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Abstract

In this paper we propose an observer design procedure for
a class of bi-modal piece-wise affine systems, The designed
observers have the characteristic feature that they do not
require information on the currently active dynamics of the
piecewise linear system. A design procedure which guar-
antees global asymptotic stability of the estimation error
is presented. It is shown that the applicability of the pre-
sented procedure is limited to continuous piece-wise afline
systems. Therefore, we present an observer design proce-
dure, applicabie also to discontinuous systems, which guar-
antees that the estimation error is bounded, with respect
to the state bounds, asymptotically. Sliding motions in the
observed system, and the observer are discussed. The pre-
sented theory is illustrated with an example.

1 Introduction

In this paper we consider the problem to design an
observer for a dynamical system in a class of bi-modal

piece-wise affine systems. Systems in this class have -

the characteristic feature that they switch between two
different (linear) state evolution maps, depending on
whether the state belongs to either one of the hall-
spaces defined by a separating hyperplane in the state
space.

For systems of this type we consider observers of Lu-
enberger type which are also bi-modal in the sense
that the state evolution map of the observer may also
switch depending on the half-space in which the ob-
server state resides. It is a distinguishing feature of
this observer structure that the observer does not need
information about the currently active linear dynamics
(mode) of the system, in contrast to structures pro-
posed in |1, 2, 3].

We will be interested in the state estimation error dy-
namics defined by interconnecting the bi-modal system
with the bi-modal ebserver. Contrary to the classical
Luenberger observer for linear systems and to the case
when the mode is known, in this case the error dynam-
ics is not autonomous, but depends on the state of the
observed system, and hence, indirectly, on the control
input. Global asymptotic stability of the estimation
error may still be achieved, in particular when the bi-
modal system is continuous over the switching plane.
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In the case of a discontinuous system, our approach
guarantees that the norm of the erfor will asymptoti-
cally not exceed a certain bound, relative to the bound
on the state of the observed system. Observers for
switched systems presented in {1, 2, 3] achieve global
asymptotic stability of the estimation error by exploit-
ing information on the exactly known discrete mode.

The observers which we consider here are designed for
situations where the state of the system {continuous or
discrete mode) is of independent interest (e.g. for di-
agnostics, or discrete mode change detection). Quiput
feedback controller design (which implicitly consists of
an observer part and a state feedback part) was pre-
sented in [6, 7]. 1t is not straightforward to extract
cbserver design in the proposed methodology.

Observer design for Lur'e type systems (see, for in-
stance [8]), when the signal that enters the nonlinearity
in the feedback path is not measured, is presented in
{10]. An approach, related to [10], but far less general,
has been presented in [9]. A link to this results will be
established in the paper.

This paper is organized as follows. In section 2 we
introduce the class of bi-modal piece-wise linear sys-
tems together with the observer structure. The design
problems are defined, as well. In section 3 we derive
sufficient conditions for global asymptotic stability of
the observation error. We show that the proposed tech-
nique is applicable only when the system is continuocus
over the switching plane. Motivated by this, we pro-
pose an extension, to the more general case, and discuss
properties of the obtained solutions. In section 4 shd-
ing modes and their consequences are discussed. The
presented theory is illustrated on an example, in sec-
tion 5. Conclusions and future work are discussed in
section 6.

2 Problem statement

Consider the following system

P Aiz+Bu, fHTz<0 (1a)
Aoz +Bu, ¥H z>0
y = Cu, (1b)

where z € R, y € BR?, v € R™, A}, 4, € R**,
B e RV™, C e RP*™ and H € R". The hyper-
plane defined by ker H' therefore separates the two
half-spaces in which the state of the system resides.
The considered class of bi-modal piece-wise affine sys-
tems has identical input distribution matrix B for both
modes. The output distribution matrix C is taken to

2606

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 19, 2009 at 08:28 from IEEE Xplore. Restrictions apply.



be the same for both modes as well, but this feature is
not essential for the derivation of the results.

As an observer for the system (1), we propose a bi-
modal system with the following structure:

;o JAE+ButLiy—¢), ifH#<0

= . 7 e T (2a)
Agt+Bu+Ly(y—g), fH £>0

§=Cg, (2b)

where # € R™ and L, and L, € R**P,

The dynamics of the state estimation error, € := 1 — &,
is then described by

(A1 — L10)e, H'z<0, H'£<0
. ) (A= LyCle+ AAz, H'z<0, H'3>0
€Y (A - 1C)e—AAz, HTz>0, HT2<0
(A — LyC)e, HTz>0, HT%>0,

{3)

where z satisfies (la), & satisfies (2a), and AA :=

Ay — Ao, By substituting £ =« — e in (3), we see that
the right-hand side of the state estimation error dy-
namics is piece-wise linear in the variable » := col(e, z).
{Here, col stacks subsequent entries of its argument in
a column matrix}).

Note that the error dynamics in the two modes of (3) is
described by an n-dimensional autonomous state equa-
tion, while in the two other modes the external signal
x(t) is present, which, by (1a), depends on the input u.
For given {open ioop) input signals u : BT — R™ it is
possible to consider the evolution of the error e in (3)
as a time varying equation of the form

de

% 0)~ £(telt). @
Standard concepts and results of Lyapunov stability
theory (see for instance [8]) can now be applied to equa-
tion (4).

Remark 2.1 Information on the currently active lin-
ear dynamics may be available to the observer if H 1z
is one of the components in the measured cutput, i.e.
H ¢ imC. In this case the results from [1, 2, 3] apply.

To present the problem formulations, we need the fol-
lowing definition:

Definition 2.2 A function x : BT — R" is said to be
bounded by Tpmay > 0, if

Izl < Zrmaz
for all ¢ > 0, i.e. supyeg+ [|2(1)]{| € Zpax- A function z
is said to be eventually bounded by 245, if forall 6 > 0
there exists a Ty > 0 such that
x| < Zmaz + 4,

for all t > Tp, i.e. limsup,_, o |2(¢)]] € Zmaz-
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Problem 1. Determine the observer gains Li,L» in
(2) such that global asymptotic stability of the estima-
tion error (3) is achieved, for all functions z : Rt —»
R™, satisfying (1) for some given u: Rt — R™.
Problem 2a. Determine > 0, and L, L2 in (2),
il they exist, such that for all bounded trajectories
z:R* — R" it holds that

limsup le(t)|| < nlimsup ||z(®)|],
t— 00 t-+00

which means that if z{¢) is (eventually) bounded by
Zmazr, then e(t) should be eventually bounded by
NMemaz-

Problem 2b. Find a (sub)optimal # for which prob-
lem 2 is solvable.

3 Main results

3.1 Continuocus case
Consider system (1), observer (2}, and the error dy-
namics (3).

Theorem 3.1 The state estimetion error dynamics
(3) is globally asymptotically stable for ell z : RT —
R (in the sense of Lyapunov). if there exist malrices
P=PT 50, L, L> and constants A, Az > 0 such that
the following set of matriz inequalities is safisfied:

(A - LiCY P+ P{A - LiC) <0 (5a)
[ (A —LOYTP PAA 1
+P(Ay ~ LyC)  +AijHHT
<0 (5b)
AATP+ T
| MLHHT -MmHH ]
r (A ~LiC)TP —PAA T
+P(A1 - L0} +XiHHT
. <0 (5¢c)
~AATP -
+A2%HHT —AQHH ]
(Ag — LrC)T P 4 P(Az — [2C) < 0. (5d)
Remark 3.2 The inequalities (5a)-(3d) are not
linear in {P,Li,L3, M, A2}, but are linear in

{P,LTP,LIP )\ ,A:}, and thus can be efliciently
solved using the available software packages.

Proof: In order to stabilize the system (3) we search
for a Lyapunov function V (e} of the form

V(e) =€ Pe, (6}
where P = P7 > 0 is of appropriate dimensions.
Calculation shows that:

Vie) =e' {{A1 — LiO)T P+ P(A; — L1(VYe, (7a)
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for HTz <0,H (z—e) <0,

(A2 — LC)YTP
V(e):[eJT FP(As — Loy TR [e]
T - X
AATP 0
7b)
for H 2 <0,H (z —e) >0,
(A - I,C)TP
V(e)z[e]T LP(A -~ o) ~PAd [e]
I il
—AATP 0
(7c)
for HTz>0,H T (z —e) <0,
Viey=e {(A2 — LaC)TP + P(A2 — La0)}e, (7d)

for H'z>0,H (x —e) > 0.

The condition that the matrices on the right hand side
of equations (7a)-(7d) should be negatlve definite, to-
gether with the condition P = PT > 0, yields a system
of matrix inequalities in {P,L;, L2} which guarantee
global asymptotic stability of the error dynamics. Note
that a feasible solution of this set of equasions does not
exist unless A4 = 0.

In order to include the information on the switching
structure of the system (1a),(1b) (and to relax inequal-
ities (7b), 7c) see also [5]) we can use the S-procedure
[4]. Relaxed in this way, the quadratic forms (7b),(7c)
can become non-definite, but are guaranteed to be neg-
ative in the region of interest.

Regions of the (¢, z) space where second and the third
linear dynamics of the error (3) is active can be covered
with the quadratic constraint in the following way:

2] IHENC

Equation (8) is derned by multiplying the mode con-
straints: ' HH ' (z—e) < 0. The quadratic constraint
(8) is by construction negative in the region of interest,
0 at the boundaries, and nonnegative elsewhere. Com—
bining (7b),(7c} with (8), using S-procedure, yields the
inequalities (5a)-(5d).

Note that the relaxed inequalities (5b),(5¢) can be
only negative semidefinite by construction {because
—A{HH" is negative semidefinite), but that derivatives
{7b),(7c) are guaranteed to be negative whenever the
appropriate dynamics is active and e # 0 (cf. discus-
sion after the theorem). Hence, the computed deriva-
tive of the candidate Lyapunov function (6) is negative
definite in e, and the global asymptotic stability of the
error dynamics (3} is guaranteed. [

0
1
~LHHT

[
xz

—iHHT
HHT

Suppose that the feasible solution to (5a)-(5d) ex-
ists, Since M < 0 and z"M:z 0 imply that
z € ker(Af) (where M is a matrix) it follows that
col(0,h) € ker(3b) (ker(5¢), respectively), when-
ever h € ker(HH') = ker(H") (in fact ker (5b) =
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ker (5¢) = {col(0,h)|h € ker HT

}rby dimension argu-
ment). Hence, for any h € ker(H

) we have that
h € ker(PAA).

Since P > 0, we conclude that i € ker AA, or

ker HT Clker AA.
From the last inclusion it follows that the state evolu-
tion matrices of the two modes are not independent,
but are related via:

Ay = A +GHT
for some vector G of appropriate dimensions. This re-
lation implies the continuity of the vector fields over

the switching plane. Note that an equivalent represen-
tation of the continuous bi-modal system (1) is:

& Az 4+ Gmax(0,z) + Bu (9a}
: = H'z {9b)
¥ = C‘T: (QC)

which is a Lur'e type system, with maxz(0,-) € [0,1]
nonlinearity in the feedback path.

Observer design for systems with slope restricted non-
linearities was presented in [10]. Here we show the
equivalence between (5a)-(5d), and the approach pre-
sented in [10], under certain simplifications. We will
simplify our observer structure by assuming the same
gain Ly = Ly = L for both modes, and the same mul-
tiplicative constant 3 = A2 = A. Equation (5b) can
be transformed into equation (5c}, by pre-multiplying
it with Q7 and post- multiplying it with @, where

7

Equation (5¢) can be represented as:

I
I

0
~I

Q

(4 - LC)TP PG
+P(A; — LC)  4AH
77 T<0 (10
GTp
+AHT -2
where

I ¢
T= [ 0 HT ] :
Pre- and post- multiplication with a matrix T intro-
duces a kerne! in the matrix inequality (10), but does
not change feasibility conditions. The matrix in the
middle is therefore equivalent to the LMI condition ob-
tained in [10] (up to the scaling constant A).

Theorem 3.1 gives sufficient conditions for the solution
of problem 1. A drawback of the obtained result is that
the necessary condition for the feasibility of (5a)-(5d) is
the continuity of the bi-modal piece-wise affine system.
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3.2 Discontinuous case

In order to tackle discontinuous systems we need to
consider the relaxed problems 2a and 2b. The following
theorem directly states an answer to the problem 2a.

Theorem 3.3 The state estimation error dynamics
(3} is eventually bounded by emez (in the sense of
definition 2.2), under assumption that x is eventually
bounded by Tmaz, if there exist matrices P = PT > 0,
L1, Ly and constants Ay, Ag,€ 2 0, u1, po > 0 such that
the following set of matriz inegualities is satisfled:

[ (Az — L,C)TP PAA 1
+P(A2 — LQC) -+ ,Ull +)\1%HHT
<0
AATP
)‘I%HI;-} —MHHT - ,uqs?I
(11a)
[ (A1 - LiC)TP ~PAA 1
+P(A; — Llc) + paf —i—AQ%HHT
<0
—AATP
+>\2%HHT —)\QHHT—M262I
(11b)
Moreover, if
' NnI<P <yl (12)

then

Cmar < :y'zfzmar- (13)
V !

Proof: We will further relax equations (5). Consider
the quadratic constraint:

el = i, (14)

for some £ > 0. and suppose that V(e) < 0 when (14)
holds.

For an arbitrary 4 > 0, denote

Ve e = sup  V{e).
llell<exmaztd

Define the bounded set S; by:
Ss = {elV(e) < V3., }-

Since V(e) < 0 for e ¢ S, it follows that Ss positively
invariant ie. if for T > 0

Vie(Th)) < Vi, = V{e®)) <V, Yo

and satisfies the strong variant of attractivity, in the
sense that
Inse V(To) <V

From {12) it follows that:

ax"

vﬂé’-l.!]..”l.' < 72{5:67"1&1‘ + 6]2

and consequently

VisodrsoVesn, lle()l </ ;V—;[ezm +4).

ie.

emaz = limsup [le(®)]] < 1/ Zezmaz-
t—oo B!

Combining the quadratic constraint {(14) with the equa-
tions (5b),(5¢), using the S-procedure, we obtain the
equations (11a),(11b). A feasible solution of the equa-
tions ensures the property V(e} < 0 when (14) holds.
Note that equations (5a),(5d) are implied by equations
(11a),(11b), and therefore redundant. ]

Remark 3.4 The conditions of the theorem guarantee
that the norm of the error will not exceed a certain
bound, relative to the state bound. Note that e = 0
is the equilibrium of (3), i.e. if the state is estimated
with e(Ty) = Q for some Ty > 0, then e(t) = 0 for all
t > Tp.

Remark 3.5 If there exists a feasible solution for
the system of equations formed by requiring that the
members at the upper left corners or (11a),(11b) are
negativé definite an ¢ can always be found so that
(11a),(11b) are feasible. In other words, sufficient con-
dition for feasibility of (11a),{11b) is that the Luen-
berger observers for each of the modes are stable, with
a common P.

Remark 3.6 The equation
P>1 (15)

~ can be added to the (11a),(11b) without changing

feasibility. Namely, if {P, Li, Ly, A1, Az, p1, 2, €} is
the feasible solution of (11a),(11b), so is the scaled
set {%P, Ly, Lo, %)\1, ;11-/\2, ;:T,ul, %;12,5}, and P* =
%P > I. The second part of the double inequality
{12) follows from:

P - ’}’21 < 0. (16)

Remark 3.7 Condition (14) can be stated in a more
general form, when || - || is replaced by || - {lo. An in-
teresting case is when |le|| is replaced by |e|lp. Then,
given certain 7gpec > 0, existence of an observer that
achieves bound €mqar < NspecTmer follows from the fea-
sibility of bi-linear equations similar in form to (11a),
(11b), (15) with € = #spec. The drawback is that bi-
linear equations can not be solved in an efficient way.

Remark 3.8 Equations (11a),(11b) are bi-linear in
variables. When ¢ is fixed, by using the same change
of variables as in remark 3.2 we get the set of linear
matrix inequalities.

Any feasible solution of the equations {11a),{11b), (15)
is solution for the problem 2a, with n = \/2e. Algo-
rithm that addresses problem 2b follows from theorem
3.3, and remarks 3.5,3.6,3.8. Under the conditions of
remark 3.5 an £ can be found when (11a),(11b) cease
to be feasible. For a somewhat bigger value of € an
optimization problem:

min e
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under (11a),(11b},(15),(16) is solved. Then emu: <
V26%maz. Another problem that occurs is that the
above minimization problem frequently gives observer
gains L1, Ly of an unacceptably high magnitude. The
“size” of the gains can be indirectly included in the
optimization problem, by including quantity:

LTPL, + L] PL,,

in the optimization criterion, with appropriate weight-
ing factors. Previous equation can be transformed into
an LMI using Schur complements.

4 Analysis of sliding modes

All derivations so far were done with the implicit as-
sumption that sliding modes do not occur neither in
the original system, nor in the designed observer. In
the discussion that follow we consider sliding modes
along the switching plane (H7z = 0 for the system,
HT# = 0 for the observer) under the assumption that
we have constructed an observer that satisfies equations
(11), and we are going to show that the estimation error
remains eventually bounded. The mode of the system
{resp. chserver) where H 'z < 0 (resp. H 'z > 0) is
referred to as the first mode (resp. second mode).

First, consider the case where sliding mode occurs in
the designed observer,along the plane HT4 = 0. Then,
the dyvnamics of the observer is given by the convex
combination of the constituting linear dynamics (see,
for instance [11]):

& = MAd+Bu+ Lily—-9)}+
(1= M{A2& + Bu + La(y — )},
§ = Ci ' (17)

where A € [0, 1]. Consider next the situation where the
system is in the first mode. Then the error dynamics
is given by:

i—&=AM(A — L0} +
(1= A){(Az ~ LC)e + AAz)}

(18)

which is the convex combination of first and second
mode of the error dynamics (3). Since V'(e) is negative
when (14) holds, for both modes, it is also negative
for their convex combinations under (14). Hence, the
error is eventually bounded, as proven in theorem 3.3.
A similar argument holds in the second case (i.e. when
the system is in the second mode, and observer is in
the sliding motion).

Consider now the case when a sliding mode exists on
the switching plane of the system. Then, the system
dynamics is given by the convex combination of the
constituting linear dynamics:

p{Ar1z + Bu} + (1 — p){ Aoz + Bu}
Czx

i

Yy (19)
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where p € [0,1]. If the observer is in the first mode,
the error dynamics is given by: '

&= p{(A, — LiC)e} +

é T -
(1 — ) {{A1 — L1C)e — AAx}

(20)

which is a convex combination of the first and the third
mode of error dynamics. Hence, V(e) is negative when
(14) holds. A similar argument holds for the case when
the system is in sliding mode, and the observer is in the
second mode.

Consider now the situation where there are sliding
modes in both system and the observer. Then the dy-
namics of the system is given by (19), and the dynamics
of the observer is given by (17). The error dynamics is
given by:

é (& — N{(A2 — LyC)e + AAz} +

(1 = p){(A2 — L2C)e} + M(As — L1 C)e}
fp—A>0 o

é ()\—u){(Al —LlC')e~AAJ:}+
{1 =X {(A2 — LoCle} +

u{(A1 = L1C)e} (21)
if A—p > 0. We see that the error dynamics is again
given as a convex combination of the modes of the error
dynamics (3), and is, by a similar argument as in the

previous cases, eventually bounded.

To summarize, from the previous analysis we conclude
that the estimation error under sliding modes is even-
tually bounded.

5 Example

In this section, the presented theory will be illustrated
by means of the following bimodal system with:

R E S
o (3] -

0
We see that the switching is driven by the first state
variable z;, while 25 is measured. Hence, the discrete
mode can not be reconstructed directly from the mea-
surements.

-1
0.2

—0.2
-1

-1 0.2
-02 0.3

1

0 ],C:[O 1].

Linear matrix inequalities were solved using the LMI-
tool. For the value of £ = 0.1, the following feasible
solution was obtained:

| =-[3n]

|

with 4o = 1.3998, and nzmar = 0.12

For the purpose of simulation an input that takes val-
ues in {—1,0,+1}, with a period of 1s was applied to

2.09
4.38

2.41
5.78
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the system. The initial conditions for the system were
chosen as z(0) = [ -1 -1 ]T, and for the observer

#0)=[11 ]T. The simulation results are shown
in figure 1l,and figure 2. In the figure 1 we see that
the sliding patch exists approximately in the interval
[4.5,5.5]. From figure 3 we see that the observer error
remains within the determined bounds, as predicted by
the analysis.

[ T o . 4

Figure 1: System (solid) and observer (dotted) response

for the state x4

Figure 2: System (solid) and observer {dotted) response
for the state 2

6 Conclusions

We have presented an observer design procedure for a
class of bi-modal piece-wise affine systems. The pro-
posed observer is of Luenberger type, but, unlike the
classical Luenberger observer, the estimation error dy-
namics is not autonomous. Sufficient conditions for
global asymptotic stability of the estimation error were
derived, but are shown to be feasible only for contin-
uous bi-modal piecewise affine systems. Relaxed con-
ditions, applicable for the larger class of systems are
derived, and the obtained observers guarantee certain
estimation error, relative to the state, asymptotically.
It is proven that the desired properties are retained
under presence of sliding modes.
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Figure 3: Norm of the error ||e]| {solid); Lyapunov func-
tion of the error ¢ Pe (dotted) on log scale

It remains an open problem whether it is possible to get
global asymptotic stability of the estimation error with
the proposed observer structure, in the general case of
discontinuous bi-modal piece-wise affine system.

The focus of future work will be on utilizing the ob-
tained cbservers for feedback stabilization of the class
of bi-modal piece-wise affine systems, as well as on
broadening the class of piece-wise affine (and general
hybrid) systems to which the presented techniques are
applicable.
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