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A Bayesian Approach to Identification of
Hybrid Systems

A. Lj. Juloski, S. Weiland, and W. P. M. H. Heemels

Abstract—In this paper, we present a novel procedure for the
identification of hybrid systems in the class of piecewise ARX
systems. The presented method facilitates the use of available
a priori knowledge on the system to be identified, but can also
be used as a black-box method. We treat the unknown parame-
ters as random variables, described by their probability density
functions. The identification problem is posed as the problem
of computing the a posteriori probability density function of the
model parameters, and subsequently relaxed until a practically
implementable method is obtained. A particle filtering method is
used for a numerical implementation of the proposed procedure. A
modified version of the multicategory robust linear programming
classification procedure, which uses the information derived in the
previous steps of the identification algorithm, is used for estimating
the partition of the piecewise ARX map. The proposed procedure
is applied for the identification of a component placement process
in pick-and-place machines.

Index Terms—Hybrid systems, identification.

I. INTRODUCTION

I N THIS PAPER, we present a novel procedure for the
identification of hybrid systems in the class of Piecewise

AutoRegressive systems with eXogenous inputs (PWARX
systems). PWARX models are a generalization of the classical
ARX models, in the sense that the regressor space is partitioned
into a finite number of polyhedral regions, where in each re-
gion the input-output relation is defined through an ARX-type
model. PWARX models represent a broad class of hybrid
systems, and they form a subclass of piecewise affine (PWA)
models [1], which are under mild conditions equivalent to other
hybrid modeling formalisms, such as mixed logic dynamics
(MLD) systems [2] and linear complementarity (LC) models
[3]–[5]. In recent years, a number of methods for stability
analysis, optimal control design and verification have been
developed for the above mentioned classes. In this paper, we
will focus on the identification of hybrid systems in this class.

Based on the observed data the identification problem
amounts to determining the parameters of the ARX sub-models
together with the regions of the regressor space where each of
the models is valid. The main problem in the identification of
PWARX models is the problem of data classification—that is,
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the problem to assign each data point to one specific sub-model.
When the data has been classified, the parameters of the sub-
models can be determined, and the regions where each of
the submodels is valid can be estimated using techniques for
pattern classification [6].

The problem of the identification of PWA and PWARX
models has been considered before, and to date several ap-
proaches exist for the identification of such models (see [7]
and the references therein). As pointed out in [7], most of
the existing approaches assume that the system dynamics are
continuous over the switching surfaces, while the approaches
that allow for discontinuities started appearing only recently
[6], [8]–[10]. The identification procedure proposed in this
paper allows for discontinuous system dynamics as well.

In the clustering-based procedure [6], the data classification
and the parameter estimation steps are performed simultane-
ously by solving an optimal clustering problem in the parameter
space. In the greedy procedure [8] the data classification and the
parameter estimation steps are accomplished by partitioning an
infeasible set of linear inequalities into a minimal number of
feasible subsets. In the algebraic procedure [9], [10] the param-
eter estimation is accomplished by finding the roots of suitably
defined polynomials, while the data points are classified to the
submodel that gives the smallest prediction error. For a compar-
ison of the mentioned procedures and the procedure presented
in this paper, see [11], [12].

In this paper, we take a Bayesian approach to the problem of
identifying PWARX models. Specifically, we treat the unknown
parameters as random vectors, and describe them in terms of
their joint probability density function (pdf). The probability
density function contains the complete stochastic information
about the parameters, and different parameter estimates, such as
expected values or maximum a posteriori probability estimates,
can be easily inferred.

We assume that an a priori joint parameter pdf is given. After
the data has been classified the a posteriori joint parameter pdf
will be computed, using Bayes’ rule. Furthermore, we compute
the probability that the observed data is generated by the given
classification. One data classification is then considered better
than another if it has a higher probability. Following this line
of reasoning, the identification problem amounts to finding the
best data classification. This approach to model comparison is
similar to the Bayesian framework which was used in [13] for
neural networks.

The classification problem is a combinatorial optimization
problem, where all possible mode sequences have to be ex-
plored, in order to find an optimal solution. To reduce com-
plexity we resort to a sequential approach, where each data point
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is classified to the best mode based on the information available
so far. In the optimization literature, this strategy is known as
the greedy strategy, as it makes the best possible local decision
in order to approach the global optimum. In order to calculate
the resulting pdfs, we propose a method of particle approxima-
tions [14], [15].

Region estimations are based on a modification of the mul-
ticategory robust linear programming procedure (MRLP) [16].
The modification consists in introducing a suitably defined
pricing function, that assigns weights to the misclassification
of data points. An advantage of using pricing functions is that
more information is preserved from the classification phase.
This is illustrated by the example in Section VIII.

By choosing a prior parameter probability density function
the user can supply the available a priori knowledge to the iden-
tification procedure. This is a major advantage of the framework
presented here. Including a priori knowledge is much harder in
other identification methods, such as the ones described in [6],
[8], and [9].

The need for using a priori knowledge was observed in an
experimental case study of a component placement process in a
pick-and-place machine [17], [18]. The a priori knowledge may
stem from physical insight in the system or from previous iden-
tification experiments. Specifically, if parameters have a phys-
ical interpretation then the pdfs can be chosen so as to match the
physically meaningful values, and the procedure can be forced
to identify a model that can be interpreted in physical terms.
The approach presented here can also be used to improve the
previously identified models with targeted identification experi-
ments. Also, models of increasing complexity can be built from
a series of identification experiments, where in each experiment
only a subset of the modes of the physical system is excited and
identified. We believe that these are important advantages in any
practical identification problem. We also discuss some ways to
initialize the procedure without using a priori knowledge.

The parameter estimation of switching autoregressive proba-
bilistic models in a probabilistic setting was also examined in
time series analysis, in the econometrics literature (see, e.g.,
[19]–[21]). There, the switching law was modeled as a Markov
chain, defined by its transition probability matrix. Both the pa-
rameter values and the transition probabilities are subsequently
estimated by direct numerical optimization of a suitably defined
likelihood function. As this optimization problem is nonconvex
and possibly possesses local minima, good initial estimates are
needed in this procedure. As an alternative, the optimization
procedure can be repeated several times, starting from different
random initial conditions. Another approach to find parame-
ters values that (locally) maximize the likelihood function when
unobserved states are present (e.g., unmeasured modes of the
system) is the expectation-maximization type algorithms [22].
These approaches are, in principle, also applicable to param-
eter estimation of PWARX models. The key differences to our
approach are that, first, we consider models with deterministic
switching, and second, the optimization criterion is different,
which has consequences in theoretical and numerical aspects.
Specifically, our approach allows for including a priori infor-
mation, decoupling of mode and parameter estimation, and for
sequential data processing.

The remainder of the paper is organized as follows. Prelim-
inaries are given in Section II. The class of PWARX models
is introduced in Section III. The identification problem is for-
mally stated in Section IV. In Sections V and VI, we derive the
suboptimal identification algorithm, and the particle filtering ap-
proach, as a way to implement it. In Section VII, we present the
modified MRLP procedure. In Section VIII, we give an example
that illustrates the presented ideas. In Section IX, we discuss
several ways to obtain the a priori probability density functions
of the model parameters, so as to initialize the procedure. The
connection with the clustering procedure, and the improvement
that our method can provide are explained in Section IX-B. An
experimental example is given in Section X. Conclusions are
given in Section XI.

II. PRELIMINARIES

Let a vector of random variables be described
by a probability density function (pdf) . If the pdf takes
the form

(1)

where is the Dirac delta distribution, then , with prob-
ability one, which will mean that the value of is known.

Different estimates of can be easily obtained from the prob-
ability density function. For instance, the expectation of is
given as

(2)

The covariance matrix , which is a measure of the quality of
the estimate , is defined as

(3)

We define the dispersion of the estimate as the spectral radius
of the covariance matrix

(4)

where denotes the maximal eigenvalue. Note that
if and only if (1) holds. Dispersion is useful for the

comparison of different estimates of .

III. MODEL CLASS

We consider piecewise autoregressive exogenous (PWARX)
models of the form

(5)

where is a vector of regressors defined as

(6)
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and

if

...
...

if

(8)

is a piecewise affine map where denotes the scalar real valued
measured output and the scalar real valued input signal.

The parameters and in (6) and the number of modes
are assumed to be known. Therefore, , where

. The sets are assumed to be bounded convex
polyhedra, described by

(9)

where is a real valued matrix of compatible dimensions,
is a real valued vector, and the inequality holds element-wise.
The set is assumed to be a bounded polyhedron,
and we assume that is a partition of (in the sense that
the interiors of and do not intersect for )1

Assumption III.1: The realization of the additive noise in
the model (5) is a sequence of independent, identically dis-
tributed random values, with an a priori known probability den-
sity function .

Let a data sequence for
be given. We define the mode function

that assigns mode to the
data pair as

whenever (10)

For a given data set the partitioning
of induces the mode function , as given by (10) (see also
footnote 1).

Conversely, given the mode function , the problem to find
regions such that whenever we have that

is the region estimation problem. The region es-
timation problem can be solved using standard techniques for
data classification [6]. The problem of region estimation there-
fore can, in principle, be replaced by the problem of estimating
the mode for each data pair . We will refer to
the latter problem as the classification problem. These problems
will be formalized in the next section.

1Since regions X are closed sets by definition (9) it may happen that X and
X share a common facet. Technically, the point x, lying on the shared facet
would belong to bothX andX . We neglect this issue, as it has no consequence
on the presented procedure.

IV. PROBLEM STATEMENT

The identification problem consists of estimating the un-
known parameter vectors , for , and the regions

, described by (9), given the data pairs ,
for . With we will denote a
vector , where the operator stacks
its operands into a column vector. With , we will denote
the space of all possible mode sequences. The identification
problem can then be posed as follows.

Problem IV.1 (Full Identification Problem): Given the joint a
priori probability density function of the parameters and of the
partition and the data set , deter-
mine the conditional joint pdf of the parameters and the partition

(11)

The pdf (11) contains the complete statistical information about
the parameters and the partition that can be inferred from the
observed data and prior information. In conjunction with the
system definition (5), the pdf (11) can be used to predict the
output value given the regressor in the sense that we
can obtain the probability density function . In that sense,
(5) and (11) form a complete model of the system. Point esti-
mates of the parameters and the partition can be obtained as the
maximum likelihood estimates, for instance

(12)

where the maximum is taken over all possible parameters and
partitions satisfying the assumptions on the model (5). Another
possibility is to compute the expectations of parameters and the
partition.

Problem IV.1 can, at least in principle, be solved using Bayes’
rule as in (7) provided that a suitable probability space has been
defined for the random variable .

However, as (12) involves joint optimization over parameters
and partitions, which is a hard nonconvex optimization problem
with many local maxima, computing (7) and (12) is numeri-
cally infeasible. Therefore, we will instead consider a problem
in which the computation of the joint probability density func-
tion of the parameters and the partition will be replaced by
the joint probability density function of the parameters and the
mode function.

Problem IV.2 (Mode and Parameter Identification
Problem): Given the joint a priori probability density func-
tion of the parameters and the mode and the data set

(7)
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, determine the conditional joint pdf of the
parameters and the mode

(13)

Point estimates of the parameters and the mode can be obtained
from (13) as:

(14)

where the maximum is taken over all possible parameter values
and mode sequences . Once the optimal parameters and

the mode function are computed, the partition
can be subsequently reconstructed as discussed in Section III.
The pdf (13) can, in principle, be computed using Bayes’ rule
in a similar way to (7)

(15)

Note that defining the a probability space for the random vari-
able is straightforward.

Computing (15) and (14) is a combinatorial problem, where
all possible mode sequences have to be examined, in order to
find the optimal mode sequence and the corresponding param-
eter values. As such, it is computationally infeasible for larger
data sets. Therefore, we need to further relax the considered
problem. We make the following assumption.

Assumption IV.3: Assume that and are a priori indepen-
dent random variables. In particular, this means that

. Furthermore, assume that a priori all mode sequences are
equally probable, i.e., is constant for all .

We will further relax Problem IV.2 by separating the mode
and parameter estimation.

Problem IV.4 (Classification Problem): Given the data and
the a priori pdf for the parameters determine

(16)

and the point estimate of

(17)

where the maximum is taken over all possible sequences
.
Under the Assumption IV.3, the mode probability density

function can be computed using
Bayes’ rule as

(18)

where

(19)

and

(20)

Remark IV.5: Consider the case when all values of all pa-
rameters in (5) are known exactly, before the identification
commences. Denote the known values of parameters with .
The joint a priori parameter probability density function then
takes the form

and for a given mode function , the integral (19) becomes

Assume, now that , for some . Denote with
the mode function that optimizes Problem IV.4. Choose now

any such that . It is easy to see that the function

if
otherwise

is also an optimal solution of the Problem IV.4, as it attains the
the same value of the optimality criterion. In other words, some
or all of data points that are generated by the mode can be as-
signed to the mode and vice versa, while the classification is
considered equally good. This may cause problems when recon-
structing the regions on the basis of the estimated mode func-
tion.

The methodology that we will pursue in this paper amounts to
first finding the optimal mode sequence by solving the classi-
fication problem, and using this mode sequence to solve the pa-
rameter estimation problem. The parameter estimation problem
can be posed as follows.

Problem IV.6 (Parameter Estimation): Given the a priori
joint parameter pdf and the mode function , compute

(21)

Point estimates of the parameter values can be obtained as max-
imum likelihood estimates, or as expected values

(22)
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Under the Assumption IV.3 we can solve Problem IV.6 using
Bayes’ rule as

(23)

Once the joint parameter pdf (23) is computed (22) can be
easily solved numerically. In the sequel, we will focus on the
Problem IV.4.

V. SUBOPTIMAL IDENTIFICATION ALGORITHM

The optimization Problem IV.4 is a combinatorial opti-
mization problem, where all possible mode sequences have to
be explored in order to obtain an optimal solution. For large
data sets such a search quickly becomes computationally in-
tractable. Hence, we have to resort to suboptimal minimization
algorithms.

We will consider the data points sequentially, and aim to find
the best possible classification of the data pair , with
data points up to already classified. The described opti-
mization strategy is known in the optimization literature as the
greedy strategy—the algorithm tries to make the best possible
local decision, in order to approach the global optimum. Let

denote the pdf of the parameter after steps of the
algorithm. Let denote the a priori parameter pdf, i.e.,

.
Assumption V.1: Assume that the a priori joint pdf of

takes the form

(24)

That is, for all parameters and are assumed to be
mutually independent at step 0.

Assume now that the parameters are independent at time step
, i.e.,

We consider the following problem.
Problem V.2: For find the most likely mode

of the data pair , given the a priori joint pa-
rameter pdf at step , i.e.,

(25)

where

(26)

and

(27)

Problem V.2 is solved in a straightforward way, by computing
(26) for and choosing , according to (25). If

the a posteriori joint parameter pdf is computed using
Bayes’ rule as

(28)

where

(29)

Hence, if the parameters were independent at step , from
(28) it follows that after classifying the th data point they will
remain independent. From Assumption V.1, it follows that if the
parameters were initially independent, they will remain inde-
pendent throughout the parameter estimation procedure. The a
posteriori joint parameter pdf is obtained by updating the pdf of
the parameter that generated the data pair, while the pdf of the
other parameters remains unchanged. Furthermore, if we define
the support of as

then from (29) it immediately follows that

That is, with every newly available data sample the support of
the pdf of the parameter vector of the classified generating mode
is nonexpanding.

Now, we are ready to formally state the algorithm for classi-
fication and parameter estimation.

Algorithm V.3 (Classification and Parameter Estimation):

• Step 1: Obtain the a priori probability density func-
tions for ; set .

• Step 2: Assign the data pair to the mode
with the highest likelihood using (25).

• Step 3: Compute the a posteriori pdf of the parameter
using (29). For all , set

.
• Step 4: ; goto Step 2 until
The schematic representation of the Algorithm V.3, for the

case is given in Fig. 1.
The Algorithm V.3 is derived by considering one data point at

a time. It is possible, along the same lines, to derive a family of
suboptimal algorithms, that would classify data points in
each step. Note that, as increases the complexity of the com-
binatorial optimization problem that has to be solved in each
step increases exponentially. In particular, for , the opti-
mization problem becomes the classification Problem IV.4.

VI. PARTICLE FILTERING APPROXIMATION

Analytical solutions to (25) and (29) are intractable for gen-
eral noise and parameter probability density functions. To turn
Algorithm V.3 into a feasible computational scheme, we pro-
pose the particle filtering approach [14]. Here, we present only
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Fig. 1. Schematic representation of algorithm operation for two modes.

the main ideas of this approach. For a detailed exposition on im-
plementing, tuning and convergence results for particle filters,
see, e.g., [14], [15], [23], and the references therein.

The underlying idea of particle filtering methods is to approx-
imate the pdf defined over a dense set with a pdf
supported in a finite number of points
called particles. The pdf is then approximated as

(30)

where is a weight associated with the particle and
.

Algorithms that sample particles according to any given
probability density function can be found in the literature (e.g.,
Metropolis–Hastings algorithm, Gibbs sampler, etc. [24]).

Estimates (2) and (3) can be obtained from (30) in a straight-
forward way. Combining (30) with (26) we obtain the following
approximation for (26):

(31)

To compute the recursion (29) we use a modification of the
sample importance resampling (SIR) particle filtering algorithm
[14]. This results in the following computational scheme.

Algorithm VI.1 (SIR Particle Filtering):

• FOR TO
— diversify particles: , where

— compute weights using
(27)
END FOR

• normalize:

for
• draw samples from distribution (30) to obtain the

new set of particles , where .

Algorithms for sampling distributions of the type (30) are stan-
dard [see, for instance, [14, Alg. 2]]. Since we are using the
SIR algorithm for estimating constant parameters it is neces-
sary to diversify the particles [25]. For this purpose, we add the
normally distributed random term to each particle in the first
step of the Algorithm VI.1. The variance matrix is the tuning
parameter of the algorithm. This method of particle diversifica-
tion is simple, but increases the variance of the estimates. Other
particle filtering algorithms with better statistical properties but
higher computational load, can be found in the literature (see,
for instance, [25]).

VII. PARTITION ESTIMATION

Once the entire data set has been passed through the Algo-
rithm V.3, the final pdfs of the parameters are avail-
able and all data points can be attributed to the mode with the
highest likelihood, using (25). In other words, the mode func-
tion is re-estimated, using , in order to obtain
the most likely . After this classification, standard techniques
from pattern recognition can be applied to determine the regions

(see, e.g., [16]).
However, the method of maximum likelihood classification

does not necessarily classify the data points to the correct mode.
This problem is especially important when the hyperplanes de-
fined by two parameter vectors and intersect over the re-
gion . Then, data points near this intersection may be wrongly
attributed to the mode . This issue will be illustrated in the ex-
ample in Section VIII. Wrongly attributed data points may in
turn lead to errors in determining the separating hyperplanes. In
this section, we propose a modified version of the MRLP algo-
rithm from [16] that aims to alleviate this problem.

Define the set as

(32)

where is computed as in (25), with . Hence,
consists of all data points that are attributed to the mode on the
basis of the a posteriori pdf .

Definition VII.1 [16]: The sets are piece-wise-lin-
early separable if there exist for
such that

(33)

for all and all . Here, denotes the standard
inner product in .

Given the mode of the data point can be estimated as

(34)

and the hyperplane that separates regions and is given by

(35)

If the sets are piecewise-linearly separable then the matrices
defining the region as in (9) can be formed as

(36)
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where , and the operator evaluates
its argument for all admissible values of index and stacks the
results into a column vector. Note that only simply connected
and convex regions with up to vertices can be described
in this way.

If the sets are not piecewise-linearly separable some data
points are going to violate (33). If the data point is
classified to the region (i.e., if ) the violation

can be defined as

(37)

where . Standard MRLP algorithm finds
by minimizing the sum of averaged violations (37), through a
single linear program [16].

In our case, we will weight the violations (37) according
to the following principle: If the probability that the regressor

belongs to mode is approximately equal to the proba-
bility that it belongs to mode , then the corresponding violation

, if positive, should not be penalized highly. We define the
weighting function as

(38)

Since for any

the weight (38) is always nonnegative, and is equal to zero when
the two likelihoods are exactly equal.

The weighting function (38) takes into account only the rela-
tive size of the mode likelihoods. If outliers are present in the
data set, mode likelihoods may be negligible, but their ratio,
formed as in (38), may still be significant. Another possible
choice of the weighting function , which uses the absolute
sizes of mode likelihoods is

(39)

The optimization problem can be stated as

(40)

Problem (40) can be further cast as a linear program, in a same
way as in [16].

By introducing pricing functions more information is pre-
served from the classification phase to the region estimation
phase. This is an advantage over the region estimation proce-
dures presented in [8] and [9]. We will illustrate this issue with
an academic example in the next section.

Fig. 2. Data set used for identification together with the true model.

VIII. EXAMPLE

Let the data be generated by a system of
type (5) where

if

if
(41)

and is a sequence of normally distributed random numbers,
with zero mean and variance . The data set of

data points together with the true model is shown in Fig. 2.

A priori pdfs are chosen as
, where denotes the uni-

form distribution. A particle approximation to this pdf, with
particles for each pdf, is given in Fig. 3(left).

The particle filtering Algorithm VI.1 is applied, with
and the final particle distribu-

tion at step is shown in Fig. 3(right). The estimates of
the parameter vectors are

(42)

Data points are classified using (25), and the results are de-
picted in Fig. 4(a). Several data points that belong to mode 1
are attributed to mode 2. These points are near the virtual in-
tersection of the two planes defined by the parameter vectors.
In Fig. 4(b), the weighting functions (see (38)) and for
misclassification of points are shown. The weight for misclas-
sification of wrongly attributed points is small in comparison
to the weight for misclassification of the correctly attributed
points. The region for mode 1 is estimated as while
the region corresponding to mode 2 is estimated as .
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Fig. 3. Left: Particle approximation of the initial pdfs of the parameters � ; � (+: particles of p ; �: particles of p ). Right: Final particle approximation of
pdf of the parameters � (+); � (�).

Fig. 4. (a) Data points attributed to the different modes. (b) Pricing functions
� (D ) and � (D ) for the wrong classification.

The identified model, together with the true model and the data
set is depicted in Fig. 5.

IX. INITIALIZATION

In this section, we will discuss in more detail three dif-
ferent ways to obtain a priori probability density functions

.

A. Initialization Using Mode Knowledge

If data pairs
are attributed to the mode , the least squares estimate of the
value of the parameter vector may be obtained as

(43)

Fig. 5. True model (solid), the identified model (dashed) and the data set used
for identification.

The empirical covariance matrix of can be computed as [26]

(44)

where denotes a sum of squared residuals. This informa-
tion is sufficient to initialize the parameter as a normally dis-
tributed random variable

(45)

Samples from the normal distribution can be easily obtained
with some of the mentioned algorithms for sampling from gen-
eral multidimensional distributions (or using built-in MATLAB
functions).

B. Initialization Via Clustering Procedure

In this section, we will show that our procedure can be ini-
tialized using the ideas from the clustering procedure [6]. For
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the sake of completeness we discuss the relevant steps from the
clustering procedure briefly. For a detailed exposition, see [6].

For each regressor in the data set, we collect
nearest regressors, and form a local data set (LD) . The ra-
tionale behind this procedure is that regressors that are close in
the regressor space are likely to belong to the same partition; we
distinguish two types of LDs—pure LDs—when all the regres-
sors collected in one LD indeed belong to the same partition, and
mixed LDs, when they do not belong to the same partition. For
the procedure to work properly the ratio between the number of
pure and mixed LDs should be high.

From each LD we can obtain an estimate , using (43), and
the variance of the estimate , using (44). To each estimate
the following confidence measure is assigned:

(46)

Ideally, pure LDs will produce good estimates, with high values
of , while for mixed LDs will be low. Estimates obtained
from pure LDs are expected to form groups (clusters) in the pa-
rameter space, while estimates from mixed LDs will be isolated
points.

The next step is to form clusters in the parameter
space, by solving the following optimization problem:

(47)

The clustering functional is given as

(48)

where is the center of the cluster . The optimization
problem (47) is computationally hard, but there exist efficient
algorithms that provide suboptimal solutions, e.g., the -means
algorithm [6]. The weight in (48) is used to minimize the
influence of that correspond to mixed LDs, which in turn
may lead to wrong assignment of those parameter vectors.

Points attributed to the th cluster, , together with the
associated weights can be used to form a probability density
function of type (30)

(49)

where is a normalizing constant

(50)

In the clustering procedure, after the clustering step, the bi-
jective relation

is used to classify data pairs to modes. Data pairs
that correspond to mixed LDs may be wrongly classified. In
our procedure, mixed LDs yield a point with low weight in the
discrete approximation of the parameter pdf. This point will be

Fig. 6. Left: (a) Photo of the experimental setup. Right: (b) Schematic
representation of the experimental setup.

discarded in the SIR particle filtering Algorithm VI.1, and will
have no adverse consequences on the classification of the cor-
responding data pair.

C. Brute Force Initialization

Parameters can be estimated in an optimal way as the so-
lution of the following problem:

(51)

When the sequence is known problem (51) is
an ordinary least squares problem. In our case, since the mode
sequence is not known, problem (51) is a combinatorial opti-
mization problem, where all possible mode sequences must be
explored, which can be computationally intractable for larger
values of .

In order to obtain a rough estimate of the parameter values a
small enough subset of the complete data set

can be chosen, and a computationally tractable problem
of type (51) can be formulated. The solution of this problem
gives estimates of the parameter values , together with the
variances of the estimates . This information is sufficient to
describe the parameters as .

X. EXPERIMENTAL EXAMPLE

In order to demonstrate the proposed identification procedure
we applied it to the data collected from an experimental setup
made around the mounting head from a pick-and-place machine.
The purpose of the setup is to study the component placement
process on a printed circuit board (PCB) in the controlled condi-
tions. The same experimental setup was previously successfully
identified using the clustering procedure [6], and the greedy pro-
cedure [12]. The experimental setup and the identification re-
sults with the clustering procedure are described in more detail
in [17] and [18].

A photo and the schematic representation of the experimental
setup are given in Fig. 6. The setup consists of the mounting
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head, from an actual pick-and-place machine, which is fixed
above the impacting surface [the small disc in Fig. 6(a)]. The im-
pacting surface is in contact with the ground via the spring [the
spring in Fig. 6(b)], within the outer tube in Fig. 6(a). The me-
chanical construction under the impacting surface is such that
only the movement on the vertical axis is enabled [inner tube,
which can slide inside the outer tube in Fig. 6(a)]. This construc-
tion exhibits linear and dry friction phenomena, represented in
Fig. 6(b) by the damper and the block , respectively. The
chosen design of the impacting surface simulates the elasticity
properties of the PCB as well as hard mechanical constraints
due to saturations. It also introduces some side effects, such as
dry friction.

The mounting head contains: A vacuum pipette which can
move on the vertical axis [the mass in Fig. 6(b)] and which is
connected via the spring to the casing [the spring in Fig. 6(b)];
an electrical motor which enables the movement [represented
by force in Fig. 6(b)]; and a position sensor, which measures
the position of the pipette, relative to the upper retracted posi-
tion. The position axis is pointed downwards, i.e., the value of
the position increases when the pipette moves downwards. The
motion of the pipette is also subject to friction phenomena [the
damper and the dry friction block in Fig. 6(b)].

The dynamics of the experimental setup exhibits, in a first
approximation, four different modes of operation.

• Upper saturation: The pipette is in the upper retracted
position (i.e., cannot move upwards, due to the phys-
ical constraints).

• Free mode: The pipette is not in contact with the im-
pacting surface, but is not in the upper saturation.

• Impact mode: The pipette is in contact with the im-
pacting surface, but is not in lower saturation.

• Lower saturation: The pipette is in the lower ex-
tended position, (i.e., cannot move downwards due to
the physical constraints).

We stress that the switch between the impact and free modes
does not occur at a constant head position, because of the move-
ment of the impacting surface. For the upper and lower satura-
tions, although they occur at a fixed position, they introduce dy-
namic behaviors due to bouncing when hitting the constraints.

The control input is the voltage applied to the motor, which
is converted up to a negligible time constant to the force . The
input signal for the identification experiment should be chosen
in a way that modes of interest are sufficiently excited. To obtain
the data for identification, the input signal is chosen as

(52)

where is fixed, and the amplitude is a random vari-
able, with uniform distribution in the interval . By prop-
erly choosing the boundaries of the interval only certain
modes of the system are excited. For instance, one can choose
to excite free and impact modes, without reaching upper and
lower saturations. Physical insight into the operation of the setup
facilitates the initialization of the procedure. For instance, al-
though the mode switch does not occur at a fixed height of the
head, with a degree of certainty data points below certain height
may be attributed to the free mode, and, analogously data points

TABLE I
COMPUTATION TIMES FOR BI-MODAL IDENTIFICATION AND IDENTIFICATION

WITH LOWER SATURATION

Fig. 7. Bimodal identification. The data set used for identification (a) position
(points marked with �: data points used for the initialization of the free mode;
points marked with �: data points used for initialization of impact mode (b)
input signal

above certain height may be attributed to the impact mode. Data
points that belong to saturations can also be distinguished. This
a priori information may be exploited in a way described in Sec-
tion IX-A.

In the sequel, we present two identification experiments: in
the first experiment only free and impact modes are excited; in
the second experiment free, impact and lower saturation modes
are excited. The collected data sets consist of 750 points, and
are divided into two overlapping sets of 500 points: One is used
for identification, while the second is used for validation of the
identified models.

In all examples, the weighting function (39) is used. As a pdf
of the noise we used .

The parameter estimation, the final assignment and the com-
putation of pricing functions were done in Matlab, on a Pentium
4, 2-Ghz computer with 512 Mb of memory under Windows XP.
The region estimation (i.e., solving the linear program resulting
from MRLP procedure) was done using the CPLEX software on
a dual Pentium Xeon 2.8 Ghz computer, with 4 GB of memory
under Linux. This computer was simultaneously used by several
other users. The computation times are given in Table I.

A. Bimodal Identification

The data set used for identification is depicted in Fig. 7. Por-
tions of the data set that are used for initialization of free and
impact mode are marked with and , respectively. Models
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Fig. 8. Bimodal identification. (a) Classified data points (�: free mode, �:
impact mode). (b) � (solid line: free mode; dashed line: impact mode).

Fig. 9. Bimodal identification. (a) Simulation of the identified model (solid
line: simulated response, dashed line: measured response. (b) Modes active
during the simulation.

with are identified. The computation
times are given in Table I.

The final classification of the data points is depicted in
Fig. 8(a). In Fig. 8(b), the spectral radii of the variance matrices

at each step of the classification are depicted. Simulation
of the identified model using the validation data, together with
the modes active during the simulation is depicted in Fig. 9.

From Fig. 8(a), we see that the identification procedure sepa-
rated the data points into two groups, that correspond to impact
and free modes. From Fig. 8(b), we see that the estimates of the
parameters, described by the spectral radii of the covariance ma-
trices (4), improve during the iterations of the algorithm.

From the comparison of the simulated response of the model
and the measured response we see that the identified model is
satisfactory. However, the system response in both impact and

Fig. 10. Identification with saturations. Data set used for identification (a)
position (points marked with +: data points used for the initialization of the
lower saturation mode; points marked with �: data points used for initialization
of impact mode; points marked with�: data points used for the initialization of
free mode (b) input signal.

free modes is nonlinear, because of the presence of dry friction.
The effects of the dry friction are especially pronounced in the
impact mode, and can be observed in Fig. 7, for instance on
a time interval around 300, where small changes in the input
signal produce no change in the measured output, because the
dry friction is in stick phase. Since the impact and the free modes
are described by one linear model each, the effects of the dry
friction can not be properly described in the identified model.
For instance, the discrepancy between the simulated and mea-
sured response in Fig. 9 on the time interval around 250 is due
to this effect. While the dry friction is in the stick phase in the
real system, and no change in the position is visible, the identi-
fied model predicts a linear step response.

B. Identification With Lower Saturation

The data set used for identification is depicted in Fig. 10. Por-
tions of the dataset that are used for initialization of free, impact
and saturation mode are marked with , and , respectively.
Models with are identified. The compu-
tation times are given in Table I.

Final classification of data points is depicted in Fig. 11(a). In
Fig. 11(b), spectral radii of variance matrices at each step
of the classification are depicted. Simulation of the identified
model, together with the modes active during the simulation is
depicted in Fig. 12. The parameters of the identified model are
given in the Table II.

From Fig. 11(a), we see that data points are classified into
three groups, corresponding to the impact, free, and saturation
modes. From 11(b), we see that the estimates of the parame-
ters are improving during the iterations of the algorithm. From
Fig. 12, we see that the simulated response is satisfactory, and
that the modes active during the simulation correspond well to
intuitive classification of data. The response in the free mode
does not match the measured response precisely, while the re-
sponses in impact and saturation modes are predicted remark-
ably well.
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Fig. 11. Identification with saturations. (a) Classified data points (�: free
mode, �: impact mode; + lower saturation). (b) � (solid line: free mode;
dashed line: impact mode; dotted line: lower saturation).

Fig. 12. Identification with saturations. (a) Simulation of the identified model
(solid line: simulated response, dashed line: measured response. (b) Modes
active during the simulation.

It is interesting to consider further the saturation mode. From
the physical considerations we know that the position of the
mounting head stays close to the certain value saturation level

, as long as the system is in saturation. To gain some insight
about the predicted saturation level from the identified model,
consider the “steady state” situation in which the system is in
saturation at time and (i.e.,

) and the value of the input is constant in the time instants
and such that system stays in saturation also at the

time instant (i.e., ). According to the ARX dynamics
of mode 3, and must satisfy the linear constraints

and (53)

The minimal and maximal values that the output can have
under the previously stated assumptions can be found by
solving the linear programs and , respectively,
in the unknowns and subject to the constraints (53). We
found . These values
very precisely correspond to the values that the measured output
takes while in saturation. In [18], the minimal and maximal
values of under the same assumptions were determined from
the model identified using the clustering procedure, and the fol-
lowing values were obtained: .
The computed minimal and maximal values of identified
using the Bayesian procedure are tighter than the values identi-
fied with the clustering procedure.

XI. CONCLUSION

In this paper, we have presented a novel method for the iden-
tification of hybrid systems in PWARX form. The presented
method facilitates incorporation of the available a priori infor-
mation on the system to be identified, but can also be initialized
and used as a black-box method.

Unknown model parameters are treated as random variables
described by their pdfs. We pose the identification problem as
the problem of computing the a posteriori pdf of the model pa-
rameters given the observed data set and the prior information.
The identification problem is subsequently relaxed, until the
procedure which can be practically implemented is obtained. A
modified MRLP procedure, based on pricing functions is used
for the estimation of the regions. Pricing functions preserve the
valuable information from the classification phase for the region
estimation. The applicability and the effectiveness of the pro-
posed algorithm is illustrated by an academic and experimental
example.

The suboptimal approach taken in the derivation of the pro-
posed algorithm is to consider one data pair in each step of the
algorithm (sequential processing), and to determine the optimal
classification of the considered data pair, assuming that all pre-
viously considered data is processed optimally. In other words,
the proposed algorithm aims to find the best possible local de-
cision, with the purpose to approach the global optimum. In the
optimization literature this approach to optimization is known
as the greedy approach. Sequential data processing brings about
several possibilities. First, the parameter estimation part of the
algorithm can be implemented in a recursive fashion, where the
pdfs of the parameters are updated as the new data measure-
ments become available. New and efficient algorithms for data
classification that allow sequential data processing started ap-
pearing recently [27], [28]. However, still the complete previous
measurement history must be memorized. Another possibility
is incremental identification. As noticed in [18] in practice it
is frequently possible to excite only some of the modes of the
physical system. The basic idea would be to reconstruct first the
modes visible in the simpler experiments, and then enhance the
model with additional behaviors appearing in richer data sets, by
using the pdfs of the already identified modes as priors. Again,
data classification algorithms that allow for sequential data pro-
cessing are necessary. Both topics will be the subject of the fu-
ture research.
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TABLE II
PARAMETERS OF THE IDENTIFIED MODEL s = 3; n = 2; n = 2

Another possible suboptimal approach for solving the classi-
fication problem would be to first classify all of the available
data on the basis of the available a priori knowledge (batch-
wise processing), and after that compute the a posteriori pa-
rameter pdfs on the basis of all data points that are classified to
the respective mode (or estimate the parameters in some other
way, e.g., using least squares, as in Section IX-A). Conceptually
speaking, this approach would give good results if the a priori
knowledge on the parameter values is precise enough to enable
good classification. However, if this is the case, sequential pro-
cessing is expected to perform equally well.

We use particle filters to represent and compute with the
general probability density functions. However in some special
cases (such as uniform or normal distributions for and/or
parameters) specific properties of the algorithm may be inferred
from the explicit expressions of the update rule for determining
a posteriori distributions in Algorithm V.3. This will be investi-
gated in future research, as well.

Further research will also focus on the investigation of prop-
erties of the presented method: The influence of the quality of
the available a priori knowledge, the convergence properties of
the proposed algorithm and the relation between the obtained
suboptimal solutions and the optimal ones.
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