Proceedings of the 42nd IEEE
Conference on Decision and Control
Maui, Hawaii USA, December 2003

TuA05-1

Two Approaches to State Estimation for a Class of Piecewise Affine

Systems

A.Lj. Juloski®**

Abstract

In this paper we present two approaches to state estimation
for a class of discrete time bi-modal piece-wise affine sys-
tems.The proposed approaches have the characteristic fea-
ture that they do not require information on the currently
active dynamics of the piecewise affine system. We propose
a Luenberger-type observer, and derive sufficient conditions
for the observation error to be globally asymptotically sta-
ble, in the case when the system dynamics is continuous
over the switching plane. When the dynamics is discontinu-
ous, we derive conditions that guarantee that the estimation
error will be bounded with respect to the state bound. Sec-
ond, we propose to apply particle filtering algorithm, which
aims at approximating the a posteriori probability density
of the state. The presented approaches are compared and
illustrated with examples.

1 Introduction

In this paper we present two approaches to the state estima-
tion problem for a class of discrete time bi-modal piece-wise
affine systems. The systems of the considered class comprise
two linear dynamics with the same input distribution matrix
B, and the active dynamics is chosen depending on the half-
space in which the state resides. The characteristic feature
of our approach is that the state reconstruction is performed
on the basis of input and measured output signals only, while
the information on the active linear dynamics (or mode) is
not available. The presented ideas and the main line of rea-
soning can be extended to more general classes of piece-wise
affine systems. :

Observer design for the case when the mode of the hybrid
system is known is presented in [1,2, 10]. The proposed ob-
server is of Luenberger type, and, if feasible, achieves global
asymptotic stability of the observation error. A more difficult
case, when the discrete mode is not known, was considered
in [4]. The proposed observers use discrete inputs and out-
puts of the hybrid plant, augmented with discrete signals
derived from the continuous measurements when necessary,
to obtain the estimate of the mode. Subsequently, the esti-
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mate of the continuous state can be obtained, for example,
using the techniques of [1,2, 10]. The designed observers
correctly identify the mode of the plant after a finite number
of time steps, and the continuous observation error expo-
nentially converges to the bounded set. The class of systems
considered in this paper does not have discrete inputs and
outputs and therefore we propose a more direct approach for
state estimation.

In this paper, the first proposed state estimator has the form
of a Luenberger-type observer. The design procedure is de-
vised for choosing observer gains, based on finding feasible
solutions to a set of linear matrix inequalities. We distin-
guish two cases. When the vector field of the overall system
is continuous over the switching plane and the derived ma-
trix inequalities are feasible global asymptotic stability of
the observation error can be guaranteed. In the case of the
discontinuous vector field the estimation error is guaranteed
to be bounded, relative to the state bound. A Luenberger ob-
server approach to state estimation problem for continuous
time systems of similar type was considered in [12].

In addition to the deterministic approach, based on Luen-
berger observers, we also consider a stochastic setup, in
which we propose to use the particle filtering algorithm.
The output of the algorithm is an approximation of the a
posteriori probability density of the state, conditioned on all
available output measurements. A tutorial on particle fil-
tering can be found in [3], and an overview of convergence
results for some classes of systems is available in [8]. Par-
ticle filtering has been considered before in the context of
hybrid state estimation, for instance for state estimation of
jump Markov linear systems [9], in the target tracking ap-
plications [6, 14] and fault detection and diagnostics [13].
In these works the discrete dynamics is assumed to evolve
according to a Markov chain, while in our case the switching
is completely deterministic.

The main advantage of the particle filtering algorithms is that
they are able to successfully cope with non-Gaussian prob-
ability density functions. This can be of particular interest
in hybrid state estimation, where non-Gaussian distributions
can arise as an inherent property of the considered estimation
problem. This will be illustrated by the example.

The paper is organized as follows. In section 2 we present
the problem formulation, with a discussion on some special
cases. In section 3 we present a deterministic approach to
state estimation based on observers of Luenberger type. In
section 4 we present a state estimation procedure based on
the particle filtering approach. In section 5 two examples are
presented, illustrating the derived theory. Conclusions and
future work are presented in section 6.



2 Problem statement
Consider the follbwing dynamical system:

Ax(k) + Buk), ifH x(k) <0
Axx (k) + Buk), .ifH'x(k) >0

y(k) = Cx(k)

xtk+ 1D = (la)

(1b)
where x € R", y € R”, u € R", A}, A» € R"™ B ¢
R C e RP*" and H € R". The hyperplane defined
by ker H'T therefore separates the state space into two half-
spaces in which one of the two dynamics is active.

System (1) is a bi-modal piece-wise affine system, with the
same input distribution matrix B for both modes. Further-
more, depending on the values of A}, A, we distinguish two
situations:

1. the vector field of the system is continuous over the

switching plane, i.e. Ajx = Asx, when H'x = 0. It
is straightforward to show that in this case:
Ay=A +GH" )

for some vector G of appropriate dimensions. In this
case equation (1a) can be rewritten as:

x(k+1) = Ajx(k) + Gmax(0, H ' x(k)) + Bu(k).

Also, from (2), rank(AA) =
rank(A; — Aj).

1, where AA

2. the vector field of the system is not continuous over
the switching plane, i.e. a parameterization as in (2)
can not be found

The problem at hand is to design a state estimation procedure,
which, on the basis of the known system model, input u(k),

and measured output y(k) provides a state estimate £ (k).
In the sequel we will need the following definition. v

Definition 2.1 The sequence (x(0), x(1), x(2), ...) is said
to be bounded by x gy if

VE>0 |lx(B) < xmax-

The sequence (x(0), x(1), x(2), ...) is said to be evenrually
bounded by x4, if

V6 >0 3ko>0 Vk=ko Jx®)| <xpax+38.

i.e. limsup;_, o x| < Xpmax

In matrices (x) at position (7, j) denotes the transposed ma-
trix element at position (j, i), e.g.

B

c |-

A B A
(48] mews [ A
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3 Deterministic approach

As an observer for the system (1), we propose a bi-modal
system with the following structure:

A1x(k) 4+ Bu(k) + Li(y(k) — (),
ifHTZ(k) <0
Ak (k) + Bu(k) + La(y(k) — y(k)),
ifH (k) >0
(3a)
(3b)

fh+1) =

Flk) = Ci(k)

where ¥ € R” and L and L, € R"*P are matrices. The de-
sign problem consists of determining observer gains Ly, L,
so that the state estimate X approximates x as good as pos-
sible, e.g. % should asymptotically converge to x, or the
estimation error

@)

should be bounded. The dynamics of the state estimation
error is then described by

(k) = x(k) — 2(k).

(A1 — L1C)e(k),
HTx(k)<0,H x(k) <0
1 (42 — LyC)ek) + AAx(K),
- . HTx(k) <0, HT#(k) > 0
kT D=1 4 - LiO)ek) — naxk),
HTx(k) >0, H (k) <0
(A2 — L2C)e(k),
HTx(k) >0, HT£(k) > 0

(5)

where x (k) satisfies (1a) and x (k) satisfies (3a). By substi-

_tuting £ = x —e in (5), we see that the right-hand side of the

state estimation error dynamics is piece-wise linear in the
variable v := col(e, x). (Here, col stacks subsequent entries
of its argument in a column matrix).

In order to obtain stable error dynamics we search for a
Lyapunov function of the form

V(x) =x'Px (6)
where P = PT. > 0, such that:
Vietk+ 1)) — V(ek)) <0, @)

for e(k) # 0. Considering the first and the fourth mode of
error dynamics (5), (7) becomes:
e {(Ay —LC)TP(A1 — LiC)— Ple <O (8a)

e {(A2 — LsC)T P(Ay — L2C) — Ple < 0O (8b)

for each e # 0. Considering the second and third mode of
the error dynamics (5) we get the following inequalities:

| <o

(8¢c)

(Ar — LoC)T Px )
[ e :|T X{(Apy — LyC)y—- P e
X X

AATP(Ay —LC)  AATPAA



(Aj - L,C)TPx
x(A] —LiC)— P

—AATP(A, = LiO)

(%)

AATPAA

Bl IBE

Note that (8c),(8d) can not be negative definite if AA # 0,
because the term in the lower right corner is always at least
positive-semidefinite.
Therefore, in order to obtain feasible equations conditions
(8a)-(8d) have to be relaxed. We will consider two ways of
relaxing the requirements, using the S-procedure [7,11].
First, note that (8a)-(8d) do not need to hold in the whole
(e, x) space, but only when the respective modes of the error
dynamics are active. The second and the third mode of (5)
are active only when:

x"HH (x —e) < 0. ©)
Combining (9) with (8c),(8d), and taking the Schur comple-
ment of the obtained matrices leads to the following theorem.

Theorem 3.1 The state estimation error dynamics (5) is
globally asymptotically stable if there exist matrices P =

PT > 0, Ly, L> and constants X1, A2 > 0 such that the
Jollowing set of matrix inequalities is satisfied:
P (Ai — L;C)TP
[ PUA; — LiC)) - >0 (102
P 0 (A; — LiCO)TP 0
0 P 0 (%)
) 0 P (*)
>0 (10b)
—3MHHT
0 AATP —(~1)'AAT x A HHT
xP(Aj — L;C)
fori=1,2.

The previous result is applicable only to systems with a con-
tinuous vector field. Indeed, the term in the lower right
corner is positive semidefinite by construction, and of rank
at most 1. The following inclusion must hold (see [12] for
details):

ker HT C ker AA

which implies:
A>=A;+GH'

for some G of suitable dimensions.

In order to overcome this limitation we search for another

way to relax the requirements (8a)-(8d). Condition (7) will
be required only when:

2 2

llel? > e2)lx>.

an

Combining (11) with (8c),(8d) we get the following theorem:

Theorem 3.2 The state estimation error e is eventually
bounded by ey, under the assumption that x is bounded
by Xumax if there exist matrices P = PT > 0, Ly,Lo, and
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constants Ay, ko > 0 such that the following set of matrix
inequalities is satisfied:

P 0 (A —LiCO)TP 0
0 P 0 (%)
(%) 0 P -1 (%) >0 (12)
T —(=1)'AAT x .
0 AATp P Ly MEl
fori =1,2. Moreover, if
nli<P=<wnl (13)
then
g
Cmax < £5xnlax- (14)
V7

The proof of the previous theorem is similar to the continuous
time case, that has been studied in [12]. Note that we can
combine both relaxations (9) and (11), to obtain the same
properties of the estimation error e as in theorem 3.2.
Equation (14) explicitly gives the eventual upper bound of
the estimation error. The observer gains L1, L can be deter-
mined so as to minimize this upper bound , which amounts
to minimizing y2/y; and ¢, under (12). If it is possible to
design Luenberger observers for both constituting linear dy-
namics with a common Lyapunov function of the form (6),
equations (12) can always be made feasible for large enough
€.

Some examples of observer design using developed theory
will be shown in section 5. First, we present the particle
filtering approach to the state estimation for the considered
class of systems.

4 Particle filtering approach

Particle filtering belongs to the class of sequential Monte
Carlo methods. The underlying system is assumed to be
stochastic, in the sense that process noise w and measure-
ment noise v are assumed to be present. The probability
densities of the noise (py, and py) are assumed to be known.
No other assumption on the nature of the noise is made. In
our case, consider the system, augmented with process and
measurement noise terms:

Arx(k) + Bu(k) + wk),

: ifH x(k) <0

Asxx (k) + Bu(k) + w(k),
ifHTx(k) > 0

xtk+1)= (15a)

y(k) = Cx(k) + v(k) (15b)
The idea of the method is roughly the following. The state
space is initially populated with a finite number of particles
N, which are distributed according to the (assumed) a priori
probability density of the state. At each time step each parti-
cleis propagated according to the system dynamics. Foreach
particle the likelihood (particle mass) related to the measured
output is computed, and the particles are resampled (resam-
pling step has been shown to be necessary, in order to prevent



all of the particle masses asymptotically going to zero (see
e.g. [31)). The a posteriori density of the state is constructed
in the number of points, on the basis of particle masses. A
detailed statement of the described algorithm, as applied to
considered class of systems, follows.

We assume the process noise w in the system description
(15) to be absent. The set of measured outputs up to time k
is denoted by

Y (k) = {y(0), ..., y(b)}.
Algorithm 4.1 Particle filtering:
1. Initialization: Set k=1, and draw N samples

{%i(0)};=1....n from the initial distribution p(x(0))

2. Prediction: Compute {X;(k)}i=1...
model (1), from {x;(k — D}i=1...N

N, using system

3. Update: Compute the likelihood for each sample:
Gi (k) = p(y(R)|x; (k) = py (y(k) — CXi(k)), (16a)
fori=1,...,N.

4. Normalization: ~

gi (k)
giky = ———— (16b)
. o gi (k)
5. Resampling: draw N samples from
N
p) =) qik)s(x —xi(k)  (16c)

- i=1
(where 8(-) is the Dirac delta function) to obtain a new
set {X;(k)}i=1....~. and construct
PUNY (K)) = Z ﬁ5(x(k) — X; (k)
i=1

Setk := k + 1, and go to step 2.

(16d)

The tuning parameters of the algorithm are the number of
samples (particlés) N, and the choice of the measurement
noise probability density function p,.

A state estimate £(k) can be obtained from the constructed
approximate a posteriori probability density of the state
Px (k)Y (k)), for example, as the minimum variance es-
timator:

Ruv () = Epgeyyaon* an
or the maximum a posteriori probability estimator:
Imapk) = arg max p(x|Y (k)). (18)

In general, convergence of the estimated a posteriori density
of the state to the true a posteriori density of the state can
be expected, as the number of particles N — o0 (see [8]
for more details). In this moment it is unclear whether these
results transfer to the piecewise affine systems of the consid-
ered type, and it is a topic of the future research. Simulation
examples show good properties of this methodology. Con-
vergence of the state estimate obtained with (17) of (18) to
the true state of the system depends also on the system prop-
erties (i.e. on system observability, as with any other state
estimation scheme). This is shown in example 5.2.
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5 Examples

Example 5.1 Consider the system (1) with the following
parameter values:

[ cos(F) sin(%)
Ar= [ —sin(B%) cos(%) ]
e[ ) 0D ]

—sin(5-) cos(F)

1=[4]a=[]o

which is discontinuous over the switching plane. Note that
the first state determines the mode, while the second state is
measured. Hence, the discrete mode can not be determined
directly from the measurements.

Solving (12) with ¢ = 0.1 we obtain the following values
for the gains of observer (3):

with €,,5x < 0.13x;,4x (equation (14)).

The simulation results are depicted in figure 1. The input is
chosen as a sequence of normally distributed random num-
bers, with zero mean and variance 1. The initial state of the
system (1)is x(0) = [-1 — 1]T, and the the initial state
of the observer (3)is £(0) =[5 5]7

0.8662
0.5031

0.8662
0.4982

Figure 1: The system (solid) and observer (dashed) response (up-
per: state xp, lower: state x7)

The minimum variance state estimate (17), obtained from a
particle filter with 500 particles, for the same input sequence,
is depicted in figure 2. The distribution of the measurement
noise is chosen to be Gaussian, with zero mean, and variance
0.1. The estimation error for both filters is depicted in figure
3.

We see that both state estimation procedures give good esti-
mates of the state. Simulation shows that, for this example,
the estimation error of the Luenberger-type observer con-
verges to zero. The estimation error of the particle filter is
present but small. This is due to the uncertainty added by



Figure 2: The system (solid) response and particle filter output
(upper: state x1, lower: state x;) (figures overlap after
t & 3)

Figure 3: Norm of the estimation error of Luenberger observer
(solid) and particle filter (dashed)

introducing measurement noise v. Transient performance
of the Luenberger-type observer depends on the initial state
estimate, while with particle filters transient performance
depends on the properties of noise.

Example 5.2 Consider the system (1) with the following
parameter values:

A= 095  0.0475
L=1 _0.0475 0.95
Ay = A;r

B=[8],H=[(1):|,C=[O 1].

The input matrix B is taken to be zero, so the system evo-
lution is governed only by the initial state x(0). Both pairs
(A, C), (A3, C) are observable. Consider two initial state
vectors x!'(0) = [a 5] and x2(0) = [—a b]7, where
a > 0. The output sequences y;(k) and y>(k) generated
from x!(0) and x2(0), respectively, are the same for any
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k > 0, while the state trajectories are not, when a # O.
In other words, the system is unobservable (in the sense that
state can not be uniquely determined from the measured out-
put) whenever the first component of the state differs from
0.

Remark 5.3 Observability of piecewise affine and hybrid
systems is a complex issue. Discussion on the topic and
some computational tests for checking the observability can
be found in [5].

The Luenberger observer is designed, using the methodology
described in section 3. The following observer gains were

obtained:
0= [ 98] n-[32]

while the best found error bound that can be guaran-
teed is €pax < 24xpmq¢. The simulation is depicted in
the figure 4, with initial states x(0) = [0.2 417, and
£(0) = [-0.3 4]7. We see that the state estimate £ con-
verges towards the other possible state trajectory, starting in
[—0.2 4]7.

—0.0495
0.8387

0.0455
0.7495

15

'
b

Figure 4: System (solid) and observer (dashed) response (upper:
state x, lower: state x7)

The distribution of the particles in the particle filter is shown
in figure 5, at different times k. We see that the filter assigns
approximately equal probabilities to both possible trajecto-
ries.

The estimates of the state obtained using either (17) or (18)
will not converge to the true state. These state estimators
give one estimate of the state, and can not correctly interpret
the information contained in the reconstructed a posteriori
probability density, which is by the problem nature bi-modal.
The estimate obtained with (17) is the average of both pos-
sible trajectories, while the estimator (18) picks randomly
one of the trajectories at each time instant. In both cases
the obtained estimates are not possible in the system with
dynamics (15).

A solution is to compute a set of possible state estimates,
on the basis of the particle filter output. This problem is not
trivial, and is similar, for example, to the problem of multiple
target tracking with radar [14].



Figure 5: Distribution of particles at times k = 10, 30, 50, 70

6 Conclusions

Two approaches to the state estimation problem for a class
of discrete-time piecewise affine systems were presented.
A deterministic approach based on observers of Luenberger
type was shown to achieve globally asymptotically stable
error when the vector field of the system is continuous and
the derived set of linear matrix inequalities is feasible. In the
case when global stability can not be achieved. (e.g. when
the vector field is not continuous, or the previous approach
is not feasible) the estimation error can be asymptotically
bounded, relative to the state bound. Under the assumption
that both constituting linear dynamics allow the design of
the classical Luenberger observer with a common quadratic
Lyapunov function this design is always feasible. .
The achievable relative upper bound of the estimation er-
. ror can be optimized, but the optimal value depends on the
properties of the system. This was clearly illustrated by an
example of the unobservable system (while both constituting
linear dynamics are observable), where the design is feasi-

ble, but the best found relativé upper bound is much larger

than 1. :
The Luenberger-type observer is computationally easy to
implement and easy to compute (the required gains can be
computed off-line). ‘The main line of reasoning can be ap-
plied to more general classes of piece-wise affine systems,
with the requirement that the input distribution matrix B is
the same for all constituting affine dynamics.

The second proposed approach is a particle filtering algo-
rithm. The output of particle filtering algorithm is the ap-
proximate a posteriori density of the state, which can be used
to obtain a state estimate. The type of convergence which can
be expected is the convergence of the approximate a posteri-
ori probability density, when the number of particles N goes
to infinity. In this moment it is not clear whether the con-
vergence analyses (as e.g. in [8]) transfer to the considered
class of systems. Precise convergence properties of particle
filtering algorithm for the considered class of systems are
the topic of the future research.

- (11
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In an example the performance of the particle filter turned out
to be comparable to the performance of the Luneberger-type
observer. However, on the unobservable example the particle
filter is able to follow both possible trajectories, in the sense
that reconstructed probability density of the state reflects
the two equally probable system trajectories. Luenberger-
type observer converges to one of the possible trajectories,
depending on the initial state estimate.

The particle filtering method is computationally expensive
(where the computational effort depends on the used number
of particles), but can be applied to more general types of
systems structures (cf. [14]).

The development and application of particle filtering meth-
ods to other types of hybrid systems will be the focus of the
future research. Moreover, both presented approaches will
be experimentally tested on a practical setup.
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