et al. (2003); Bemporad et al. (2000b, 2003); Vidal et al. (2003b)). In this
work the algorithm developed by Ferrari-Trecate et al. (2003) is adopted.
The algorithm is briefly summarized in Section 4.3.

The identification of the component placement process aims at providing
models for analysis and control design. In particular, Model Predictive Con-
trol (MPC) and verification algorithms for PWA and MLD systems (Bempo-
rad and Morari (1999)), (Bemporad et al. (2000¢)) can be straightforwardly
applied to hybrid systems in the PWARX form. Generally speaking, MPC
and verification algorithms for PWA systems can be recast into mixed-integer
programming problems where the process model enters the constraints. The-
refore, the application of these techniques is subordinated to the availability
of dynamic models of the system considered. From one side, it is of inte-
rest to obtain models with the smallest number of states and modes, as the
computational complexity of control and verification methods may increase
dramatically with model complexity (Bemporad and Morari (1999)), (Bem-
porad et al. (2000c)). On the other hand, it is important to note that such
methods require the simulation of the process over the horizon of N steps,
where N > 1. Therefore, models optimized for one-step-ahead predictions
may not be satisfactory since an accurate simulation performance is required.

The fact that models tailored to one-step-ahead prediction may perform
poorly in simulation is well-known in the context of ARX systems (Ljung
(1999)), and it can become more noticeable for PWARX systems. Indeed,
prediction errors due to imperfect estimates in mode parameters and regi-
ons, may lead to a wrong choice of the next mode, so triggering large-error
propagation phenomena. Since all the existing identification algorithms for
hybrid systems seek for one-step-ahead predictive models, it is of paramount
importance to check the model quality in simulation.

In sections 4.4 and 4.5 the identification results are presented. Models of
increasing complexity are considered and their simulation properties discus-
sed. It is shown that the quality of the simpler models, capturing a subset
of the system modes, is satisfactory. Moreover, despite the use of black-box
algorithms that do not exploit any physical knowledge on the system, the
reconstructed modes admit a physical interpretation. The more complex mo-
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dels, that take into account an increasing number of system modes, are less
satisfactory. Their responses, together with some physical insight on the sys-
tem, allow to single out the model elements that are not correctly identified.
In particular, this information may be of help in designing new identifica-
tion experiments or devising new identification strategies for improving the
model quality.

4.2 Experimental setup

In order to study the placement process, an experimental setup was made as
depicted in figure 4.2. A scheme of the setup is presented in figure 4.3. The
setup consists of the mounting head, from an actual pick-and-place machine,
which is fixed above the impacting surface (the small disc in the figure 4.2).
The impacting surface is in contact with the ground via the spring (the
spring co in figure 4.3, within the outer tube in figure 4.2). The mechanical
construction under the impacting surface is such that only the movement on
the vertical axis is enabled (inner tube, which can slide inside the outer tube
in figure 4.2). This construction exhibits linear and dry friction phenomena,
represented in figure 4.3 by the damper do and the block fa, respectively.
The chosen design of the impacting surface simulates the elasticity properties
of the PCB as well as hard mechanical constraints due to saturations. It also
introduces some side effects, such as dry friction.

The mounting head contains: a vacuum pipette which can move on the
vertical axis (the mass M in figure 4.3) and which is connected via the spring
to the casing (the spring c¢; in figure 4.3); an electrical motor which enables
the movement (represented by force F' in figure 4.3); and a linear optical
encoder, which measures the position of the pipette, relative to the upper
retracted position. The position axis is pointed downward, i.e. the value of
the position increases when the pipette moves downward. The motion of the
pipette is also subject to friction phenomena (the damper d; and the dry
friction block f; in figure 4.3).

The dynamics of the experimental setup exhibits, in a first approximati-
on, four different modes of operation:

upper saturation: the pipette is in the upper retracted position (i.e. can
not move upward, due to the physical constraints);

free mode: the pipette is not in contact with the impacting surface, but is
not in the upper saturation;
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Figure 4.2: Photo of the experimental setup

impact mode: the pipette is in contact with the impacting surface, but is
not in lower saturation;

lower saturation: the pipette is in the lower extended position, (i.e. can
not move downward due to the physical constraints).

The control input is the voltage applied to the motor, which is conver-
ted up to a negligible time constant to the force F. The input signal for
the identification experiment should be chosen in a way that all modes are
sufficiently excited. However, conditions for the design of persistently ex-
citing inputs are not available for hybrid models. To obtain the data for
identification, the input signal u(t) is chosen as:

u(t) =ar when te[kT,(k+1)T) (4.1)

where T' > 0 is fixed, and the amplitude ay, is a random variable, with uniform
distribution in the interval [a, b]. By properly choosing the boundaries of the
interval [a,b] only certain modes of the system are excited. For instance
only free and impact modes can be excited, without reaching upper and
lower saturations.

Some features of the data sets obtained for the input signal (4.1) are
shown in figure 4.4. In figure 4.4a the effect of dry friction damping can
be noticed. In figure 4.4b small changes in the input signal produce no
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Figure 4.3: Schematic representation of the experimental setup

change in position, because of the dry friction in stick phase. In figure
4.4c the system is excited so that the lower saturation is reached. The
lower saturation effectively acts as a velocity reset map, active when certain
position is reached (~ 25 in figures 4.4c and 4.4d). Figure 4.4d shows the
system behavior when both upper and lower saturations are reached. The
bouncing effect can be observed when reaching upper saturation, due to the
elastic impact with the mechanical constraints.

Waveforms in the experimental setup were sampled at 4kHz. Control
hardware in the pick-and-place machines enables sampling and control at
much lower frequencies. Hence, models of the process at lower sampling
frequencies are of interest. Data used for identification are obtained by re-
sampling the original signals at 50Hz. All plots in the paper have samples
as units on the time axis. Values of the position are given in scaled encoder
units', and the values of input are given in volts. In all plots the original
input signals are multiplied by the scaling factor —100, in order to show
them together with the system responses. However, original input signals
are used in the identification experiments.

Having a physical representation of the setup, like the one depicted in
figure 4.3, one would use a white-box modeling technique for identifying the

'The exact encoder specifications were not disclosed by the manufacturer of the head.
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Figure 4.4: Some features of the experimental data set a),b) effects of the
dry friction c)lower saturation d)upper saturation (solid: system response,
dashed: scaled input)

value of the physical parameters (ci, c2, etc.). However there are major
difficulties that hamper this goal. In order to illustrate them, consider a
simplified representation of the system. If saturations are not reached, dry
friction is absent and the springs and dampers in figure 4.3 are linear, the
equations relating the force F' to the position y of the head are:

. 1 di . apn | F
=—27Y = 7 5 T 37 f
i i My+ A +M (free mode)
(4.2a)
_atca  ditdy.  al+ep F
N M+my M+my M+m M+m

(impact mode)

(4.2b)

where y = 0 corresponds to the head in the upper retracted position, positi-
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ve forces are directed downward, the springs ¢; and co are at rest for y = 9,
Yy = Yo, respectively, and m is the mass of the impacting surface. Since data
are available in discrete-time, one would like to sample system (4.2) and re-
late the parameters of the discrete-time model to those of model (4.2) and
to the sampling time. Unfortunately, a general methodology for discretizing
continuous-time hybrid systems is not available (Camlibel et al. (2002)), the
key difficulty being to account, in discrete-time, for the effects produced by
mode switches happening within the sampling interval. For this reason, one
resorts to black-box identification by considering an AutoRegressive eXoge-
nous (ARX) representation for each mode

y(k) =011y(k — 1) + -+ 010,y(k —na) + 01,1 F(k—1) 4+ -+

+ 01 potny F'(k — 1) + 01 nytnp+1  (free mode) (4.3a)
y(k) =02,1y(k — 1) + -+ + 020, y(k — 1) + 241 F(k — 1) - +
+ 02 o 4ny F'(k —np) + 02100 4mp+1  (impact mode) (4.3b)

Even if the relations between the parameters in (4.3) and in (4.2) are unclear,
note that both (4.3) and (4.2) are affine models in y and F. Moreover, if
n, = 2 and ny, = 1, equations (4.3) can be obtained by sampling separately
each mode of the original system.

Consider now the switching mechanism. Let g(¢) be the position of the
impacting surface. In (4.2), the modes “free” and “impact” are active if §(¢) >
y(t) and g(t) = y(t), respectively. However, §(¢) is not measured, and it is
not even a constant signal, because of the dynamics of the impacting surface.
These facts have two major consequences on the the switching rules for (4.3).
First, it is impossible to associate a priori a mode of operation to each data
point (y(k), F(k)). This lack of information constitutes the key difficulty of
hybrid system identification (Ferrari-Trecate et al. (2003)) and obliges one to
adopt an identification algorithm that is capable to reconstruct all the modes
at the same time. Second, the switching mechanism has to be reconstructed
from y and F' only. For these reasons, a black-box approach for the switch
reconstruction is adopted, by assuming that the modes (4.3a) and (4.3b) are
active if the regressors lie in A7 and A%, respectively, where the sets A} and
X are disjoint polyhedra that have to be estimated. Model (4.3), endowed
with this switching law, define a Piece-Wise ARX (PWARX) system, whose
identification is discussed in the next section. Obviously, differences in the
true and reconstructed switching mechanism may completely destroy the
analogy between (4.2) and (4.3) since each one of the reconstructed modes
can possibly represent a mixture of the original modes. Then, the possibility
of associating the estimated modes to the true ones, has to be assessed a
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posteriori.

Remark 4.2.1 An alternative way for reconstructing the system dynamics
is to consider general Nonlinear ARX models of the type y(k) = f(y(k —
1),...,y(k —ng), F(k—1),...,F(k — np)) that can be estimated by resor-
ting to nonlinear identification procedures. For control, nonlinear models
can be exploited in MPC schemes (Mayne et al. (2000)) where the optimal
input is computed by solving a nonlinear programming problem. However,
it is important to note that due to nonlinearities, convergence to the op-
timal solution is not guaranteed. This is in sharp contrast with MPC for
PWA systems, that hinges on mixed-integer linear or quadratic optimization
for which the optimal solution is always achieved (Bemporad and Morari
(1999)).

4.3 Identification algorithm

In this section, the skeleton of the identification algorithm proposed by
Ferrari-Trecate et al. (2003) is summarized.
A PWA map f: X +— R is defined by the equations

fl) = fuz) if z€X, (4.4)
fow) = [27 170, (4.5)

where X C R" is a bounded polyhedron, {/?q};:l is a polyhedral partition
of X in s regions and 0, € R"*1, ¢ =1,...,s are Parameter Vectors (PVs).
Therefore, a PWA map is composed of s affine modes defined by the pairs
(64, X,;). The data set N collects the samples (z(k),y(k)), k = 1,..., N,
generated according to the equation

y(k) = f(x(k)) + n(k) (4.6)

where 7)(-) represents the measurement noise. It is assumed that the number
s of modes is known. The aim of PWA regression is to estimate the PVs and
the regions by using the information provided by N.

When considering hybrid systems, an input/output description of a PWA
system with inputs u(k) € R™ and outputs y(k) € R is provided by PWARX
models that are defined by equation (4.6) where k is the time index and the
vector of regressors (k) is given by

wk) = [yk—1) yk=2) ... y(k—na) (4.7)
w(k=1) uT(k=2)... u (k—mnp) ]" (4.8)
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It is apparent that, if the orders n, and n; are known, the identification of
a PWARX model amounts to a PWA regression problem.

The essential hybrid feature of PWARX models is the ability to capture
regressor-dependent mode switches. This switch mechanism is quite general.
For instance ARX models with input/output PWA static nonlinearities are
PWARX models. Moreover, PWARX models provide an input-output de-
scription for a fairly large class of discrete-time PWA systems without logic
states (Vidal et al. (2003b)).

The regression algorithm is structured in three steps.

1. Local Regression. For j =1,..., N a Local Dataset (LD) C; is formed.
It collects (z(j),y(j)) and the samples (x,y) € N corresponding to the ¢ —1
nearest neighbors = to x(j). The cardinality ¢ of an LD is a parameter of
the algorithm satisfying ¢ > n + 1. LDs collecting only data points associ-
ated to a single mode are referred to as pure LDs. The remaining LDs are
termed mixed. Linear regression is performed on each LD C; to obtain the
Local Parameter Vectors (LPVs) §; and their empirical variance V. The LD
centers m; = %Z(:c,y)ecj x are also computed together with the associated
scatter matrix Q; = Z(m,y)ecj (z — m;)(z —m;)T. The information about
the j-th local model is collected in the Feature Vector (FV) &; = [HJT, m;r]T
As for the LDs, F'Vs are either pure or mixed. FV &; are interpreted as the
realization of a Gaussian random variable with variance

we[ 5]

Intuitively, both Vj_1 and Qj_l are related to the confidence one should have

on the fact that C; is pure. In fact, in the noiseless case, ||VJ_1H becomes
infinite for pure LDs while remaining finite for mixed LDs. Analogously, if
||Q;1|| is “small” this indicates that the regressors in C; are scattered and
therefore the LD is likely to be mixed.

The key point is that pure FVs associated to the same mode are expected
to be similar and then to form s distinct and dense clouds in the F'V-space.
Thus, as detailed below in steps 2 and 3, the problem of finding the data
points associated to the same mode can be recast into the problem of finding
s dense clouds of pure FVs. However, one should be warned about the
presence of mixed FVs that do not carry any useful information on the true
modes and form a pattern of isolated points in the FV-space.

2. Clustering. The FVs are partitioned in s groups {Dj q—1 through
clustering. For this purpose, a K-means algorithm (Duda and Hart (1973))



4.3. Identification algorithm 81

is used in order to minimize the cost functional

T({PaYomr {paoma) = D0 D 116 = mallzr (4.10)

=1 ngDi

where {D,}7_; are the clusters and {1,};_; are the cluster centers. In prin-
ciple, one would be able to collect all pure F'Vs characterizing the same mode
in a single set D,. However, since mixed F'Vs are not a priori known, they will
be assigned to some cluster as well. The best results are expected when they
do not spoil the accuracy in clustering pure FVs. To this aim, we highlight
that the confidence measures Rj_1 in (4.10) allow to assign less influence to
mixed FVs than to pure FVs. Thus, the final clusters will mainly depend on
pure F'Vs.
3. Estimation of the modes. By using the bijective maps (z(j),y(j)) <
Cj < &, sets {Fi},_; of data points are built according to the rule:
(x(4),y(4)) € Fq & & € Dy
This means that each set JF; collects data associated to similar local featu-
res. The data points in each final set F; are then used for estimating the
mode PVs through weighted least squares. The regions are reconstructed on
the basis of the final sets by resorting to multicategory pattern recognition
algorithms (Bredensteiner and Bennett (1999)) that find the hyperplanes se-
parating {z : (z,y) € F¢} and {z : (z,y) € Fy} for all indexes ¢ # ¢’. This
allows to find the matrix H, and the vector hgy, for ¢ =1,..., s, representing
the polyhedra X, in terms of the linear inequalities Hyx < hy.

For the practical use of the algorithm, some potential pitfalls are high-
lighted. First, the method is expected to perform poorly if the ratio between
the number of mixed and pure LDs is high. Note that the number of mixed
LDs increases with c. Thus, it is desirable to keep c as small as possible. On
the other hand, for high noise levels large values of ¢ may be needed in order
to filter the noise corrupting pure LPVs. Another reason for choosing large
values of ¢ is to “average out” small nonlinearities affecting the modes. This
point is illustrated in Section 4.4.

Second, bad identification results can be also obtained because of the
inherent sub-optimality of K-means (Duda and Hart (1973)) that is a com-
putationally cheap but approximate method for minimizing the cost J in
(4.10). In (Ferrari-Trecate et al. (2003)), some strategies to alleviate this
problem are given.

Finally, data points suspected to be attributed to the wrong mode can
be detected a posteriori through residuals analysis or via the procedure pro-
posed by Ferrari-Trecate and Schinkel (2003). A discussion about how to



82 Identification of an Experimental Hybrid System

exploit this information for improving the identification results is provided
in (Ferrari-Trecate and Schinkel (2003)).

4.4 Identification with free and impact modes

In order to study the applicability of the described identification procedure
to our experimental setup several data sets have been collected. They consist
of 750 samples (15 s), divided in two overlapping sets of 500 points. The first
set is used for identification, and the second for validation purposes. Note
that 250 samples are used both for validation and identification. This allows
to show, on the same picture, the fitting and the generalization properties
of the reconstructed models.

In the first experiment the parameters a and b characterizing the input
signal are chosen so that only the free and impact modes are excited. The
identification and validation data sets are depicted in figure 4.5. The effect
of the dry friction in stick phase is clearly visible in figure 4.5b on the time
interval (200, 300).
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position
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Figure 4.5: Excitation of the impact and free modes. Data set used for a)
identification b) validation (solid: system response, dashed: scaled input)
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PWARX models with two modes have been identified. For the first model
the parameters n, = 2,1, = 1 and ¢ = 80 have been used. One-step-ahead
predictions on validation data are depicted in figure 4.6% together with the
mode active at each time instant. The coeflicients 6; and the matrices H,
and hy defining the regions are given in table 4.9. The difference between
the predicted and the actual system response is small and visible only on
certain time intervals (e.g. (200,300)). To what concerns the reconstructed
modes, they capture the different physical modes of operation. In fact, from
figure 4.6, one can observe that modes 1 and 2 are active when the system
is likely to be in the impact and free modes, respectively.

Results of simulation with the identified model are shown in figure 4.7a.
The respounse is still similar to the one of the real system, but now differences
are visible.
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Figure 4.6: Validation of the model with ng = 2, ny = 1, 2 modes, ¢ = 80.
a) One step ahead prediction for validation data (solid: model prediction,
dashed: system response) b) Active mode at each time instant

2Note that in figure 4.6b, due to the thick line used to plot points it may appear that
at certain time instants two modes are active. Of course, only one mode is active at any
time instant.
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A second model, characterized by parameters n, = 2,15 = 2, ¢ = 80 is
identified, and its simulated respounse is shown in figure 4.7b. Despite the
increased order, the physical behavior is still not perfectly represented.

From the results shown in figure 4.7 it is clear that the differences are
mainly due to the effects of the dry friction, which are not captured by the
models. For instance, on the time interval (200, 300) a linear response is pre-
dicted to small step excitations, while in the physical system no movement
occurs. The first model accurately simulates responses to large step excita-
tions, while responses to small step excitations are not correct. The second
model attempts to make a compromise between small and large step excita-
tions - small step responses are better represented by the second model, but
large step responses are worse.
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Figure 4.7: Simulation of the bimodal PWARX systems a) model with n, =
2, ny =1, ¢ =80 b) model with n, = 2, ny, = 2, ¢ = 80 (solid: model output,
dashed: system output)

The best bimodal PWARX model requires the use of LDs with large
cardinality. For minimal theoretical values of ¢ (¢ = 4, resp. ¢ = 5) the
obtained models are not usable, because the simulated output is completely
dissimilar to the measured one. By increasing ¢, models of different quality
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are obtained, and the best results correspond to ¢ > 40. It is interesting to
note that even for large values of ¢ (i.e. ¢ = 90, for a data set of 500 points)
good models can be still obtained.

A possible explanation is the following. Because of the presence of dry
friction (see figures 4.4a and 4.4b) responses in both modes are nonlinear.
Therefore, LDs with small ¢ produce scattered LPVs, and the clustering step
is not successful in separating FVs associated to the contact and the free
modes. On the other hand, LDs collecting a large number of data points
produce LPVs corresponding to “averaged” linear models. Such estimates
produce distinct clusters in the feature vector space, but filters out the effect
of the dry friction. The effect of “averaging” is noticeable in figure 4.7b, on
time interval (200,300), where a compromise is reached between responses
to large and small step signals.

The previous discussion motivates the attempt to identify a PWARX
model with more modes by using the same data set. The simulated response
of the model with 4 modes, n, = 2, np, = 2, ¢ = 70 is depicted in figure
4.8a, and the active modes during the simulation are shown in figure 4.8b.
From figure 4.8b, one can observe that modes 2 and 4 correspond to the
free and impact modes, respectively, while modes 1 and 3 represent the
behavior on the boundaries between free and impact modes. The overall
model performance in simulation is better in comparison to the bimodal
case, at the price of increased model complexity. Identification with higher
model orders and with more modes shows no significant improvements on
the response quality.

Remark 4.4.1 For assessing the quality of results, Neural Networks (NN)
are used for identifying the NARX model y(k) = f(y(k—1),y(k—2),u(k—1)).
The best results were obtained by considering a 2-layer network with 4 neu-
rons in the hidden layer having hyperbolic tangents as activation functi-
ons. The network was trained by using an output error algorithm exploi-
ting weight decay and optimal brain surgeon strategy, for avoiding over-
parametrization. The experiment was performed by using the Matlab tool-
box written by Ngrgaard (1997). The resulting NN has 18 parameters and
the simulation results are analogous to those of figure 4.7-a, i.e. the NARX
model suffers from the same problems as the PWARX model with n, = 2,
ny = 1 and ¢ = 80. As discussed in (Ferrari-Trecate and Muselli (2002)) the
high number of NN parameters is needed for approximating model disconti-
nuities with a continuous NN.
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Figure 4.8: a) Simulation of the four-mode PWARX system ng, = 2, np = 2,
¢ = 70 (solid: model output, dashed: system output) b) Active mode at each
time instant

4.5 Identification with saturations

In order to get a model which is valid in wider range of operating conditions
a new experiment is performed. The input was chosen so that impacts bet-
ween the head and the spring occur and the lower saturation of the spring
is reached. The data set was again divided in two parts (depicted in figu-
re 4.10), where the first part is used for identification, and the other for
validation.

In order to highlight the difficulties in reconstructing the lower saturation,
consider again the scheme of figure 4.3. Lower saturation occurs at a fixed but
unknown position ys and resets the velocity to zero. In principle, one would
enhance the models obtained in Section 4.4 with the additional dynamics
y(k) = ys, active when either

x(k—1) € X and y.(k) > ys (4.11)

or

ylk—1)=ysand F(k—1) > —F(k—1) (4.12)
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Parameters Model
61 = 1.4006 —0.6299 —34.4116 0.3031 ]T,
6o = 1.5872 —0.7682 —44.8641 —0.7184 ]T,
r —1.0778 0.26430 5.7984
1.0 0 0
0 —1.0 0
Hy =
0 1.0 0
0 0 —1.0
ng = 2
np =1 L 0 0 1.0
2 modes, r 1.0778 —0.26430 —5.7984
c =80
—-1.0 0 0
0 —1.0 0
Hy =
0 1.0 0
0 0 —1.0
L 0 0 1.0
hy =[ —10.282 30.0 30.0 30.0 0.2 0.2 ]T,
hg =[ 10.282 30.0 30.0 30.0 0.2 0.2 ]T

Figure 4.9: Parameters of identified model

where X, is the region associated to the contact mode, y.(k) is the predicted
position in contact mode and F(k — 1) is the reaction force of the impacting
surface when y = y,. Condition (4.11) characterizes the switching between
the contact and lower saturation , whereas (4.12) captures the requirements
for staying in saturation at the instants k —1 and k. Note that it is assumed
that when the saturation is reached, the impacting surface remains in contact
with the head, so neglecting bouncing phenomena of the impacting surface
on the head.

Despite the fact that the above dynamics defines a PWARX model, it is
not evident how to include it in the identification algorithm for several rea-
sons. First, the region defined by (4.11) depends on the polyhedron X, that
has to be estimated by itself. The identification procedure of Section 4.3 does
not allow to specify constraints between different regions. Second, the reac-
tion force F'(k) is not measured and it has to be deduced from the available
signals. Third, for having y(k) = ys all entries of the the mode parameter,
except the displacement must be constrained to zero. The introduction of a
partially specified dynamics falls within the domain of gray-box identificati-
on, a topic that, to the authors’ knowledge, has not been yet considered for
hybrid systems.

Therefore, once more black-box identification approach is used and a
general PWARX model with 3 modes and parameters ng, = 2, ny = 2, ¢ = 40
is identified. The response of the model in simulation is depicted in figure
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Figure 4.10: Excitation of the free, impact and lower saturation modes. Data
set used for a) identification b) validation (solid: system response, dashed:
scaled input)

4.11a, and the active modes are shown in figure 4.11b. The model parameters
are reported in table 4.12. From figure 4.11 it is possible to observe that the
third mode is triggered by the lower saturation. An analysis of the parameter
vector A3 and the region X3 = {z : Hsx < hs} reveals that the “lower
saturation” mode can be interpreted as a mixture of the true saturation and
contact (in proximity of saturation) modes. From the dynamics of the third
mode is possible to compute the estimated saturation value ys;. Consider
the case where the system is in saturation at time & — 2 and k£ — 1 and the
constant force F' ~ wu balances the reaction of the impacting surface. Then,
the system will be in saturation also at time k. According to the ARX
dynamics of mode 3, ys; and » must verify the linear constraints

Ys(1 — 031 — 039) = (33 + 034)u+ 035 and Hz[ys ys w u] < hs (4.13)

The minimal and maximal predicted values of saturation can be found by
solving the linear programs min ys and max ys, respectively, in the unknowns
ys and u subject to the constraints (4.13). We found minys = 23.2, maxy, =
24.2. Note that the latter value matches quite well the saturation level visible
in figure 4.11-a.
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Remark 4.5.1 If the PWARX model has to be used for designing an MPC
control scheme, a detailed model of the process of entering and leaving lower
saturation is not necessary. In fact, by knowing only ys, one can add to the
MPC problem the constraints y(k) < ys and the resulting control law will
take care of not driving the system in saturation. Therefore, for MPC, it is
of primary importance to have a reliable description of the system in free and
contact mode (as done is Section 4.4) and complement it with the estimate
of y, derived before, or better by conducting ad hoc experiments.

Modes 1 and 2 correspond to non-saturated modes in the experimental
setup. The majority of the points associated to non-saturated behaviors is
attributed to the second mode (this includes the points from both the impact
and the free modes), while the points associated to the first mode mainly
characterize the impact phenomena. The model output is more similar to
the output of the physical system in parts of the data set that correspond
to the saturated and impact behaviors.
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Figure 4.11: a) Simulation of the tri-modal PWARX system ng, = 2, ny = 2,
¢ = 40 (solid: model response, dashed: system response) b) Active mode at
each time instant
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Parameters Model
6; = [ 1.3112 —0.60069 —32.820 —2.1941 1.2052 ],
0o = [ 1.4693 —0.73980 —36.712 —8.1766 0.12148 ]T,
03 = [ 0.68555 —0.097315 —25.474 17.555  8.3912 }T,
r —0.38975 —0.13906 —5.4530 16.011 ~
4.3814 —0.72624 —40.376 —52.533
0 —1.0 0 0
0 1.0 0 0
Hy = ,
0 0 —1.0 0
0 0 1.0 0
0 0 0 —1.0
L 0 0 0 1.0 J
r 0.38975 0.13906 5.4530 —16.011
4.7711 —0.58718 —34.923 —68.544
0 —1.0 0 0
Ma =2, 0 1.0 0 0
ny = 2, Hy —
3 modes, 0 0 _1.0 0 ’
c =40
0 0 1.0 0
0 0 0 —1.0
L 0 0 0 1.0 J
r —4.3814 0.72624 40.376 52.533 1
—4.7711 0.58718 34.923 68.544
0 —1.0 0 0
0 1.0 0 0
H3z = s
0 0 —1.0 0
0 0 1.0 0
0 0 0 —1.0
L 0 0 0 1.0 J
h1=[ —9.2035 98.496 30.0 30.0 02 0.2 0.2 02 ],
hg = [ 9.2035 107.70 30.0 30.0 0.2 0.2 02 0.2 ]7,
hz =] —98.496 —107.70 30.0 30.0 0.2 0.2 0.2 0.2 ]T

Figure 4.12: Parameters of identified model

In the last experiment parameters of the input were chosen such that both
upper and lower saturations are reached. The data sets used for identification
and validation are represented in figure 4.13.

A PWARX model with 4 modes and parameters n, = 2, np = 3, ¢ = 55 is
reconstructed. The corresponding response in simulation is shown in figure
4.14a, and the active modes are depicted in figure 4.14b. From figures 4.14a
and 4.14b one can conclude that modes 3 and 4 correspond to upper and
lower saturations respectively. Modes 1 and 2 correspond to non-saturated
behaviors. Moreover, almost all data points in non-saturated modes are
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Figure 4.13: Excitation of free, impact, lower saturation and upper satu-
ration modes. Data used for a) identification b) validation (solid: system
output, dashed: scaled input)

attributed to mode 1, while mode 2 corresponds to large negative steps in
the input signal, i.e. to the large transients of the output in the direction of
the upper saturation.

A careful analysis of figure 4.14 reveals that:

e Responses in the portions of the data set associated to mode 1 are not
satisfactory; one can conclude that the parameter vector of the mode
1 is poorly estimated.

e Responses in the portions of the data set associated with the fourth
mode are satisfactory.

e By observing that the model response is good in the time instants
when a switch from from mode 1 to mode 3 and from 1 to 4 occurs one
can conclude that the boundaries between the modes 1/3 and 1 /4 are
correctly identified.

e The large undershoots (negative position values, which are not physi-
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Figure 4.14: a) Simulation of the four-modal PWARX model n, = 2, np = 3,
¢ = 55 (solid: model response, dashed: system response) b) Active mode at
each time instant

cally possible due to the mechanical constraints) in time instants after
mode switch from 2 to 3 (e.g. time instants around 140 and 320) and
the incorrectly predicted response around the time 100 (mode chan-
ge between 2 and 4), allows to conclude that neither the parameter
vector in mode 2, nor the boundaries between modes 2/3 and 2/4 are
correctly identified.

e The simulated response is correct in the periods after mode switches
between 1 and 3 (e.g. time interval around 230). Therefore the PV of
the third mode is acceptable. Large undershoots in mode 3, after the
mode changes from 2 to 3 (e.g. time instants around 140 and 320) are
due to the incorrect estimation of the mode 2.

Based on physical insights one would expect that the data points are
classified in the four modes, corresponding to upper saturation, lower satu-
ration, free mode and impact mode. The previous remarks highlight that
the modes corresponding to the saturations are well reconstructed, whereas
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free and impact modes are not distinguished. From figure 4.13a one can see
that the data set used for identification contains a small number of points
corresponding to free and impact modes, compared to the number of points
representing saturations. This suggests that in order to improve the results
new identification experiment should be conducted to achieve a better exci-
tation of the non-saturated modes.

4.6 Conclusion

In this paper an experimental study in the identification of the electronic
component placement process in pick-and-place machines is presented. An
experimental setup was made, using the component placement head from the
actual pick-and-place machine and the impacting surface, designed so as to
mimic the elasticity properties of the real PCB. Piecewise ARX (PWARX)
models of the process have been obtained by using the methodology intro-
duced in (Ferrari-Trecate et al. (2003)).

Despite the fact that the models are optimized for one-step-ahead predic-
tion their performance in simulation is satisfactory, when the free and con-
tact modes are excited. Thus, models are adequate also for model-predictive
control and verification. When attempting to identify also saturations the
quality of the resulting models deteriorates and limitations of the identifica-
tion algorithms yielding to unsatisfactory behaviors are highlighted.

By combining physical insights on the process operation with the model
responses it is possible to single out model features (i.e. mode parameters
and/or regions) which are incorrectly reconstructed. This information may
be used in order to design targeted identification experiments that allow to
refine the results. Moreover, an accurate analysis of the physical behaviors
in saturation conditions provides a relevant amount of a priori informati-
on, neglected by the black-box procedure adopted. Better results could be
achieved by devising a gray-box identification procedure capable to exploit
such knowledge.

The possibility of exciting an increasing number of modes with diffe-
rent experiments suggests also to study incremental identification algorithins.
The basic idea would be to reconstruct first the modes visible in the simpler
experiments, and then enhance the model with additional behaviors appe-
aring in richer data sets, by keeping fixed the dynamics already identified.
This idea will be developed in future research.
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5.11 Conclusions

In this paper we present a novel procedure for the identification of hy-
brid systems in the class of piece-wise ARX systems. The presented method
facilitates the use of available a priori knowledge on the system to be iden-
tified, but can also be used as a black-box method. We treat the unknown
parameters as random variables, described by their probability density func-
tions. The identification problem is posed as the problem of maximizing
the total probability that the observed data is generated by the identified
model. A particle filtering method is used for a numerical implementation
of the proposed procedure. A modified version of the multi-category ro-
bust linear programming (MRLP) classification procedure, which uses the
information derived in the previous steps of the identification algorithm, is
used for estimating the partition of the PWARX map. The proposed pro-
cedure is applied for the identification of a component placement process in
pick-and-place machines.

This chapter is based on Juloski et al. (2004c) and Juloski et al. (2004d).

5.1 Introduction

In this paper we present a novel procedure for the identification of hybrid
systems in the class of Piece-Wise AutoRegressive systems with eXogenous
inputs (PWARX systems). PWARX models are a generalization of the clas-
sical ARX models, in that the regressor space is partitioned into a finite
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number of polyhedral regions, where in each region the input-output rela-
tion is defined through an ARX-type model. PWARX models represent a
broad class of hybrid systems, as they form a subclass of Piece-Wise Affine
(PWA) models (Sontag (1981)), which are in turn equivalent to other hybrid
modelling formalisms, such as Mixed Logic Dynamics (MLD) (Bemporad
and Morari (1999)) and Linear Complementarity (LC) frameworks (van der
Schaft and Schumacher (1996); Heemels et al. (2000, 2001)). A number of
methods for stability analysis, optimal control design and verification have
been developed for the above mentioned classes in the recent years. In this
paper we will focus on the identification of hybrid systems in this class.

Based on the observed data the identification problem amounts to de-
termining the parameters of the ARX sub-models together with the regions
of the regressor space where each of the models is valid. The main problem
in the identification of PWARX models is the problem of data classification
- that is, the problem to assign each data point to one specific sub-model.
When the data has been classified, the parameters of the sub-models can
be determined, and the regions where each of the sub-models is valid can
be estimated using techniques for data classification (Ferrari-Trecate et al.
(2003)).

The problem of the identification of PWA and PWARX models has been
considered before, and to date several approaches exist for identification of
those models (see Roll et al. (2004) and the references therein). As poin-
ted out in Roll et al. (2004) most of the existing approaches assume that
the system dynamics is continuous, while the approaches that allow for dis-
continuities started appearing only recently (Ferrari-Trecate et al. (2003);
Bemporad et al. (2003); Vidal et al. (2003b)). The identification procedure
proposed in this paper allows for discontinuous system dynamics as well.

In the clustering-based procedure (Ferrari-Trecate et al. (2003)) the da-
ta classification and the parameter estimation steps are performed simul-
taneously by solving a suitably defined optimal clustering problem in the
parameter space. In the greedy procedure (Bemporad et al. (2003)) the
data classification and the parameter estimation steps are accomplished by
partitioning a suitably defined infeasible set of linear inequalities into a mi-
nimal number of feasible subsets. In the algebraic procedure (Vidal et al.
(2003b)) the parameter estimation is accomplished by finding the roots of
a suitably defined polynomials, while the data points are classified to the
sub-model that gives the smallest prediction error. For a comparison of the
three above mentioned procedures see Niessen et al. (2004).

In this paper we take a Bayesian approach to the problem of identi-
fying PWARX models. Specifically, we treat the unknown parameters as
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random variables, and describe them in terms of their joint probability den-
sity function (pdf). The probability density function contains the complete
stochastic information about parameters, and different parameter estimates
can be easily inferred.

We assume that an a priori joint parameter pdf is given. If the data is
classified the a posteriori joint parameter pdf will be computed, using Bay-
es’ rule. Furthermore, we compute the probability that the observed data
is generated by the given classification. One data classification is conside-
red better than another if it has a higher probability. Following this line
of reasoning, the identification problem amounts to finding the best data
classification. This approach to model comparison is similar to the Bayesian
framework which was used in MacKay (1992) for neural networks.

The classification problem is a combinatorial optimization problem, whe-
re all possible mode sequences have to be explored, in order to find an optimal
solution. To reduce complexity we resort to a sequential approach, where
each data point is classified to the best mode based on the information avai-
lable so far. This strategy is known in the optimization literature as the
greedy strategy, as it makes the best possible local decision in order to ap-
proach the global optimum. In order to calculate with resulting pdfs we
propose a method of particle approximations.

Region estimations are based on a modification of the Multi-category
Robust Linear Programming procedure (MRLP) (Bennet and Mangasarian
(1994)). The modification consists in introducing a suitably defined pricing
function, that assigns weights to the misclassification of data points. An
advantage of using pricing functions is that more information is preserved
form the classification phase. This is illustrated by the example in section
5.8.

By choosing a priori parameter probability density functions the user can
supply the relevant a priori knowledge to the identification procedure. This
is a major advantage of the framework presented here. Including a priori
knowledge is much harder in other identification methods, such as the ones
described in Ferrari-Trecate et al. (2003), Bemporad et al. (2003), and Vidal
et al. (2003b).

The need for using a priori knowledge was observed in an experimental
case study of a component placement process in a pick-and-place machine
(Juloski et al. (2003b, 2004b)). The a priori knowledge may stem from
physical insight in the system or from previous identification experiments.
By choosing a priori parameter pdfs so as to correspond to the parameters of
the modes of the physical system the identification procedure may be forced
to identify a model that can be interpreted in physical terms. Secondly, the
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approach presented here can be used to improve the previously identified
models with targeted identification experiments. Also, models of increasing
complexity can be built from a series of identification experiments, where in
each experiment only a subset of the modes of the physical system is excited
and identified. We believe that this are the important advantages in any
practical identification problem. We also discuss some ways to initialize the
procedure without using the a priori knowledge.

The remainder of the paper is organized as follows. Preliminaries are
given in section 5.2. The class of PWARX models is introduced in section
5.3. The identification problem is formally stated in section 5.4. In sections
5.5 and 5.6 we derive the suboptimal identification algorithm, and the par-
ticle filtering approach, as a way to implement it. In section 5.7 we present
modified MRLP procedure. In section 5.8 we give an example that illustra-
tes the presented ideas. In section 5.9 we discuss several ways to obtain
the a priori probability density functions of the model parameters, so as to
initialize the procedure. The connection with the clustering procedure, and
the improvement that our method can provide are explained in section 5.9.2.
An experimental example is given in section 5.10. Conclusions are given in
section 5.11.

5.2 Preliminaries

A vector of random variables 0; € ©; C R™ can be described with a proba-
bility density function (pdf) py,. If the pdf py, takes the form

po,(0) = 8(0 - 67), (5.1)

where ¢ is the Dirac delta distribution, then 6; = 9?, with probability one,
which will mean that the value of 6 is known.

Different estimates of 6; can be easily obtained form the probability den-
sity function. For instance, the expectation of 6; is given as

0F = El6:] = [ 0po,(0)do (5.2)
/

and the maximum a posteriori probability (MAP) estimate is given as:

OMAP — arg max py (). (5.3)
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The covariance matrix V;, which is a measure of the quality of the estimate
HZE , is defined as:

VE = [(6-65)(6 - 6F) T, (6)db (5.4

O;
VM AP can be defined in an analogous way for éf\/[ AP “We define the dispersion
of the estimates 07 and #M4F as the spectral radius of the covariance matrix

of the estimate:

pi = p(VE) = Anae(VE); - p}47 = p(VMAP) = Mpaa (VMAP) - (5.5)

where Ajq.(-) denotes the maximal eigenvalue. Note that pf’MAP =0 if
and only if (5.1) holds. Dispersion is useful for comparison of two different

estimates of 0;, where the smaller value of p indicates better estimate.

5.3 Model class

We consider piece-wise AutoRegressive eXogenous (PWARX) models of the
form:

y(k) = f(z(k)) + e(k) (5.6)
where k > 0, and:
9? {f ifx e X
foy =3 (5.7)
o7 | V| ifzea,
L 1 -

is a piece-wise affine map, and x(k) is a vector of regressors, defined as
e(k)=[yk—1) ... ylk—ng), uk-1) ... uwk—-n)] . (5.8)

The parameters n, and ny in (5.8) and the number of modes s are assu-
med to be known. Therefore, §; € ©; C R where n = n, + ny. The sets
AX; are assumed to be bounded polyhedrons, described by:
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where H; is a real valued matrix, h; is a real valued vector, and the inequality
holds element-wise. The set X = |J;_, A; is assumed to be a bounded
polyhedron, and we assume that {X;}7_; is a partition of X (this implies
that the interiors of &; and X; do not intersect for ¢ # j)t. We also assume
that parameter vectors 6; and ¢; are different over different regions:

Assumption 5.3.1 For i # j, 0; # 0;.

Assumption 5.3.2 The realization of the additive noise e in the model (5.6)
is a sequence of independent, identically distributed random values, with an
a priori known probability density function pe.

We define the mode function p : {1,...,T} — {1,...,s} that assigns
mode u(k) to the data pair (z(k),y(k)), k =1,...T. Ideally, given regions
{X}5_, p(k), p would satisty:

w(k) := i whenever z(k) € Aj. (5.10)

Hence, for a given data set {(x(k), y(k))}}_, the partitioning {X;};_; induces
the mode function p, as given by (5.10).

The inverse problem is the region estimation problem, and reads as fol-
lows. Given p find regions {A;}?_; such that whenever u(k) = 4, we have
that z(k) € &;. The region estimation problem can be solved using standard
techniques for data classification Ferrari-Trecate et al. (2003). The problem
of region estimation therefore can, in principle, be replaced by the problem
of mode estimation for each data pair. We will refer to the latter problem
as the classification problem. These problems will be formalized in the next
section.

5.4 Problem statement

The identification problem consists of estimating the values of the unknown
parameter vectors 0;, for ¢ = 1...s, and the regions {X;}{_;, described by
(5.9), given the data pairs (z(k),y(k)), for k=1,...T.

With 9 € © C R(Ds we will denote a vector 9 = col(fy,...,0s), where
the operator col(-) stacks its operands into a column vector. Assume that the
joint a priori probability density function of the parameters and the partition

!Since regions A; are closed sets by definition (5.9) it may happen that X; and X; share
a common facet. Technically, the point x, lying on the shared facet would belong to both
X; and X;. We neglect this issue, as it has no consequence on the presented procedure.



5.4. Problem statement 101

Py {x;}:_, is given. Given the data set {(z(k), y(k)) I"_| the a posteriori joint
pdf of parameters and partition can, in principle, be computed using Bayes’
rule as:

po.fxye, (9 AX oy [ {(e(k), y(k) Yiy) =
p({(@(k), y(k) Yoy | 9. AXi o)) po gy, (0, { X))
[ k), y(k) ey | 0, {Xi}) %

o,{X:}¥_,
XPy{x}s_, (9, {X:}ioy) dd d{ X},

(5.11)

Given s, ng, np and the data {(x(k),y(k))}!_,, the identification problem
can now be posed as the problem of finding the most likely parameter and
partition values:

Problem 5.4.1 (Full identification problem)

{0 X} } = argmax py ey (O AX Yo | {(2(k),y(k) i) (5.12)

where the maximum is taken over all possible parameters and partitions
satisfying the assumptions on the model (5.6) from section 5.3.

Problem 5.4.1 involves a joint optimization over parameters and parti-
tions, and this is a hard non-convex optimization problem with many local
minima. Therefore, we will consider a relaxation of problem 5.4.1, in that
the optimization over regions and over parameters will be treated separa-
tely. This step is common in the hybrid identification literature, and gives
rise to a partition/mode estimation problem on one hand, and a parameter
estimation problem on the other.

Assume that the a priori joint probability density function of the pa-
rameters py is given. The total probability that the observed data set
{(x(k),y(k))}}_, was generated by the given partition {X;};_; is:

p({((k), y ) YTy | {3 =
/ p({(2(k), y(B) YTy | 9, {6 }5y) po(9) do. (5.13)

)

A partition {X!}$_, is said to be better than the partition {X?}:_, if it
has higher probability, i.e. if:

p({(a(k), y(k) imr | {1 Yo0) > p({(2(k), y (k) Ve | {X720)-
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Given s, ng, np, the data {(z(k),y(k))}._, and the a priori parameter
pdf py the partition estimation problem can now be formally stated as the
problem of finding the best partition, i.e.:

Problem 5.4.2 (Partition estimation problem)

{Xi}ioy = argmax p({(z(k), y(k))bizy | {Xi}i) (5.14)

where the maximum is taken over all possible partitions {X;}{_; satisfying
the assumptions on the model (5.6) from section 5.3.

Problem 5.4.2 is a non-convex problem, posed in the regressor space X of
dimension n. Instead of solving problem 5.4.2; one may choose to estimate
the mode sequence {u(k)}1_,, and to subsequently reconstruct the partition
{X;}5_, on the basis of the estimated mode sequence as discussed in section
5.3. In an analogous way to (5.13) we compute the total probability that the
observed data set was generated by a given mode function pu:

p({( k), y(k)Hy | 1) =
/ p({((B), y(k) ey | 0, 1) po(9) (5.15)

S}

Under the assumption 5.3.2 we have

T
p({(@ k), y () | 0,) = [] pely(®) = Oy [ 2(0)T 1]1). (5.16)
k=1

The classification problem now takes the form:
Problem 5.4.3 (Classification problem)

p = argmax p({(z(k), y(k))Yizy | 1) (5.17)

where the maximum is taken over all possible mode functions pu.

Note that the optimal mode function obtained by solving problem 5.4.3 does
not coincide in general with the mode sequence induced by optimal partition
obtained from problem 5.4.2. This issue will be further discussed in section
5.7.

Given the a priori joint parameter pdf py and the partition {A&;}7_; (or the
mode function p) we can compute the a posteriori joint pdf of the parameters,
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using Bayes rule:

po (0 | {((k), y(k))}imr, {Xiimy) =
p({(x(k), y(k) iy [0, {Xi}i) Po(9)
ép({(:v(k),y(k)) k=1 | 0 AXi}ioy) po (V) dV

(5.18)

The parameter estimation problem then takes the form:

Problem 5.4.4 (maximum likelihood parameter estimation)

{0747} = argmax py(9 | {(x(k), y(k))Vimy, {Xi}21) (5.19)

where the maximum is taken over all possible parameter values.

or, alternatively,

Problem 5.4.5 (expected parameter value)
{671 =E 9, (5.20)
where 9 has the probability density function (5.18).

Once the joint parameter pdf (5.18) is computed problems 5.4.4 and 5.4.5
can be easily solved numerically. In the sequel we will focus on problems
5.4.3 (section 5.5) and 5.4.2 (section 5.7).

5.5 Suboptimal identification algorithm

Optimization problem 5.4.3 is a combinatorial optimization problem, where
all possible mode sequences have to be explored in order to obtain an optimal
solution. As the number of the collected data pairs increases such a search
quickly becomes computationally intractable. Hence, we have to resort to
suboptimal minimization algorithms.

We will consider the data points sequentially, and try to find the best
possible classification of the data pair (xz(k),y(k)), with data points up to
k —1 already classified. The described optimization strategy is known in the
optimization literature as the greedy strategy - the algorithm tries to make
the best possible local decision, in order to approach the global optimum.
Let py(-, k) denote the pdf of the parameter 6 after k steps of the algorithm.
Let pg(+,0) denote the a priori parameter pdf, i.e. pg(-,0) = py(+).
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We will assume that the joint pdf of 0, ...,0; at step k takes the form
S
Por,.0, (01, ., 05 k) = [ [ po, (0 K), (5.21)
i=1

That is, for all ¢ # j and for all £ parameters 6; and ¢; are assumed mutually
independent given data up to time step k. Under this assumption we consider
the following problem:

Problem 5.5.1 For k =1,...,T find the most likely mode pu(k) of the data
pair (z(k),y(k)), given the a priori joint parameter pdf pg, . g, (61,...,0sk—
1) at step k — 1 which is of the form (5.21), i.e.

(k) = argmax p((x(k),y(k) | p(k) = ). (5.22)
In (5.22)
(), (k) | () = i) = / p(( (k). y(k)) | 0) po,(0:k — 1) db.  (5.23)
O;
and -
p((@(k), y(k)) | 6) = pe(y(k) — 0] z())T 1]7) (5.24)

The problem 5.5.1 is solved in a straightforward way, by computing (5.23)
for i = 1,...s and choosing u(k), according to (5.22).

If u(k) = i the a posteriori joint parameter pdf is computed using Bayes’
rule as:

Por,e0. (01, 05 k) = g, (Ous k) T po, 05k —1). (5.25)
istpa(h)

where
pey(k) =07 [ (k)T 1]") po,,, (6:k —1)
G!pe(y(k') — 0T [ 2(k)T 1)) pg, G5k 1) db

PO, (05 F) = (5.26)

Hence, if the parameters were independent at step k — 1, from (5.25) it fol-
lows that after classifying the k-th data point they will remain independent.
Furthermore, the a posteriori joint parameter pdf is obtained by updating
the pdf of the parameter that generated the data pair, while the pdfs of the
other parameters remain unchanged.

Now, we are ready to formally state the algorithm for classification and
parameter estimation.
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Algorithm 5.5.2 (classification and parameter estimation)

e step 1: Obtain the a priori probability density functions py,(-;0) for
1=1,...s;set k= 1.

e step 2: Assign the data pair (z(k),y(k)) to the mode u(k) with the
highest likelihood using (5.22)

e step 3: Compute the a posteriori pdf of the parameter 6, P,k (k)
using (5.26). For all j # u(k), set py, (-, k) = pp, (56— 1).

e step 4: k =k + 1; goto step 2 until & > T

The schematic representation of the algorithm 5.5.2, for the case s = 2
is given in figure 5.1.

init: py, (- ,0)

computation of
the a posteriori > (- k)
p.d.f.

maximum
(x(k),y(k)) —w  likelihood
decision logic

A A

computation of
the a posteriori » por( - k)
p.d.f.

o

init: py, (- ,0)

Figure 5.1: Schematic representation of algorithm operation for two modes

The algorithm 5.5.2 is derived by considering data points one at a time. It
is possible, along the same lines, to derive a family of suboptimal algorithins,
that would classify m < T data points in each step. Note that, as m increases
the complexity of the combinatorial optimization problem that has to be
solved in each step increases exponentially, and for m = T the optimization
problem becomes the classification problem 5.4.3.

5.6 Particle filtering approximation

Analytical solutions to (5.22) and (5.26) are intractable for general noise
and parameter probability density functions. To turn algorithm 5.5.2 into
a feasible computational scheme, we opt for the particle filtering approach
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(Arulamapalam et al. (2002)). Here we present only the main idea of this
approach. For a detailed exposition on implementing, tuning and conver-
gence results for particle filters see e.g. Arulamapalam et al. (2002), Doucet
et al. (2001), Crisan and Doucet (2002) and references therein.

The underlying idea of particle filtering methods is to approximate the
pdf pg,(-; k) defined over a dense set ©; with a pdf supported in a finite
number of points 9§’k €0;,1=1,...,N called particles. The pdf py,(-; k) is
then approximated as:

N
Po, (05 k) = o, (0: k) == wi6(0 — ). (5.27)
=1

where wi’k > (0 is a weight associated with the particle Gfk

Algorithms that sample particles OE’k according to any given probability
density function can be found in the literature (i.e. Metropolis-Hastings
algorithm, Gibbs sampler etc. (Fishman (1996))).

Estimates (5.2) and (5.4) can be obtained from (5.27) in a straightforward
way. Combining (5.27) with (5.23) we obtain the following approximation
for (5.23):

p(((k), y(k)) | n(k) = i) =Y wi™ pe(y(k) — 07" a(k))  (5.28)
=1

To compute the recursion (5.26) we use a modification of the Sample
Importance Resampling (SIR) particle filtering algorithm (Arulamapalam
et al. (2002)). This results in the following computational scheme:

Algorithm 5.6.1 (SIR particle filtering)
e FORI=1TO N

- diversify particles: Of’k =gkt 4 el where g, ~ N(0,%.)

(2

- compute weights wﬁ’k =p((z(k),y(k)) | ka) using (5.24)
END FOR

e normalize:

fori=1,...N
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e resample N times from distribution (5.27) to obtain the new set of
particles Hzl-’k, where wﬁ’k =N"1¢

Algorithms for sampling distributions of the type (5.27) are standard (see
for instance (Arulamapalam et al., 2002, algorithm 2)). Since we are using
the SIR algorithm for estimating the constant parameter it is necessary to
diversify the particles (Berzuini and Gilks (2001)). For this purpose we add
the normally distributed random term &' to each particle in the first step
of the algorithm 5.6.1. Variance matrix 3. is the tuning parameter in the
algorithm. This method of particle diversification is simple, but increases
the variance of the estimates. Other particle filtering algorithms with better
statistical properties but higher computational load, can be found in the
literature (see for instance Berzuini and Gilks (2001)).

5.7 Partition estimation

Once the entire data set has been passed through the algorithm 5.5.2, the
final pdfs of the parameters pp, (-;7") are available and all data points can be
attributed to the mode with the highest likelihood, using (5.22). In other
words, the mode function p is re-estimated, using pg, g, (-;7T), in order to
obtain the most likely p. After this classification, standard techniques from
pattern recognition can be applied to determine the regions {X;}7_; (see e.g.
Bennet and Mangasarian (1994)).

However, the method of highest likelihood classification does not neces-
sarily classify the data points to the correct mode. This problem is especially
important when the hyperplanes defined by two parameter vectors 0; and 0,
intersect over the region X;. Then, data points near this intersection may
be wrongly attributed to the mode ¢. This issue will be illustrated in the
example in section 5.8. Wrongly attributed data points may in turn lead
to errors in determining separating hyperplanes. In this section we propose
a modified version of the MRLP algorithm from Bennet and Mangasarian
(1994) that aims to alleviate this problem.

Define the set D; as:

D; = {a(k) | u(k) = i} (5.29)

where p(k) is computed as in (5.22), with py, (-, 7). Hence, D; consists of all
data points that are attributed to the mode ¢ on the basis of the a posteriori

pdf pg, (7).
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Definition 5.7.1 (Bennet and Mangasarian (1994)) The sets {D;}{_, are
piecewise-linearly separable if there exist w; € R™", v, € Rfor¢=1,...,s

CTOEIED-GHED e

for all € D; and j # i. Here (-,-) denotes the standard inner product in
R+

Given wj, 7y; the mode of the data point x can be estimated as:

fi(z) = argm?xq ”1” ] , [ 7:;’ ]> (5.31)

and the hyperplane that separates regions &; and Xj is given by:
{z e R" | (w; —wj)x =" — 5} (5.32)

If the sets D; are piecewise linearly separable then the matrices H;, h; defi-
ning the region A&j; as in (5.9) can then be formed as:

Hi = colj((wi - wj)T), hi = COlj("}/i - ")/j), (533)

where j = 1,...,s, j # i, and the operator col(-) stacks its arguments into
a column vector. Note that only regions with up to s — 1 vertices can be
described in this way.

If the sets D; are not piecewise linearly separable some data points are
going to violate (5.30). If the regressor x € D; is classified to the region X}
(i.e. if fi(x) = j) the violation (;;(z) : D; — R is given as

Gij(x) = (—a(wi —wy) + (i —7;) + 1)+ (5.34)

where ¢4 = max{q,0}. Standard MRLP algorithm finds w;,~; by minimi-
zing the sum of averaged violations (5.34), through a single linear program
(Bennet and Mangasarian (1994)).

In our case we will weight the violations (5.34) according to the following
principle: if the probability that the regressor « € D; belongs to the mode
is approximately equal to the probability that it belongs to mode j, then the
corresponding violation (;;(x), if positive, should not be penalized highly.
We define the weighting function &;; : D; — R as

((z(k),y(k)) | p(k) = 9)
(@ (k), y(k)) | u(k) = 5)°

&i(a(k)) = log]; (5.35)
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Since for any j # i

p((x(k), y(k)) | u(k) = i) > p((x(k),y(k)) | p(k) = J)

the weight (5.35) is always nonnegative, and is equal to zero when the two
likelihoods are exactly equal.

The weighting function (5.35) takes into account only the relative size of
the mode likelihoods. If outliers are present in the data set, mode likelihoods
may be negligible, but their ratio, formed as in (5.35), may still be signifi-
cant. Another possible choice of the weighting function &;;, which takes into
account also the absolute sizes of mode likelihoods is:

ij(e(k)) = p((x(k), y(k)) | p(k) = i) -
—p((z(k),y(K)) [ n(k) = j)- (5.36)

The optimization problem can be stated as:

min Z Z Z &ij () Gij(x (5.37)

R i=1 §¢1 z€D;
Problem (5.37) can be further cast as a linear program, in a same way as in
Bennet and Mangasarian (1994).

By introducing pricing functions more information is preserved from the
classification phase in the region estimation phase. This is an advantage over
the region estimation in procedures presented in Bemporad et al. (2003) and
Vidal et al. (2003b). We will illustrate this issue with an academic example
in the next section.

5.8 Example

Let the data {(z(k),y(k))}}2% be generated by the system of type (5.6)
where:

|05 05 ] [”1“" ] L if 2 € [-2.5,0)
f(z) = (5.38)

[—1 2} [T],ifxe[O,Q.S]

and e(k) is a sequence of normally distributed random numbers, with zero
mean and variance o2 = 0.025. The data set of T' = 100 data points together
with the true model is shown in figure 5.2.
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25

Figure 5.2: Data set used for identification together with the true model

A priori pdfs are chosen as pg, (1) = pg, (02) = U([—2.5,2.5] x[-2.5,2.5]).
A particle approximation to this pdf, with NV = 200 particles for each pdf,
is given in figure 5.3, left. The particle filtering algorithm 5.6.1 is applied,
with ¥2 = diag{0.001,0.001} and the final particle distribution at the step
k = 100 is shown in figure 5.3, right. The estimates of the parameter vectors
are:

g [ 0.4143 g [ —0.8467
or = [ 0.5340 ] 6= [ 1.8432 ] (5:39)

Data points are classified using (5.22), and the results are depicted in
figure 5.4a. Several data points that belong to mode 1 are attributed to
mode 2. These points are near the virtual intersection of the two planes
defined by the parameter vectors. In figure 5.4b weighting function (5.35)
for misclassification of points is shown. The weight for misclassification of
wrongly attributed points is small in comparison to the weight for misclassifi-
cation of the correctly attributed points. The region for mode 1 is estimated
as x > 0.0228 while the region corresponding to mode 2 is estimated as
x < 0.0228. The identified model, together with the true model and the
data set is depicted in figure 5.5.
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Figure 5.3: left: Particle approximation to the initial pdfs of the parameters
01, 02 (red dots: particles of pg,, blue dots: particles of py, ) right: Final pdf
of the parameters 01 (red dots), 05 (blue dots)
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Figure 5.4: a) Data points attributed to modes b) Price function for the
wrong classification

5.9 Initialization

In this section we will discuss in more detail three different ways to obtain
a priori probability density functions py,(-;0), i =1,...,s.
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25

Figure 5.5: True model (solid), identified model (dashed) and the data set
used for identification

5.9.1 Initialization using mode knowledge

If m > n+ 1 data pairs (z(k1),y(k1)), ... (2(km), y(km)) are attributed to
the mode %, the least squares estimate of the value of the parameter vector

055 may be obtained as:
0% = (& @)y, (5.40)
o _ | #E) alke) o @), ]
i 1 1 1
yi = [ylkr) y(ka) - y(km) }T-
The empirical covariance matrix of % can be computed as (Ljung (1999)):
Vi = %(@j@i)—l, (5.41)

SSR; =y (I — (2] ;)@ )y;

This information is sufficient to describe the parameter 6; as a normally
distributed random variable:

Po, (::0) = N(6}°,V}) (5.42)

Samples from the normal distribution can be easily obtained with some of
the mentioned algorithms for sampling from general multidimensional dis-
tributions (or using built-in MATLAB functions).
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5.9.2 Initialization via clustering procedure

In this section we will show that our procedure can be initialized using the
ideas from the clustering procedure (Ferrari-Trecate et al. (2003)). For the
sake of completeness we discuss relevant steps form the clustering procedure
briefly. For the detailed exposition see Ferrari-Trecate et al. (2003).

For each regressor z(l) in the data set, we collect ¢ > m + 1 nearest
regressors, and form a local data set (LD) C;. The idea behind this procedure
is that regressors that are close in the regressor space are likely to belong to
the same partition; we distinguish two types of LDs - pure LDs - when all
the regressors collected in one LD indeed belong to the same partition, and
mixed LDs, when they do not. For the procedure to work properly the ratio
between the number of pure and mixed LDs should be high.

From each LD we can obtain an estimate 6!, using (5.40), and the variance
V! of the estimate @', using (5.41). To each estimate the following confidence
measure is assigned:

w' = ! . (5.43)
V/ (2m)n 1l det (V1)

Ideally, pure LDs will produce good estimates, with high values of w!, while
for mixed LDs w! will be low. Estimates obtained from pure LDs are expected
to form groups (clusters) in the parameter space, while estimates from mixed
LDs will be isolated points.

The next step is to form s clusters {D;};_; in the parameter space, by
solving the following optimization problem:

min JUADi Yo, {mi}iy), -
{D:i}ys_ {ma}s_, ({ Z} 1{ 2} 1) ( )

where the clustering functional J is given as:

S

JUDYioy, dmido) =D Y 16— mall}- (5.45)

i=1 gle;

where m; is the center of the cluster D;. Optimization problem (5.44) is com-
putationally hard, but there exist efficient algorithms able to provide sub-
optimal solutions, e.g. K-means algorithm (Ferrari-Trecate et al. (2003)).
Weight V! in (5.45) is used to minimize the influence of §' that correspond to
mixed LDs, which in turn may lead to wrong assignment of those parameter
vectors.
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Points attributed to i-th cluster, #' € D;, together with the associated
weights w' can be used to form a probability density function of type (5.27):

po,(0) =g 3wl 5(0 - 6) (5.46)
0leD;

where ¢ is a normalizing constant:

q= Z w'. (5.47)

In the clustering procedure, after the clustering step, bijective relation
(z(),y(1)) = Ci =0 €D

is used to classify data pairs to modes. Data pairs (x(1), y(l)) that correspond
to mixed LDs may be wrongly classified. In our procedure, mixed LDs yield
a point with low weight in the discrete approximation of the parameter pdf.
This point will be discarded in the SIR particle filtering algorithm 5.6.1, and
will have no adverse consequences on the classification of the corresponding
data pair.

5.9.3 Brute force initialization

Parameters 6; can be estimated in an optimal way as the solution of the
following problem:

T
{031 = argmin_ lly(k) =Gy [ 27 L]T 1P (548)
b ok=1

When the sequence u(k), k =1,...T is known problem (5.48) is an ordina-
ry least squares problem. In our case, since modes are not known, problem
(5.48) is a combinatorial optimization problem, where all possible mode se-
quences must be explored, and is computationally intractable for lager values
of T.

In order to obtain a rough estimate of the parameter values small enough
subset of the complete data set (z(k),y(k)), k =1,...T can be chosen, and
the computationally tractable problem of type (5.48) can be formulated.
Solution of this problem gives the estimates of the parameter values 0;, to-
gether with the variances of the estimates V;. This information is sufficient
to describe the parameters as 6; ~ N (él, Vi)
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5.10 Experimental example

In order to demonstrate the proposed identification procedure we applied it
to the data collected from the experimental setup made around the mounting
head form the pick-and-place machine. The purpose of the setup is to study
the component placement process on the printed circuit board (PCB) in the
controlled conditions. Same experimental setup was previously successfully
identified using the clustering procedure (Ferrari-Trecate et al. (2003)). The
experimental setup and the identification results with the clustering proce-
dure are described in more detail in Juloski et al. (2003b, 2004b).

A photo and the schematic representation of the experimental setup are
given in figure 5.6. The setup consists of the mounting head, from an actual
pick-and-place machine, which is fixed above the impacting surface (the small
disc in figure 5.6a). The impacting surface is in contact with the ground via
the spring (the spring co in figure 5.6b), within the outer tube in figure 5.6a.
The mechanical construction under the impacting surface is such that only
the movement on the vertical axis is enabled (inner tube, which can slide
inside the outer tube in figure 5.6a). This construction exhibits linear and
dry friction phenomena, represented in figure 5.6b by the damper do and the
block fa, respectively. The chosen design of the impacting surface simulates
the elasticity properties of the PCB as well as hard mechanical constraints
due to saturations. It also introduces some side effects, such as dry friction.

The mounting head contains: a vacuum pipette which can move on the
vertical axis (the mass M in figure 5.6b) and which is connected via the
spring to the casing (the spring ¢; in figure 5.6b); an electrical motor which
enables the movement (represented by force Fin figure 5.6b); and a position
sensor, which measures the position of the pipette, relative to the upper
retracted position. The position axis is pointed downwards, i.e. the value
of the position increases when the pipette moves downwards. The motion
of the pipette is also subject to friction phenomena (the damper d; and the
dry friction block f; in figure 5.6b).

The dynamics of the experimental setup exhibits, in a first approximati-
on, four different modes of operation:

e upper saturation: the pipette is in the upper retracted position (i.e.
can not move upwards, due to the physical constraints)

e free mode: the pipette is not in contact with the impacting surface,
but is not in the upper saturation

e impact mode: the pipette is in contact with the impacting surface,
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Figure 5.6: left: a) Photo of the experimental setup right: b) Schematic
representation of the experimental setup

but is not in lower saturation

e lower saturation: the pipette is in the lower extended position, (i.e.
can not move downwards due to the physical constraints)

We stress that the switch between the impact and free modes does not oc-
cur at a constant head position, because of the movement of the impacting
surface. For the upper and lower saturations, although they occur at a fixed
position, they introduce dynamic behaviors due to the bouncing when hitting
the constraints.

The control input is the voltage applied to the motor, which is converted
up to a negligible time constant to the force F. The input signal for the
identification experiment should be chosen in a way that modes of interest
are sufficiently excited. To obtain the data for identification, the input signal
u(t) is chosen as:

u(t) =ar when te[kT,(k+1)T) (5.49)

where T' > 0 is fixed, and the amplitude aj, is a random variable, with uniform
distribution in the interval [a, b]. By properly choosing the boundaries of the
interval [a,b] only certain modes of the system are excited. For instance
ounly free and impact modes can be excited, without reaching upper and
lower saturations.



5.10. Experimental example 117

Physical insight into the operation of the setup facilitates the initializati-
on of the procedure. For instance, although the mode switch does not occur
at a fixed height of the head, with a degree of certainty data points below
certain height may be attributed to the free mode, and, analogously data
points above certain height may be attributed to the impact mode. Data
points that belong to saturations can also be distinguished. This a priori
information may be exploited in a way described in the section 5.9.1.

In the sequel we present two identification experiments: in the first ex-
periment only free and impact modes are excited; in the second experiment
free, impact and lower saturation modes are excited. Collected data sets con-
sist of 750 points, and are divided into two overlapping sets of 500 points:
one is used for identification, while the second is used for validation of the
identified models.

In all examples weighting function (5.36) is used. As a probability density
function of the noise we used p. ~ N(0,1).

5.10.1 Bi-modal identification

The data set used for identification is depicted in figure 5.7. Portions of
the data set that are used for initialization of free and impact mode are
marked with x and o respectively. Models with s = 2,ny = 2,np, = 1
are identified. Particle filtering algorithm used 300 particles. The process
of parameter estimation and classification took 59,3 seconds, on Pentium
4 2Ghz computer, with 512Mb of memory (no swapping to disc occurred).
Region estimation took around 3 minutes, using the CPLEX software, on
the same computer.

The final classification of data points is depicted in figure 5.8a. In figure
5.8b spectral radii of variance matrices pf2 at each step of the classification
are depicted. Simulation of the identified model, together with the modes
active during the simulation is depicted in figure 5.9.

From figure 5.8a we see that the identification procedure separated the
data points into two groups, that correspond to impact and free modes.
From figure 5.8b we see that the estimates of the parameters, described
by the spectral radii of the covariance matrices (5.5), improve during the
iterations of the algorithm.

From the comparison of the simulated response of the model and the
measured response we see that the identified model is satisfactory. However,
the system response in both impact and free modes is nonlinear, because
of the presence of dry friction. The effects of the dry friction are especial-
ly pronounced in the impact mode, and can be observed in figure 5.7, for
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Figure 5.7: Bi-modal identification. Data set used for identification a) po-
sition (portion marked with o (around time 200): data points used for the
initialization of the free mode; portion marked with x (around time 250):
data points used for initialization of impact mode b) input signal
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Figure 5.8: Bi-modal identification. a) Classified data points (o: free mode,
x : impact mode) b) pf'y (solid line: free mode; dashed line: impact mode)
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Figure 5.9: Bi-modal identification a) Simulation of the identified model
(solid line: simulated response, dashed line: measured response b) modes
active during the simulation

instance on a time interval around 300, where small changes in the input sig-
nal produce no change in the measured output, because the dry friction is in
stick phase. Since the impact and the free modes are described by one linear
model each, the effects of the dry friction can not be properly described in
the identified model. For instance, the discrepancy between the simulated
and measured response in figure 5.9 on the time interval around 250 is due
to this effect. While the dry friction is in the stick phase in the real system,
and no change in the position is visible, the identified model predicts a linear
step respounse.

5.10.2 Identification with lower saturation

The data set used for identification is depicted in figure 5.10. Portions of the
dataset that are used for initialization of free, impact and lower saturation
mode are marked with x, o and +, respectively. Particle filtering algorithm
used 300 particles. Models with s = 3,n, = 2,1, = 2 are identified. The
process of parameter estimation and classification took 79,6 seconds, on
Pentium 4 2Ghz computer, with 512Mb of memory (no swapping to disc
occurred). Region estimation took around 9 minutes, using the CPLEX
software, on the same computer.

Final classification of data points is depicted in figure 5.11a. In figure
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5.11b spectral radii of variance matrices pf273 at each step of the classification
are depicted. Simulation of the identified model, together with the modes
active during the simulation is depicted in figure 5.12. The parameters of
the identified model are given in the figure 5.13.
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Figure 5.10: Identification with saturations. Data set used for identification
a) position (portion marked with + (around time 100): data points used
for the initialization of the lower saturation mode; portion marked with o
(around time 300): data points used for initialization of impact mode; porti-
on marked with x (around time 360): data points used for the initialization
of free mode b) input signal

From figure 5.11a we see that data points are classified into three groups,
corresponding to the impact, free and saturation modes. From 5.11b we
see that the estimates of the parameters are improving during the iterations
of the algorithm. From figure 5.12 we see that the simulated response is
satisfactory, and that the modes active during the simulation correspond
well to intuitive classification of data. Response in the free mode does not
match the measured response precisely, while the responses in impact and
saturation modes are predicted remarkably well.

It is interesting to consider further the saturation mode. From the phy-
sical considerations we know that the position of the mounting head stays
close to the certain value saturation level ys, as long as the system is in sa-
turation. To gain some insight about the predicted saturation level ys from
the identified model, consider the "steady state"case where the system is in
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Figure 5.12: Identification with saturations. a) Simulation of the identified
model (solid line: simulated response, dashed line: measured response b)
modes active during the simulation
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Figure 5.13: Parameters of the identified model s = 3, ng, = 2, np = 2

saturation at time k — 2 and k — 1 (i.e. y(k —2) = y(k — 1) = y5) and the
value of the input is constant in the time instants £ — 2, k — 1 and such
that system stays in saturation also at the time instant k (i.e. y(k) = ys).
According to the ARX dynamics of mode 3, ys and v must verify the linear
constraints:

ys(1 — 031 — 032) = (033 + 03.4)u+ 035 and Hilys ys uwu]' < hz (5.50)

The minimal and maximal values that the output y can have under the
previously stated assumptions can be found by solving the linear programs
minys and max ys, respectively, in the unknowns ys and w subject to the
constraints (5.50). We found minys = 24.3903, maxy, = 24.5047. These
values very precisely correspond to the values that the measured output ta-
kes while in saturation. In Juloski et al. (2004b) the minimal and maximal
values of ys under the same assumptions were determined from the model
identified using the clustering procedure, and the following values were ob-
tained: minys = 23.2, maxys = 24.2. The computed minimal and maximal
values of y, identified using our procedure are much tighter than the values
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identified with the clustering procedure.

5.11 Conclusions

In this paper we have presented a novel method for the identification of
hybrid systems in PWARX form. The presented method facilitates to incor-
porate available a priori information on the system to be identified, but can
also be initialized and used as a black-box method.

Unknown model parameters are treated as random variables described
by their probability density functions (pdf). We define the optimality crite-
rion for the identified model as the total probability that the observed data
is generated by the model, and derive an algorithm that gives suboptimal
solutions with respect to the defined criterion. A modified MRLP procedure,
based on pricing functions is used for the estimation of the regions. Pricing
functions preserve the valuable information from the classification phase for
the region estimation. The applicability and the effectiveness of the proposed
algorithm is illustrated by an academic and experimental example.

The suboptimal approach taken in the derivation of the proposed algo-
rithm is to consider one data pair in each step of the algorithm (sequential
processing), and to determine the optimal classification of the considered
data pair, assuming that all previously considered data is processed opti-
mally. In other words, the proposed algorithm aims to find the best possible
local decision, with the purpose to approach the global optimum. In the
optimization literature this approach to optimization is known as the greedy
approach.

Another possible suboptimal approach for solving the classification pro-
blem would be to first classify all of available data on the basis of the availa-
ble a priori knowledge (batch-wise processing), and after that compute the
a posteriori parameter pdfs on the basis of all data points that are classi-
fied to the respective mode (or estimate the parameters in some other way,
e.g. using least squares, as in section 5.9.1). Conceptually speaking, this
approach would give good results if the a priori knowledge on the parameter
values is precise enough to enable good classification. But, if this is the case,
sequential processing is expected to perform equally well.

We use particle filtering approximations to represent and compute with
the general probability density functions. However in some special cases
(such as uniform or normal distributions for e and/or parameters) exact
computations may be possible. In such cases the specific properties of the
algorithm may be inferred from the explicit expressions of the update rule
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for determining a posteriori distributions in Algorithm 5.5.2. This will be
investigated in future research.

Further research will also focus on the investigation of properties of the
presented method: the influence of the quality of the available a priori know-
ledge, the convergence properties of the proposed algorithm and the relation
between obtained sub-optimal solutions and the optimal ones.
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Conclusions and recommendations

6.1 Summary of contributions 6.3 Identification of hybrid
6.2 Observer design for systems
hybrid systems 6.4 Outlook

In this thesis we investigated observer design and identification methods
for certain classes of hybrid systems. We will now give an overview of main
results and contributions and discuss open problems and possible directions
and starting points for future research.

6.1 Summary of contributions
The main contributions of the thesis are:

e An observer design method for Lur’e systems with multivalued map-
pings, including a novel theoretical analysis.

e A new observer design procedure for a class of bimodal piecewise affine
systems. The distinguishing feature of the designed observers is that
they do not require the information on the currently active dynamics.

e A novel (Bayesian) approach to identification of hybrid systems, that
facilitates the use of a priori knowledge.

e T'wo experimental case studies illustrate the observer designs, and show
the applicability of the presented theory.

e An experimental case study in hybrid identification, that demonstrates
the practical applicability of the clustering-based and Bayesian proce-
dures. This case study is used as a benchmark example in hybrid
identification (Niessen et al. (2004); Bemporad et al. (2004)).
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6.2 Observer design for hybrid systems

6.2.1 Detailed overview of contributions

In chapter 2 we considered Lur’e systems of the form:

= Ax — Gw + Bu (6.1)
w € o(Hx)
y=Cux,

where o is a maximal monotone set-valued mapping. We consider an abso-
lutely continuous function x a solution of a differential inclusion (6.1), if it
satisfies (6.3) almost everywhere. As we saw, several classes of hybrid sys-
tems can be described as an interconnection of linear dynamics in a feedback
configuration with a maximal monotone mapping, such as : linear relay sys-
tems, certain piecewise linear systems, linear complementarity systems and
electric circuits with switching elements.

We proposed two Luenberger-type observer structures. The most general
observer structure had the form:

&= (A—LC)i— G+ Ly + Bu (6.2)
W€ o((H — KC)i + Kvy)
§=Ci.

The considered class of systems and proposed observers can be non-smooth
and non-Lipschitz, and hence, even the existence and uniqueness of solutions
is not guaranteed.

The observer designs are based on rendering the linear part of the ob-
server error dynamics strictly positive real. This can be accomplished by
solving a suitably defined set of linear matrix inequalities.

Under the assumption that a solution of the system (6.1) exists (may not
be unique, given the initial condition), we proved that the designed observers
are well-posed (i.e. solution to the observer dynamics exists and is unique).
Well-posedness is crucial in ensuring the proper behavior of the numerical
implementation of the observer. We also proved that the estimated state
exponentially converges to the true state of the system. The results are
illustrated on an experimental case study with a drill-string setup.

In chapter 3 we considered a class of bimodal piecewise linear systems,
in both continuous and discrete time. The considered class of systems in
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continuous time has the form:

. ) A1z + Bu, ifH 'z <0 (6.3)
B Asx+Bu, ifH'z>0 '
y=Cu,
and we proposed Luenberger-type observers of the form:
. A+ Bu+Li(y-9), fH&+K(y—g) <0 (6.4)
Agi +Bu+ Loy —9), tH'2+K(y—9)>0 ‘

j = Ci.

The characteristic feature of the proposed observers is that the information
on the currently active dynamics of the observed system is not needed, while
several other approaches require that the mode is known (Alessandri and
Coletta (2001a,b, 2003); Tulia Bara et al. (2000); Schinkel et al. (2003)).

We derived a constructive procedure for determining the observer gains
L1, Lo and K, by solving a suitably defined system of linear matrix inequa-
lities. The proposed design procedure yields globally asymptotically stable
observers. However, it turned out that this approach is only feasible when
the system dynamics is continuous over the switching plane. In this case we
recovered the observer design procedure proposed by Arcak and Kokotovié¢
(2001) for Lur’e systems with slope-bounded nonlinearities, as a special case.

In the case of discontinuous vectorfield we obtained observers that have
bounded relative estimation error, with respect to the state of the original sy-
stem. We have successfully applied the developed theory on an experimental
case study of a piecewise linear beam with a one-sided spring.

6.2.2 Discussion and recommendations

Both observer designs are based on stabilization of the observation error
dynamics, by using quadratic Lyapunov functions. In certain cases the global
asymptotic stability of the observation error may still be achieved in this
way. However, for the considered class of bi-modal piecewise affine systems
when the dynamics is discontinuous our design procedure guarantees only
that the estimation error will be bounded, relative to the bound of the state
(i.e. relative to the bound of the disturbance term). It remains as an open
problem whether it is possible to achieve global asymptotic stability of the
observation error dynamics for this class of systems.

Explicit algebraic feasibility conditions for the design of observers of type
(6.2) can be obtained in the same way as the explicit feasibility conditions
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for observer designs presented in Arcak and Kokotovi¢ (2001). Explicit fea-
sibility conditions for the observer designs (6.4) are not known. As observer
designs from Arcak and Kokotovi¢ (2001) are a special case of the observer
(6.4) for the class (6.3) with continuous dynamics, feasibility conditions from
Arcak and Kokotovi¢ (2001) are a good starting point for investigating this
issue.

Our observer design procedure for a class (6.3) with discontinuous dy-
namics may be feasible even in the case when the underlying system is not
observable. However, the designed observer is not useable because the gua-
ranteed error bound is much larger than the bound of the state. This reflects
the fact that the state can not be uniquely determined from the measured
outputs. It is of interest to explore the connections between the observability
conditions presented in literature (Bemporad et al. (2000a); Collins and van
Schuppen (2004); Babaali and Egerstedt (2004); Vidal et al. (2003a)) and
the feasibility of the presented observer designs and achievable error bounds.

The problem of using the designed observers for output-based control
of the considered classes of systems is of great theoretical and practical in-
terest. As the designed observers achieve input-to state stability (ISS) of
the observer error with respect to the state of the observed system, a pos-
sible approach to output-based control design may be based on rendering
the controlled system observation error-to-state stable, by choosing the suit-
able controller. Results from Isidori (1999), Jiang et al. (1994) and Jiang
et al. (1996) that establish conditions for stability of the feedback intercon-
nection between two input-to state stable systems may lead to stabilizing
output-based controllers.

As demonstrated by experimental case studies the quality of the state
estimation depends on the quality of the model of the underlying plant. In
practical situations it is sometimes hard to get the accurate and simple en-
ough model of the system (e.g. the experimental setup with the piecewise
linear beam). It is desired that the observer performance deteriorates gra-
ciously with respect to the modelling error, i.e. the observer should be robust
w. r. t. the modelling error. To approach the robustness problem quantita-
tively, the modelling error can be treated as an additional external input to
the observed system, with an unknown structure, but with a bounded mag-
nitude. The modelling error then enters the observation error dynamics as
an additional external input with bounded magnitude. The observer design
can now be based on stabilizing the nominal observation error dynamics (i.e.
without the modelling error) and rendering the gain from the disturbance
to the estimation error small. Tradeoffs between this gain and convergence
speed may be necessary.
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6.3 Identification of hybrid systems

6.3.1 Detailed overview of contributions

In chapter 4 we presented an experimental case study in the identification
of the electronic component placement process in pick-and-place machines.
We used the clustering-based procedure (Ferrari-Trecate et al. (2001, 2003)),
and obtained models of the system in the PWARX form.

We demonstrated that the obtained PWARX models are able to capture
the relevant dynamics of the experimental setup, and have satisfactory one-
step-ahead prediction and simulation performance. Hence, we conclude that
the obtained models for instance, can be used for model predictive control
and verification.

During this experimental work we observed the need for supplying and
using available a priori knowledge in the identification procedure, in order to
gain more control over the identification process and to improve the identifi-
cation results. A priori knowledge may stem from physical insights into the
system or from previous identification experiments. The existing procedures
for the identification of PWARX systems (Ferrari-Trecate et al. (2003); Bem-
porad et al. (2000b, 2003); Vidal et al. (2003b)) are currently not properly
equipped for handling the a priori knowledge.

In chapter 5 we presented a novel procedure for the identification of
hybrid systems that facilitates the use of the available a priori knowledge on
the system to be identified. The unknown parameters were treated as random
variables and described with their probability density functions (pdfs) pe,.
By choosing the a priori parameter pdfs the user is now able to supply the
relevant a priori knowledge to the identification procedure.

The identification problem is posed as the problem of maximizing the
total probability that the observed data is generated by the identified mo-
del, given the a priori probability distributions of model parameters. This
optimization problem is a combinatorial optimization problem, and as the
number of the considered data points increases, finding the optimum quick-
ly becomes computationally intractable. Hence, we developed a suboptimal
optimization algorithm based on a greedy strategy, which considers one data
point at a time, and tries to make the best possible local decision, in order to
approach the global optimum. As analytical computation is not possible for
general noise and parameter probability density functions we used particle
filtering approximation to implement the proposed algorithm.

We also proposed a novel modification of the MRLP procedure, based
on pricing functions, for the estimation of the regions. Pricing functions
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preserve the valuable information from the classification phase for the re-
gion estimation. The operation of the proposed algorithm is illustrated by
an academic example. We successfully applied the proposed procedure for
the identification of the experimental example of the component placement
process in pick-and-place machines.

6.3.2 Discussion and recommendations

Having the ability to handle a priori knowledge about the physical system
is a major advantage of the presented identification procedure. By choosing
a priori parameter pdfs so as to correspond to the parameters of the mo-
des of the physical system the identification procedure may be forced to
identify a model that can be interpreted in physical terms. Secondly, the
approach presented here can be used to improve the previously identified
models with targeted identification experiments. Also, models of increasing
complexity can be built from a series of identification experiments, where in
each experiment only a subset of the modes of the physical system is excited
and identified. Further study into using the a priori knowledge in hybrid
identification is of great practical importance.

Another important research topic is the theoretical investigation of the
properties of the developed identification algorithm: the influence of the
quality of the available a priori knowledge, the convergence properties of the
proposed algorithm and the relations between the obtained sub-optimal solu-
tions and the optimal ones. Questions of model structure selection, identifia-
bility and persistence of excitation are also of great practical and theoretical
importance. Results from statistical learning theory (see Vapnik (1998) and
references therein) may provide a good starting point for this investigation.

The ideas developed in chapter 5 are not limited to the PWARX class
of hybrid models. Extension to other classes of hybrid systems is possible.
For example, in op den Buijs et al. (2004) the dynamics of the intercellular
free calcium in the intact isolated rat hart was considered. Following the
ideas of the Bayesian approach, we derived an identification algorithm and
successfully identified the unknown parameters in the switched nonlinear
model. Our approach is more robust with respect to the measurement noise
and computationally less demanding, compared to other approaches in the
physiological literature (van Riel and van der Vusse (2002); van Riel et al.
(2003)). This example already shows the potential for further generalizati-
ons. This is an important future research topic.
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6.4 Qutlook

The theoretical results presented in this thesis were illustrated by several
experimental examples. When applying the developed theory in practice,
the needs for further theoretical developments became immediately obvious.
For example, the experimental example of a drill string system spurred the
search for numerical schemes that can reliably provide the solution of the
differential inclusion, the experimental example of the piecewise linear beam
makes obvious the need for robustification of the developed observers in the
face of model uncertainty, and the experimental example of the component
placement process prompted the investigation of ways to incorporate and
handle the a priori knowledge in the hybrid identification.

Through these experimental case studies many new and interesting ideas
and insights were generated. As the field of hybrid systems is extremely
broad and diverse, and so far no successful unifying theory exists, the au-
thor believes that the advances in the study of hybrid systems in the near
future shall and will be driven primarily by practical needs and through
experimental and industrial applications.
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Samenvatting

Ontwerp van waarnemers en identificatie methoden
voor hybride systemen
- theorie en experimenten -

Technieken voor waarnemers en identificatie van enkele klassen van hy-
bride systemen worden geintroduceerd. Hybride systemen zijn niet-lineaire
dynamische systemen met een sterke interactie tussen discreet en tijdcontinu
gedrag. Voorbeelden van dit type systemen zijn te vinden op vele gebieden,
zoals embedded systemen, procesregeling, automatische verkeerssystemen,
elektrische circuits, mechanische, biomechanische, biologische en biomedi-
sche systemen en in de economie.

Wij presenteren een nieuwe ontwerpprocedure voor waarnemers voor een
klasse van niet-gladde dynamische systemen, namelijk systemen van het
Lur’e type met een monotone meerwaardige afbeelding van het terugkoppel-
pad. Voorbeelden zijn relaissystemen, lineaire complementariteitsystemen,
elektrische circuits met schakelende componenten en sommige stuksgewijze
affine systemen. We zullen bewijzen dat de voorgestelde waarnemers kunnen
worden berekend en een unieke oplossing hebben en dat de waarnemer de
toestand van het waargenomen systeem asymptotisch schat.

We presenteren ook een nieuwe ontwerpprocedure voor waarnemers voor
een klasse van stuksgewijze affine systemen met twee modes, zowel tijd con-
tinue als tijddiscreet. We presenteren Luenberg waarnemers en leiden vol-
doende voorwaarden af opdat de fout dynamica globaal, asymptotisch stabiel
is voor het geval dat de systeem dynamica continu is over het schakelvlak.
Wanneer de systeemdynamica discreet is leiden we condities af die garande-
ren dat de relatieve schattingsfout asymptotisch begrensd is ten opzichte van
de toestand van het waargenomen systeem. De theorie wordt geillustreerd
met enkele academische voorbeelden en een experimentele opstelling.

We presenteren een experimentele studie van de identificatie van het
plaatsingsproces in een pick-and-place machine. Eenzijdig contact en verza-
diging beschrijven het hybride karakter. Een verandering van mode kan niet
worden gemeten zodat identificatie algoritmen voor hybride systemen moe-
ten worden toegepast. PWARX modellen, die bestaan uit stuksgewijs ARX
modellen met een onderverdeling van de regressor ruimte, worden geidenti-
ficeerd met behulp van een clustering techniek. De gevonden modellen zijn
in staat de relevante dynamica van de experimentele opstelling te schatten.



Deze studie heeft veel inzicht opgeleverd in de eigenschappen van hybride
identificatie en beklemtoont de noodzaak om a-priori kennis te gebruiken in
de identificatieprocedure.

De noodzaak a-priori informatie te gebruiken heeft geleid tot een nieuwe
methode voor de identificatie van de klasse van hybride PWARX modellen.
De methode staat het gebruik van deze a a-priori informatie toe maar kan
ook zonder deze informatie als black-box methode worden toegepast. De
onbekende parameters worden als random variabelen met behulp van hun
kansdichtheidsfunctie beschreven. Identificatie wordt nu geformuleerd als
het maximaliseren van de waarschijnlijkheid dat de gemeten data afkom-
stig zijn van het geidentificeerde model. Een partikel filter is gebruikt voor
de numerieke implementatie. Een aangepaste versie van de op een meer-
categorieén robuust lineair programmeren (MRLP) gebaseerde classificatie
methode is gebruikt voor het schatten van de PWARX gebieden. De voorge-
stelde methode is toegepast voor de identificatie van de component plaatser
van een pick-and-place machine.



Pe3zunme

Xubpuaau cmcTreMm: MeTOAM 3a MPOjEeKTOBamke OIcepBepa u

HIeHTA(DUKATH]Y
- TeopHja M €KCIIEPUMEHTH -

Y oBoj aucepranuju hemo pazmarparu mnpobjeMe MpojeKTOBama OTCep-
BEpa u njeHTH(dUKAINM]e 3a HEKE KJace XUOPHIHHX CHCTEMA. XHOpHIHU
CUCTEMU Cy BEJINKA KJIACa HEJWHEAPHUX JUHAMUYKAX CUCTEMa KOju MMAjy
y3ajaMHO IOBE3aHY JUCKPETHY W KOHTHHYaJHY nuHaMuky. llpumepu xwu-
OpPUIHUX CHUCTEMA MOTY CE€ MpOoHAhW y MHOTUM JUCHUILIMHAMA, KAO IMITO Cy
yrpabenu (enrs. embedded) cucremu ynpaBibarba, yIPaB/bambe MIPOIECHMA,
ayTOMAaTCKU CUCTEMU 3a yIIpaBJbarhe caobpahajem, eleKTpuIHaA KOJIa, MEXa-
HUYKHA ¥ OMO-MEXaHWIKH CACTEMH, OMOJOMKHN 1 OMO-MEIUIIUHCKY CACTEMU
W €KOHOMMU])a.

IIpso hemo npejicTaBuTH HOBY KOHCTPYKTHUBHY IIPOIEIYPY 34 MPOjEKTO-
Bambe OMCEPBEPA 33 jeIHY KJIACy He-TJIATKUX JUHAMUYKHUX cucTteMa. Hamwme,
ped je o cucremuma Jlypje-tuiia ca MOHOTOHOM MAariOM Ca BHUIIE BPEIHOCTU
(emrn. monotone multivalued mapping) y noBpatuoj cripe3u. Kao npumepn
CUCTEMa y OBOj KJIACU, MOT'Yy C€ HABECTH PA3JIUIUTE KJIACE XUOPUIHUX CUCTE-
Ma, Kao IIITO Cy CUCTEMHU Ca peJIejuMa, JUHEAPHU KOMIIJIEMEHTAPHU CUCTEMU
(emrn. linear complementarity systems), eJIEKTPUYHA KOJIA CA IPEKUIAYKAM
€JIEMEHTHMA ¥ HEKHU J1e0-10-7e0 adunn (enrs. piece-wise affine) cucremm.
ITox mpeTrmocTaBKOM [a je OpPUTHHAJIHU CUCTEM J00po jgeduHucaH, JTOKa-
3aheMo Jla cy W mpojeKToBaHU orcepsBepu J00po gedunucanu (eurn. well
posed), OTHOCHO Jia TIOCTOjU jeJIMHCTBEHO PEIIeHe 3a JUHAMUKY OTCEPBEpa,
Kao ¥ JIa OICEPBEPH ACUMIITOTCKYA PEKOHCTPYHIIY BEKTOD CTAha OPUTHHAJI-
HOr cucTema. Pesynrare hemo miaycTpoBaTtu Ha ekcriepuMeTaanoMm ypehajy
KOju PeIpojiyKyje TOp3uoHe BuOpalnuje Koje HacTajy y cucreMumMa 3a Oyime-
we nadre, ycaeq Tpema.

3aruMm fieMO TIPEICTABUTH HOBY IMPOIEIYPY 32 MPOJEKTOBAIHE OICEPBE-
pa 3a Kjacy Jeo-mo-ae0 ahuHUX CUCTEMA Ca JIBA MOJA, ¥ KOHTUHYAJIHOM U
muckperHoMm Bpemeny. IIpojekToranu omceprepu cy Jlyernbepreporor Tuma.
Taxkolje hiemo n3BecTH TOBOJBHE YCIOBE 2 JUHAMUKA IPEIIKe OIcepBepa byme
TJI00AJTHO ACUMTITOTCKH CTAOWTHA, y CIyYajeBUMA KaJIia je JTUHAMUKA OPUTH-
HAJHOT CHCTEMa HEeMPEKWIHA TMPEKO TMPEKUIHE TOBPIMHHE. 3a CIy4aj Kajaa
JVUHAMWKA OPUTHHAJIHOT CUCTEMa, WMa TIPEKH e U3BENNEMO YCJIOBe KOju Ta-
PaHTyjy Ja je pelaTWBHA TPEITKA ONCEPBEPa ACUMIITOTCKYA OTPAHUYEHA, Y



OJHOCY Ha BEKTOP CTarhba OPUTHWHAJHOT cucTema. 3oxkeHa Teopuja je miry-
CTPOBaHA HA HEKOJIMKO aKaJIEMCKUX [IPUMEPA, KA0 U HA €KCIEPUMEHTATHOM
ypebajy ca caBUT/HUBOM T'DEJOM U JeTHOCTPAHOM OTIPYTOM.

Y spyrom geny jgucepranuje heMo NMPUKa3aTH €KCIIEPUMEHTAJIHHA IIPH-
Mep UAeHTUdUKAIM]je TTPOIECA TIOCTABIbAMHA €JIEKTPOHCKNX KOMIIOHEHTH HA
IITAMIAHY IUI0YY. JeJIHOCTpaHu KOHTAKTH U 3acuhiena Cy KapaKTepucTud-
HUA 3a XuUOpWHY JWHAMHUKY OBOT mporieca. lIpomena moma ce He MOKe
JIUPEKTHO MEDPUTH, T€ CTOTA MOPAMO TPUMEHWTH aJITOPUTAM 33 WJIEHTH-
dukanujy Koju Moxke na uAeHTHMUKYje U MOJOBE W NPABUJIA AKTUBAIHjE
(enrst. switching laws). Ilpmvenom asropmtma Ha 6a3w Tpymucama (eH-
1. clustering-based algorithm) nnentudukosahiemo Piece-Wise AutoRegres-
sive eXogenous (PWARX) mozene osor mporieca. PWARX mogen ce cacroju
on mekomuko ARX Mopena, u mojiesie mpocTopa perpecopa Ha PEruoHe TIIe
je ceaku on momenytux ARX mojena aktuBan. /loOujenum mopemma Mo-
2Ke ce OIUCATHU JIMHAMUKA €KCIIEPUMEHTAJHOr ypehaja Ha 3a/10Bo/baBajyhu
naunt. Kpo3 OBy ekcriepuMeHTaIHy CTYUjy mpuka3ahieMo HEKOJIMKO mpak-
TUYHAX CTBApU O WACHTHU(DUKANMjH XUOPHUIHUX cucTeMa, a mocebmo he ce
ucrahu morpeba 3a yKIbyunBameM a priori (MPETXOJHOT) 3HAHA Y TPOIEC
naeaTuduKanmje.

MortuBrcanu norpedboM 3a yKJ/by YUBaAmbEM a priori 3Hama, pa3suhemMo HO-
BY TIpOTIEyPY 3a uaeHTudmkanujy xubpuannx cucrema y PWARX dopwmu.
Nznoxenn meron onakmmasa yrnorpeby a priori 3Hama, ajad Ce MOXKE KO-
PUCTHUTH ¥ Kao Meros ipue Kyrtuje (eura. black-box). Hemozanrte mapame-
Tpe heMo TpeTupaTu Kao CJIy4dajHe BEeJIUYrHe, U ONMUCUBATUA X QyHKIHjama
ryctuHe pacnojene BepoBaTtHohe. Ilpobiem maenTudurkanuje Tako mocra-
je mpobieM MakcHMHU3alMje TOTAJHE BepoBaTHOhE J1a je maeHTuUKOBAHA
MOJIeJI TeHEepUCcao TOJIATKE KOju ce KopucTe 3a uieHtudukanujy. I[Ipore-
JIypa ce MOKe HyMEPUYKH MMILIEMEHTUPATHA yHOTPEOOM METO/e 4eCTUIHOr
dunrpupama (euri. particle filtering). 3a wpenTudUKaIM]y PETHOHA YIOT-
pebuhemo Mo uKOBaHy BapUjaHTy METO/e POOYCTHOT JIMHEAPHOT IIPOIPa-
Mupama ca Buile kareropuja (enrs. multi-category robust linear program-
ming (MRLP)) 3a knacudukanujy y3opaka. lIpemioxkena mporemypa hie
3aTuM OUTH TpUMEHEHA 33 HACHTU(DUKAIN]Y MPOIECA MTOCTABIHAHA €JIEK-
TPOHCKMX KOMIIOHEHTH HA TITAMIIAHY TIIOYY.
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