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Abstract. In this paper we compare four recently proposed procedures
for the identification of PieceWise AutoRegressive eXogenous (PWARX)
and switched ARX models. We consider the clustering-based procedure,
the bounded-error procedure, and the Bayesian procedure which all iden-
tify PWARX models. We also study the algebraic procedure, which iden-
tifies switched linear models. We introduce quantitative measures for
assessing the quality of the obtained models. Specific behaviors of the
procedures are pointed out, using suitably constructed one dimensional
examples. The methods are also applied to the experimental identifi-
cation of the electronic component placement process in pick-and-place
machines.

1 Introduction

In this paper we study four recently proposed procedures for the identification
of discrete time piecewise affine (PWA) models. The identification procedures
that we compare are the clustering-based procedure [1], the bounded-error pro-
cedure [2, 3], the Bayesian procedure [4] and the algebraic procedure [5, 6] (see
section 2 for brief descriptions). Of course, there are other methods available in
literature, for instance the work given in [7] and [8]. However, due to the specific
knowledge of the authors and space limitations, the attention is restricted to the
four procedures mentioned before.

There is not much known how the procedures compare in particular situa-
tions. Some features of the clustering-based procedure have been analyzed the-
oretically in [9], but a formal analysis of the properties of the bounded-error,



algebraic and Bayesian procedures for noisy data is currently not available.
Therefore, we will study specific examples of PWA models that can help us
better understand properties of the methods in practical situations.

To be precise, the PWA models that the clustering-based, bounded-error and
the Bayesian procedures identify are PieceWise ARX (PWARX) models of the
form:

y(k) = f(x(k)) + e(k), (1)

where e(k) is the error term and the PWA map f(·) is defined as:

f(x) =











[ x′ 1 ] θ1 if x ∈ X1,
...

[ x′ 1 ] θs if x ∈ Xs.

(2)

In (2) x(k) is a vector of regressors defined as

x(k) , [ y(k − 1) y(k − 2) . . . y(k − na)
u′(k − 1)u′(k − 2) . . . u′(k − nb) ]′,

(3)

where k is the time index and y ∈ R, u ∈ R
m are the outputs and the inputs of

the system, respectively. For i = 1, . . . s, θi ∈ R
n+1 is a parameter vector (PV)

with n = na + nb.
The bounded regressor space X is partitioned into s convex polyhedral regions

{Xi}
s
i=1, i.e.

s
⋃

i=1

Xi = X ⊂ R
n and Xi ∩ Xj = ∅ i 6= j. (4)

When the partition {Xi}
s
i=1 is known we can define the mode µ(k) of the data

pair (x(k), y(k)), k = 1, . . . , N uniquely as:

µ(k) := i if x(k) ∈ Xi. (5)

The algebraic procedure identifies switched linear models of the form (1),
where

f(x) = [x′ 1]θi,

and i ∈ {1, . . . s} is arbitrary for each time index k. The problems of estimation of
parameters θ1, . . . , θs for switched linear and PWARX models are closely related,
and in the sequel we will treat them in parallel. In addition, the identification
of PWARX models requires also the estimation of the regions Xi, which would
form an extension of the algebraic procedure.

The general identification problem reads as follows: given the data set N =
{(x(k), y(k))}N

k=1 reconstruct the PWA map f(·), i.e. determine the PVs {θi}s
i=1

and the polyhedral partition {Xi}
s
i=1.

Identification of PWARX models is a challenging problem since it involves
the estimation of both the PVs {θi}

s
i=1 and the regions of the regressor space

{Xi}
s
i=1 on the basis of the available data set N . In case that regions of the



regressor space are known a priori the problem complexity reduces to that of s
linear system identification problems [1].

In order to compare the procedures and asses the quality of the obtained
models we propose several quantitative measures in section 2. These measures
are “common sense” criteria (not the ones optimized by the methods themselves)
and reflect practical needs for identification. In section 3 we will address different
approaches to data classification of each of the procedures, and consequences on
the accuracy of the identified model. In section 4 we will investigate the effects of
the overestimation of model orders. In section 5 we will study the effects of noise.
In section 6 we will apply the procedures for the experimental identification of
the component placement process in pick-and-place machines. Finally, summary
and conclusions are presented in section 7.

2 The compared procedures

In this section we briefly discuss the four procedures we compare. The basic
steps that each method performs are: the estimation of the PVs {θi}

s
i=1, the

classification of the data points (grouping data points attributed to the i-th
mode to the set Fi, i = 1, . . . , s) and the estimation of the corresponding regions
{Xi}

s
i=1, for PWARX models.

The first two steps are performed in a different way by each procedure, as
discussed in the sequel, while the estimation of the regions can be done in the
same way for all methods. The basic idea is as follows. Having the data points
that are attributed to sets Fi and Fj , we are looking for a separating hyperplane
in the regressor space X described by:

M ′
ijx = mij , (6)

where Mij is a vector, and mij is a scalar, so that for each x(k) ∈ Xi, M ′
ijx(k) ≤

mij , and for each x(k) ∈ Xj M ′
ijx(k) > mij . If such a hyperplane can not be

found (i.e. the data set is not linearly separable) we are interested in a generalized
separating hyperplane which minimizes the number of misclassified data points.
The method we use for estimating the separating hyperplanes in this paper is
Multicategory Robust Linear Programming (MRLP). This method can solve the
classification problem with more than two data classes. For a detailed discussion
on MRLP see [10].

2.1 Clustering-based procedure

The clustering-based procedure [1] is based on the rationale that regressors that
lie close together are likely to belong to the same partition and the same ARX
model. The main steps of the procedure are:

– For each data pair (x(k), y(k)) a local data set (LD) Ck is built containing
its c− 1 nearest datapoints7 in the regressor space X. LDs that only contain

7 according to the Euclidean distance.



data pairs belonging to a single subsystem are referred to as pure LDs, while
LDs containing data generated by different subsystems are called mixed LDs.

– Calculate θLS
k for each LD using least squares on Ck and compute the mean

mk of Ck. Each datapoint (x(k), y(k)) is thereby mapped onto the feature
vectors ξk = [(θLS

k )′,m′
k]′.

– Cluster the points {ξk}N
k=1 in s clusters Di by minimizing a suitable cost

function.
– Since the mapping of the datapoints onto the feature space is bijective,

the data subsets {Fi}
s
i=1 can be built using the clusters {Di}

s
i=1. The PVs

{θi}
s
i=1 are estimated from data subsets Fi by least squares.

The clustering procedure requires the model orders na, nb, and the number
of models s. The parameter c is the tuning knob of this procedure.

2.2 Bounded-error procedure

The main feature of the bounded-error procedure [2, 3] is to impose that the error
e(k) in (1) is bounded by a given quantity δ > 0 for all the samples in the esti-
mation data set N . At initialization, the estimation of the number of submodels
s, data classification and parameter estimation are performed simultaneously by
partitioning the (typically infeasible) set of N linear complementary inequalities

|y(k) − ϕ(k)′θ| ≤ δ, k = 1, . . . , N, (7)

where ϕ(k)′ = [x(k)′ 1], into a minimum number of feasible subsystems (MIN PFS
problem). MIN PFS problem is NP-hard, and the suboptimal algorithm based
on thermal relaxations is used. Then, an iterative refinement procedure is applied
in order to deal with data points (y(k), x(k)) satisfying |y(k) − ϕ(k)′θi| ≤ δ for
more than one θi. These data are termed undecidable. The refinement procedure
alternates between data reassignment and parameter update, and, if desirable,
enables the reduction of the number of submodels. For given positive thresholds
α and β, submodels i and j are merged if αi,j < α, with

αi,j = ‖θi − θj‖2/min{‖θi‖2, ‖θj‖2}, (8)

whereas submodel i is discarded if the cardinality of the corresponding data
cluster Fi is less than βN . In [2, 3] parameter estimates are computed through
the `∞ projection estimator, but any other projection estimate, such as least
squares, can be used [11].

The bounded-error procedure requires that the model orders na and nb are
fixed. The main tuning parameter is the bound δ: The larger δ, the smaller the
required number of submodels at the price of a worse fit of the data. The op-
tional parameters α and β, if used, also implicitly determine the final number of
submodels returned by the procedure. Another tuning parameter is the number
of nearest neighbors c used to attribute undecidable data points to submodels
in the refinement step.



2.3 Bayesian procedure

The Bayesian procedure [4] is based on the idea of refining the available a priori
knowledge about the modes and parameters of the hybrid system. Parameters θi

of the piece-wise affine map (2) are treated as random variables, and described
with their probability density functions (pdfs) pθi

(·). A priori knowledge on
the parameters can be supplied to the procedure by choosing appropriate a
priori parameter pdfs. The data classification problem is posed as the problem
of finding the data classification with the highest probability. Since this problem
is combinatorial, an iterative suboptimal algorithm is derived in [4], based on
sequential processing of data points in the collected data set. It is assumed that
the probability density function of the additive noise term e, pe(·) is given.

The parameter estimation algorithm has N iterations, and in each iteration
the pdf of one of the parameters is refined. In the k-th iteration of the algorithm
the most probable mode µ(k) of the data pair (x(k), y(k)) is computed, using the
available pdfs of the parameter vectors from step k − 1. Subsequently, the data
pair (x(k), y(k)) is assigned to the mode i that most likely generated it, and the
a posteriori pdf of parameter vector θi is computed, using as a fact that the pair
(x(k), y(k)) was generated by mode i. To numerically implement the Bayesian
procedure particle filtering algorithms are used (see e.g. [12]). In order to have a
good representation of the pdf a large number of particles may be needed. This
accounts for the majority of the computational burden.

After the parameter estimation phase, data points are attributed to the mode
that most likely generated them. For the estimation of regions a modification of
the standard MRLP procedure is proposed in [4]. Assume that the data point
attributed to the mode i ends up in the region Xj . If the probabilities that the
data point is generated by both modes are approximately equal, this misclas-
sification should not be penalized highly. Following this idea we introduce the
non-negative valued pricing functions, which assign price to misclassification of
data points. Pricing functions are plugged into the MRLP procedure.

The Bayesian procedure requires model orders na and nb, and the number
of modes s. The most important tuning parameters of the procedure are the a
priori parameter pdfs pθi

(·, 0), and the pdf of the additive noise pe. Also, the
particle filtering algorithm has several tuning parameters.

2.4 Algebraic procedure

The method proposed in [5, 6] approaches the problem of identifying the class
of Switched ARX (SARX) models in an algebraic fashion. For deterministic
models, it provides a global solution that is provably correct in the noiseless
case, even when the number of models and the model orders are unknown and
different. For stochastic models, it provides a sub-optimal solution that can be
used to initialize any of the iterative approaches. The algebraic method exploits
the fact that in the noiseless case (e = 0), the data pair (x(k), y(k)) satisfies
z
′(k)[1 θ′i]

′ .
= [y(k) − ϕ′(k)][1 θ′i]

′ = y(k) − ϕ′(k)θi = 0 for a suitable PV θi.



Hence the following homogeneous polynomial of degree s holds for all k8

ps(z(k)) =

s
∏

i=1

(z′(k)[1 θ′i]
′) = νs(z(k))′hs = 0, (9)

where νn(z(k)) contains all Ms(na, nb)
.
=
(

na+nb+s+1
s

)

monomials of degree s in

z(k) and hs ∈ R
Ms(na,nb) contains the coefficients of ps. Therefore, the identifi-

cation of multiple ARX models can be viewed as the identification of a single,
though more complex, hybrid ARX model νs(z(k))′hs = 0 whose hybrid PV hs

depends on the parameters of the ARX models {θi}
s
i=1, but not on the switch-

ing sequence or the switching mechanism. Since the polynomial h
′
sνs(z(k)) = 0

holds for all k, the hybrid PV can be identified by solving the following linear
system (using least squares with noisy data)

[νs(z(1)) · · · νs(z(k)) · · · ]′hs = 0 and hs(1) = 1. (10)

This linear system has a unique solution when the data are sufficiently exciting
and s, na and nb are known perfectly. When only upper bounds s̄, n̄a and n̄b for
s, na and nb, respectively, are available, one can still obtain a unique solution
by noticing that the last entries of each θi are zero, hence the last entries of
hs̄ must also be zero. Determining the number of zero entries requires a tuning
parameter in the case of noisy data. Given hs̄, the number of models s is the
number of non-repeated factors in ps̄ and the PVs of the original ARX models
correspond to the last n̄a + n̄b + 1 entries of the vector of partial derivatives of

ps̄,
∂ps̄(z)

∂z
∈ R

n̄a+n̄b+2, evaluated at a point zi ∈ R
n̄a+n̄b+2 that is generated by

the ith ARX model and can be chosen automatically once ps̄ is known. Given
the PVs, data pairs (x(k), y(k) are attributed to the model λ satisfying the rule

λ(k) = arg min
1≤i≤s

(y(k) − ϕ(k)′θi)
2. (11)

This rule is applicable to SARX models, and by extension to all switching mech-
anisms. However, if additional knowledge about the switching mechanism (e.g.
PWARX models) is available, more appropriate classification rules can be used.

2.5 Quality measures

Since our aim is to compare the procedures, some quantitative measures for the
quality of the identification results are introduced. These measures will capture
the accuracy of the estimated PVs {θ̂i}

s
i=1 and the accuracy of the estimated

partitions {X̂i}
s
i=1.

When the model that generated the data is known, one can measure the
accuracy of the identified PV through the quantity:

∆θ = max
1≤i≤s

(

min
1≤j≤s

‖θ̂i − θj‖2

‖θj‖2

)

, (12)

8 This product equation was introduced independently in [13] in the particular case
of s = 2 models.



where θ̂i are the reconstructed PVs and θj are the PVs of the generating model.
This measure is only applicable for the cases where the number of submodels
is the same for the generating and identified model. ∆θ is zero for the perfect
estimates, and increases as the estimates worsen.

A sensible quality measure for the estimated regions is much harder to define.
For the case where n = 1 and s = 2 we propose the following index:

∆X =

∣

∣

∣

∣

m12

M12
−

m̂12

M̂12

∣

∣

∣

∣

, (13)

where M12, m12, M̂12, m̂12 are the coefficients of the separating hyperplanes,
defined in (6), of the original and reconstructed model, respectively.

An overall quality measure which is also applicable when the generating
model is not known is provided by the sum of squared residuals (one step ahead
prediction errors):

σ̂2
ε =

1

s

s
∑

i=1

SSRFi

|Fi|
, (14)

where the set Fi contains the datapoints classified to submodel i and the sum
of squared residuals (SSR) of submodel i is defined as:

SSRFi
=

∑

x(k)∈Fi

(y(k) − [x(k)′ 1]θi)
2.

The value of the estimated model is considered acceptable if σ̂2
ε is small and/or

near the expected noise of the identified system.
Models with good one-step ahead prediction properties may perform poorly

in simulation. To measure the model performance in simulation we propose to
use the averaged Sum of the Squared simulation Errors (SSEsim),

SSEsim =
1

N − n

N
∑

k=n+1

(y(k) − ŷ(k))
2
, (15)

where ŷ(k) is the output of the simulation obtained by building x(k) from the
real inputs and previously estimated outputs. The idea behind (15) is that poorly
estimated regions may increase the simulation error, since these poor estimates
may lead to wrong choices of the next submodel.

When doing experimental identification σ̂2
ε and SSEsim are useful for select-

ing acceptable models from a set of identified models obtained by using the
procedures with different tuning parameters and estimates of the system orders.

3 Intersecting hyperplanes

If the hyperplanes over the regressor space defined by PVs θi and θj intersect
over Xj , datapoints may be wrongly attributed to the data subset Fi. To shed
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Fig. 1. left: Classification with clustering-based and the bounded-error procedures.
Both procedures yield ∆θ = 0.0186 and ∆X = 0.0055 right: Data classification ob-
tained by using the algebraic procedure (yielding ∆θ = 0.0276) and attributing each
data point to the submodel which generates the smallest prediction error.

some light on this issue, consider the PWARX model y(k) = f(x(k)) + e(k)
where f is defined as:

f(x) =























[ x 1 ]

[

0.5
0.5

]

if x ∈ [−2.5, 0]

[ x 1 ]

[

−1
2

]

if x ∈ (0, 2.5]

. (16)

The data set used for identification is depicted in figure 1, together with
the data classification obtained from the clustering-based and bounded error
procedures. It is seen that the clustering-based and the bounded-error proce-
dures do not experience problems with the intersecting PVs in this particular
example. The data classification using the algebraic procedure and the minimum
prediction error rule (11) is given in figure 1, right. It is seen that the minimum
error prediction rule can lead to misclassifications, and hence it is not the most
appropriate rule for the case of PWARX models.

The data classification and the price function for misclassification using the
Bayesian procedure is depicted in figure 2, left. The price for misclassification of
wrongly attributed points is small in comparison to the weight for misclassifica-
tion of the correctly attributed points. The identified model with the Bayesian
procedure, together with the true model is depicted in the figure 2, right.

We stress that the classification methods employed by the clustering-based,
bounded-error and the Bayesian methods are based on heuristics. Theoretical
analysis of this issue is needed.
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∆X = 0.0228 left: a) Data points attributed to modes b) Price function for the wrong
classification right: Data set used for identification, the true model (solid) and the
identified model (dashed)

4 Overestimation of model orders

The clustering based, bounded-error and the Bayesian approach assume that the
system orders na and nb are known exactly, but in practice this is seldom the
case. The algebraic procedure is able to estimate the model orders directly from
the data set.

In order to investigate the effects of overestimating model orders we will
consider a 1-dimensional autoregressive autonomous system of the form

y(k + 1) =

{

2y(k) + 10 + e(k), if y(k) ∈ [−10, 0)

−1.5y(k) + 10 + e(k), if y(k) ∈ [0, 10].
(17)

The additive noise term e(k) is normally distributed, with zero mean and vari-
ance σ2

e = 0.01. The sequence y(k) was generated with y(0) = −10, and the
input was generated as u(k) ∼ U [−10, 10].

The true model orders are na = 1, nb = 0. Identification procedures were
applied for all combinations of na = 1, . . . , 4 and nb = 1, . . . , 5. Note that for
overestimated model orders, the correct model is obtained by setting to zeroes
the entries in θi,Mij ,mij on positions corresponding to superfluous elements in
the regressor.

Figure 3 shows the values of the criterion σ̂2
ε on the logarithmic scale, for

models with different model orders identified by the clustering-based procedure.
From figure 3 it is seen that the clustering procedure identifies the model with
σ̂2

ε value close to the noise in the system for true system orders, but that the
performance rapidly deteriorates when the model order is overestimated. The
problem with the overestimated order lies in the assumption that datapoints
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Fig. 3. left: σ̂2

ε for the clustering procedure with s = 2 and c = 20 right: σ̂2

ε for the
bounded error procedure

close to each other in the regressor space belong to the same subsystem. When
overestimating the order of the model regressor is extended with elements which
do not contain relevant information for the estimation of the subsystems, but
change the distance between the regressors. If the true distance is denoted by
d0, the distance between the extended regressors is d2

e = d2
0 + d2

∗, where d2
∗ is

due to the added elements, and contains no useful information. Depending on
the true and overestimated model orders d∗ can easily be of the same or higher
order of magnitude as d0.

The results for the bounded-error procedure are shown in Figure 3, left. For
the case na = 1, nb = 0, a value of δ allowing to obtain s = 2 submodels is sought.
The procedure is then applied to the estimation of the over-parameterized models
using the same δ. When extending the regression vector, the minimum number of
feasible subsystems of (7) does not increase, and remains equal in this example.
Hence, the minimum partition obtained for na = 1, nb = 0 is also a solution in the
over-parameterized case. The enhanced version [3] of the greedy algorithm [14] is
applied here for solving the MIN PFS problem.

The results for the Bayesian procedure for two different initializations are
depicted in the figure 4. In figure 4, left the a priori parameter pdfs for the
case na = 1, nb = 0 are chosen as pθ1

(·; 0) = pθ2
(·; 0) = U([−5, 5] × [−20, 20]).

For increased orders, added elements in the parameter vector are taken to be
uniformly distributed in the interval [−5, 5] (while the true value is 0). In figure
(4), right for the case na = 1, nb = 0 the a priori parameter pdfs are chosen as
pθ1

(·; 0) = U([0, 4]×[8, 12]), pθ2
(·; 0) = U([−4, 0]×[8, 12]), and all added elements

are taken to be uniformly distributed in the interval [−0.5, 0.5]. This example
shows the importance of proper choice of initial parameter pdfs for the Bayesian
procedure. With precise initial pdfs the algorithm manages to estimate relatively
accurate over-parameterized models. In the case when the a priori information
is not adequate the performance of the algorithm deteriorates rapidly.
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ε for the algebraic procedure

The algebraic procedure is applied to the data set with s = 2, but unknown
model orders. The results are depicted in the figure 5. From 5 we see that the
procedure has no difficulties in estimating the over-parameterized model.

5 Effects of noise

In this section we study effects of noise e on the identification procedures. The
first issue of interest is the effect that different realizations of noise with the
same statistical properties have on the identification results. The second issue is
how statistical properties of noise influence identification results.

To shed some light on these issues we designed an experiment with the
PWARX model of section 4 (see (17)). For this model we generated a noise-
less data set of 100 datapoints. The procedures are applied 100 times on this
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Fig. 6. Means (left) and variances (right) of the ∆θ distributions for several variances
of noise σ2

η

data set, after adding a different realization of normally distributed noise with
zero mean and variance σ2

e to the outputs y(k). For each identified model the
index ∆θ is computed. In this way an approximate distribution of ∆θ for each
σ2

e can be constructed. For each such distribution we computed its mean and
variance. For more details see [15]

Figure 6 depicts means and variances of ∆θ distributions as functions of σ2
e for

all four procedures. Again, we have two different initializations for the Bayesian
procedure, denoted in figure as “Bayesian 1” and “Bayesian 2”. For “Bayesian
1” we used pθ1

(·; 0) = pθ2
(·; 0) = U([−5, 5]× [−20, 20]), and for “Bayesian 2” we

used pθ1
(·; 0) = U([0, 4] × [8, 12]), pθ1

(·; 0) = U([−4, 0] × [8, 12]).
From figure 6 we can conclude that the clustering-based procedure and the

bounded-error procedure achieve similar performance with respect to noise. The
algebraic procedure is more sensitive to noise, as compared to the clustering-
based and bounded-error procedures. With precise initialization (“Bayesian 1”)
the Bayesian procedure achieves performance comparable to clustering-based
and bounded-error, while with imprecise initialization (“Bayesian 2”) the quality
measures are the worst of all procedures.

6 Experimental example

In this section we show the results of the identification of the component place-
ment process in pick-and-place machines. The pick-and-place machine is used for
automatically placing electronic components on a Printed Circuit Board (PCB).
To study the placement process, an experimental setup was made. The photo
and the schematic of the setup are shown in figure 7. A detailed description of
the process and the experimental setup can be found in [16].

A data set consisting of 750 samples is collected. The data set is divided
into two overlapping sets of 500 points, the first set is used for identification,
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Fig. 7. Photo and the schematic representation of the experimental setup

and the second for validation. All four procedures were applied for several order
estimates and with different tuning parameters. The procedures were executed
for all the combinations of these orders and tuning parameters. The proposed
quality measures σ̂2

ε and SSEsim were used to choose acceptable identified models
for which the simulations were plotted. The best identified model was then chosen
by visual inspection.

For the clustering-based procedure figure 8, left shows the simulation based
on the validation data set for the best model obtained. In the upper panel of
the figure measured output yid and the simulated output ysim are depicted.
The lower panel shows which of the identified submodels is active at each time
instant. It turns out that the best models are obtained for high values of c. The
same was observed in [16]. A possible explanation is the following: because of
the presence of dry friction neither the free nor the impact mode are linear, but
with large LD’s the effects of dry friction can be ’averaged out’ as a process
noise. Note that the difference between the measured and simulated responses,
which is due to unmodeled dry friction, is clearly visible, e.g. on the time interval
[225, 300].

As the number of modes s for the bounded-error procedure is not fixed, in
order to identify two modes, the right combination of the parameters α, γ and
δ has to be found. For the initial error bound δ we used 3σ̂ε ≈ 1, obtained
from the clustering-based procedure, assuming that this value would be a good
estimate for the variance of the measurement noise. Executing the bounded-error
procedure with δ’s in the vicinity of this 3σ̂2

ε resulted in identified models with
only one parameter vector, and a large number of infeasible points. Therefore,
we had to lower the error bound to δ = 0.30. For this value of δ the procedure
identified a model that distinguishes two submodels. Model identified with this
δ had a smaller values of both σ̂2

ε for the identification data set and SSEsim

for the validation data set than the model identified with the clustering-based
procedure. The simulation of the validation data set for the best identified model
is shown in the figure 8, right.
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Fig. 8. left: Simulation of the PWARX model generated by the clustering procedure
with na = 2, nb = 2, s = 2 and c = 90 for the validation data set with SSEsim = 1.98
right: Simulation of the PWARX model generated by the bounded-error procedure
with na = 2, nb = 2, δ = 0.3, α = 0.10, β = 0.01 and c = 40 for the validation data set
with SSEsim = 1.72 upper fig.: solid line: predicted response, dashed line: measured
response lower fig.: active mode.

Physical insight into the operation of the setup facilitates the initialization of
the Bayesian procedure. For instance, although the mode switch does not occur
at a fixed height of the head, with a degree of certainty data points below certain
height may be attributed to the free mode, and, analogously data points above
certain height may be attributed to the impact mode. This a priori information
may be exploited to obtain the rough estimate of each of the parameters through
least squares, θLS

i . Also, the variance Ṽi of such estimate may be obtained. This
information is sufficient to describe the parameter θi as a normally distributed
random variable, with a mean θLS

i and variance Ṽi.

Portions of the identification data set that are used to initialize the procedure
are depicted in the figure 9, left, together with the input signal. Results of
simulation of the identified model are given in figure 9, right. The model yields a
lower value of SSEsim than the two models obtained with the clustering-based
and bounded-error procedures.

The algebraic procedure identified the parameters of the model, with σ̂2
ε =

0.0803. However, the data classification is not satisfactory, as the procedure
predicts rapidly oscillating mode values, while in the physical system such os-
cillations are impossible. It remains for the future work to check if estimated
parameters can be used to obtain the satisfactory PWARX model.

7 Conclusions

We conclude the paper by summarizing features and drawbacks of each identifi-
cation procedure, based on the insights obtained from the considered examples.
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Fig. 9. Bayesian procedure. left: Data set used for identification a) position (portion
marked with ◦: data points used for the initialization of the free mode; portion marked
with ×: data points used for initialization of impact mode b) input signal right: upper

fig.: Simulation of the identified model (solid line: simulated response, dashed line:
measured response), SSEsim = 1.56 lower fig.: modes active during the simulation

The algebraic procedure is well suited for the cases when the system that
generated the data can be accurately described with a switched linear system,
and no or little noise is present. It can also handle the cases with unknown
model orders. Noise and/or nonlinear disturbances in the data may cause poor
identification results.

When trying to identify a PWARX model using the data classification ob-
tained from the algebraic procedure one must be aware that the minimum pre-
diction error classification rule might lead to inaccurate classification. In such
cases, it is better to use one of the classification methods employed by other
procedures.

The Bayesian procedure is well suited for the cases where the sufficient phys-
ical insight into the underlying data generating process is available. By appro-
priate choice of the initial parameter pdfs the user might steer the procedure
towards identifying the model where the modes of the identified model represent
different modes of the physical system. On the other hand, poor initialization
may lead to poor identification results.

The bounded error procedure is well suited for the cases when there is no a
priori knowledge on the physical system and one needs to identify a model with a
prescribed bounded prediction error (e.g. approximation of nonlinear systems).
Tuning parameters allow for the tradeoff between the model complexity and
accuracy. However, finding the right combination of tuning parameters to get
the model with the prescribed structure (number of modes) may be difficult.

The clustering-based procedure is well suited for the cases when there is no a
priori knowledge on the physical system, and one needs to identify a model with
a prescribed structure. When using the clustering-based procedure one must be



aware of the possible erratic behavior (as described in section 4) in the cases
when the model orders are not known exactly.
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