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Abstract— In this paper, we tackle the problem of selecting
a sparse data transmission sequence for a networked control
system while guaranteeing a certain L2-induced norm bound
with respect to an exogenous disturbance input. As the main
contribution of this work, for every periodic transmission
sequence, we provide a transmission sequence counterpart,
aperiodic in general, that results in fewer or at most the
same number of transmissions while still guaranteeing an L2

control policy with the same L2-induced norm bound as that
of the periodic transmission policy. In this sense, the proposed
transmission sequence is called L2-consistent. Moreover, we
show that as the horizon approaches infinity, the proposed L2-
consistent transmission sequence counterpart of every periodic
transmission sequence approaches a periodic transmission se-
quence with an equal or larger time period.

I INTRODUCTION

Traditionally, sampled-data control is implemented by
periodically transmitting the state or the output of the sys-
tem to the controller and then updating the control input.
However, periodic sampling and control may require ex-
cessive resources, which can be prohibitive in applications
where the computation power of the controller is limited,
or the bandwidth of the communication channels is small.
Moreover, in any application, all these resources are con-
strained, especially when the control loops are closed over
a shared communication network. Therefore, resource-aware
control [1] has received a considerable amount of attention in
recent years in pursuit of new sampling and control policies,
which meet the constraints imposed in the networked control
systems of the future.

There are many papers that propose data transmission
policies not only to save transmissions but also to guarantee
or optimize a certain performance criterion for the control
system [2]–[4]. Moreover, it has been widely demonstrated
in recent years that aperiodic control, such as event-triggered
control (ETC) [1], [5]–[11], can significantly reduce the
average communication frequency while keeping the closed-
loop control performance within the desired values.

Within the performance criteria considered in the context
of ETC, and for control systems in general, the L2-induced
norm bound is an important performance measure [12]–[15].
It indicates the attenuation level of the disturbance input at
the performance output of the system and highly depends
on the sequence at which the state or the output vector is
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Fig. 1: Disturbance attenuation by an L2 state-feedback
controller where G,K and S refer to the plant, the controller
and the scheduler, respectively.

transmitted to the controller. Some of the previous studies
investigated the L2 control design problem for the periodic
data transmission to the controller [16], [17]. Moreover, there
are some other studies establishing the L2 stability of the
ETCs [12], [13] or providing guaranteed values for the L2-
gain of the proposed ETCs [15]. In this paper, inspired
by [18], we introduce a notion of L2-consistency for a data
transmission sequence, where in comparison to its periodic
transmission counterpart, it guarantees an L2 control policy
with an equal or smaller L2-induced norm bound, while its
average transmission frequency is lower or at most is equal
to that of the periodic transmission counterpart. Our goal in
this paper is to propose an L2-consistent data transmission
sequence from the sensors to the controller for general
discrete-time linear systems.

To achieve this goal, we approach the finite-time hori-
zon L2 control design problem from the perspective of non-
cooperative game theory [19]. As depicted in Fig. 1, we
consider a data scheduler that sends the state information
to the controller based on a time sequence, which should be
determined to guarantee a certain L2-induced norm bound
for the system. We start by determining an L2-induced
norm bound for the periodic transmission time sequence with
a single constant time period τ ∈N. Then, for the τ -step
periodic transmission sequence, we propose an L2-consistent
aperiodic transmission sequence. We also investigate the
problem when the time horizon approaches infinity. In this
case, we show that the proposed L2-consistent transmis-
sion sequence counterpart of every periodic transmission
sequence approaches a periodic transmission with an equal
or larger time period.

The remainder of this paper is organized as follows: the
problem of interest is introduced in Section II and the L2

control problem is solved in Section III by resorting to game
theory. Then, an aperiodic L2-consistent transmission time
sequence is introduced in Section IV. Finally, the effec-
tiveness of the technique to provide efficient transmission
sequences is demonstrated through numerical simulations
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in Section V. Section VI presents concluding remarks. The
proof of the main theorem can be found in the appendix.

Notation: Let N0 indicate the set of non-negative integers,
and Nsr={t∈N0|r≤ t≤s} for r, s∈N0.

II PROBLEM SETTING

In this section, we illustrate the configuration of the
networked control system in Section II-A and introduce the
problem of interest in Section II-B.

II-A Networked control configuration

Consider a discrete-time linear time-invariant (LTI) system

xk+1 =Axk+Buk+Dwk, (1)

where xk∈Rn is the state vector at k∈NK0 , uk∈Rm is the
control input at k∈NK−1

0 and w[0,K−1]∈`2([0,K−1],Rl)
is a sequence of the disturbance inputs. Let us also assume
that (A,B) is stabilizable. For the sake of simplicity, we
assume x0 =0, although, we can also define and solve the
L2 control design problem for the system with an unknown
initial condition1 [20]. The disturbance generator is assumed
to have access to the state vector at all times and therefore
wk=Φk(Ek), where

Ek :={xi|i∈Nk0}. (2)

However, we assume a state transmission time
sequence η∈{0, 1}K from the sensors to the controller
specified by (δη0 , δ

η
1 , . . . , δ

η
K−1)∈{0, 1}K , where for

all k∈NK−1
0 , xk is transmitted to the controller if δηk =1,

otherwise it is not transmitted. Therefore, the control policy
is denoted by uk :=Ψk(Fηk ), k∈NK−1

0 , where

Fηk :={xi|i∈Nk0 ∧δ
η
i =1}. (3)

Furthermore, let us denote Tη=
∑K−1
i=0 δηi as the

total number of transmissions, and (ti, τi) for
all i∈NTη−1

0 as the pairs of the transmission times
and the time interval up to the next transmission
time, i.e. ti∈NK−1

0 such that t0<t1< · · ·<tTη−1 and
{t0, . . . , tTη−1}={k∈NK−1

0 |δηk =1} and τi= ti+1− ti for
all i∈NTη−1

0 where tTη =K. The goal of the L2 control
problem is to attenuate the effect of the disturbance input wk
on the performance output zk of the system defined as

zk=Exk+Fuk, (4)

where for the sake of simplicity, we select E and F such that
EᵀE=Q≥0, F ᵀF =I , EᵀF =0 and (A,Q

1
2 ) to be observ-

able. Therefore, zᵀkzk=xᵀkQxk+uᵀkuk at every k∈NK−1
0 .

Definition 1: (L2-induced norm bound) Let η∈{0, 1}K
be given as a data transmission sequence from the sensor to
the controller of the discrete-time system (1) and suppose
there exists a state-feedback control policy

uk=Ψk(Fηk ), k∈NK−1
0 , (5)

1In this case, we add one extra time-step to the time-horizon and consider
the initial condition as the disturbance of the previous time-step.

for which
K−1∑
k=0

zᵀkzk≤γ
2
K−1∑
k=0

wᵀ
kwk. (6)

Moreover, let

Γη :=
{
γ∈R>0|∃ (5) for which (6) holds

for every w[0,K−1]∈`2([0,K−1],Rl)}.
(7)

Then, any γ∈Γη is an L2-induced norm bound of the
system (1) for the data transmission sequence η to the
controller and is denoted by γη .

�
The problem of finding a control policy (5) such that (6)
is met for every sequence w[0,K−1]∈`2([0,K−1],Rl) will
be denoted by the L2 control problem. Such policy always
exists for sufficiently large γ∈R>0 and in particular the set
Γη is non-empty.

II-B Problem statement

We denote the τ -step periodic transmission sequence
for τ ∈N by pτ where δpτk =1 if k is zero or a multiple of the
sampling period τ and δpτk =0, otherwise. Next, we define
the concept of an L2-consistent data transmission sequence.

Definition 2: (L2-consistent data transmission sequence)
Let K∈N and τ ∈NK1 be fixed. A data transmission se-
quence µ∈{0, 1}K is called L2-consistent if in comparison
to the τ -step periodic transmission sequence, it guarantees
an L2 control policy with the same or smaller L2-induced
norm bound, however, by using fewer or at most the same
number of data transmissions. That is, for any γpτ ∈Γpτ as
an L2-induced norm bound of the system for the τ -step
periodic transmission sequence, there exists γµ∈Γµ such
that γµ≤γpτ while Tµ≤Tpτ . �

The problem of interest in this work is to find an L2-
consistent data transmission sequence from the sensor to the
controller.

III L2 CONTROL DESIGN BASED ON ZERO-SUM GAME

This section starts by introducing a two player zero-
sum quadratic dynamic game (ZQDG) and its saddle-point
solution is given in Lemma 1. Then, Lemma 2 provides the
condition for the existence of the ZQDG saddle point solu-
tion, which is beneficial for determining an L2-induced norm
bound of the system. Finally, we illustrate the behaviour of
the saddle-point existence condition at different transmission
time for the periodic transmission sequence in Lemma 3. The
proofs of Lemmas 1-5 are omitted due to space limitations.

Let us now denote u=u[0,K−1] and w=w[0,K−1] as the
control and the disturbance inputs during the time win-
dow NK−1

0 , respectively, and define the following perfor-
mance index

J0(u,w) :=

K−1∑
k=0

xᵀkQxk+uᵀkuk−γ
2wᵀ

kwk. (8)

It is well-known that the L2 control problem is solved
by considering a two player zero-sum quadratic dynamic
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game (ZQDG) in which the controller acts as a mini-
mizer and the disturbance generator acts as a maximizer
of (8) (see, e.g., [16]). Therefore, we wish to find control
and disturbance policies u∗k=Ψk(Fηk ) and w∗k=Φk(Eηk ) for
all k∈NK−1

0 where the pair (u∗, w∗) with u∗=u∗[0,K−1]

and w∗=w∗[0,K−1] satisfies the following inequalities

J0(u∗, w)≤J0(u∗, w∗)≤J0(u,w∗),

for every u and w, where w=w[0,K−1]∈`2([0,K−1],Rl).
The pair of the control and the disturbance policies (Ψk,Φk)
is called the saddle-point solution of the ZQDG.

In order to determine these policies, let us denote the
augmented vectors of the control and the disturbance inputs
in between every two successive transmission time-steps by
Ui=[uᵀti , . . . , u

ᵀ
ti+1−1]ᵀ and Wi=[wᵀ

ti , . . . , w
ᵀ
ti+1−1]ᵀ, re-

spectively, for all i∈NTη−1
0 . Then, if the solution of the

following optimization problem

Ji(U
∗
i ,W

∗
i )= min

Ui(Fηti )
max

wti (Eti )
. . . max

wti+1−1(Eti+1−1)

ti+1−1∑
k=ti

[xᵀkQxk+uᵀkuk−γ
2wᵀ

kwk]+Ji+1(U∗i+1,W
∗
i+1)

(9)
for all i∈NTη−1

0 exists (if it is bounded) where JNη =0,
it results in the saddle-point solution (U∗i ,W

∗
i ) of the

dynamic game at time-steps {ti, . . . , ti+1−1} where U∗i
is the state-feedback L2 control input for the given
transmission sequence η. If this solutions exists, we
say that he ZQDG (9) admits a saddle-point solution
(u∗, w∗)=

{
(U∗i ,W

∗
i )|i∈NTη−1

0

}
. Moreover, a bound for

the L2-induced norm of the system can be determined based
on the condition under which the ZQDG (9) attains a saddle-
point solution. It is worthwhile to mention that Ji(U∗i ,W

∗
i )

for all i∈NTη−1
0 is the saddle-point game value at every data

transmission time.
Lemma 1: Assume that the ZQDG (9) admits a saddle-

point solution for a given γ∈R>0 when the information
available to the disturbance generator and the controller is
described by (2) and (3), respectively, for an arbitrary given
data transmission sequence η. Then, for every k∈NK−1

0 ,

u∗k=Rkx̂k|k,

w∗k=Skxk+(Lk−Sk)x̂k|k,
(10)

are the saddle-point control and disturbance policies of the
ZQDG (9), where

Rk=−BᵀNk+1Λ−1
k A,

Lk=γ−2DᵀNk+1Λ−1
k A,

Sk=γ−2DᵀΘk+1V
−1
k A,

(11)

for Λk=I+(BBᵀ−γ−2DDᵀ)Nk+1, NK =0 and

Nk=Q+AᵀNk+1Λ−1
k A, (12)

for all k∈NK−1
0 . Moreover, Vk=I−γ−2DDᵀΘk+1 where

ΘK =0 and for all k∈NK−1
0 ,

Θk=

{
Q+AᵀΘk+1V

−1
k A, if δηk =0

Nk, otherwise.

Furthermore, x̂k|k is determined as follows

x̂k+1|k=Λ−1
k Ax̂k|k,

x̂k|k=

{
xk, if δηk =1

x̂k|k−1, otherwise.

(13)

�
The following lemma provides the saddle-point existence

condition for the ZQDG (9).
Lemma 2: Consider that the disturbance generator and the

controller have access to the information sets (2) and (3),
respectively, for an arbitrary given data transmission se-
quence η. Then for a given γ∈R>0, the ZQDG admits a
saddle-point solution if for every i∈NTη−1

0

M̄τi
ti (γ)>0, (14)

where
M̄τi
ti (γ)=γ2Iτi×l−D̄ᵀ

τiN̄
τi
ti D̄τi , (15)

for which

D̄τi =


D 0 0
AD D 0

. . .
Aτi−1D Aτi−2D D


τi×τi

and

N̄τi
ti =

{
Nti+1, if τi=1

diag(Iτi−1⊗Q,Nti+τi), otherwise,
(16)

where Nk is determined based on (12). �
Based on Definition 1 and Lemma 2, any member of the

following set

Γη={γ∈R>0|M̄τi
ti (γ)>0, ∀i∈NTη−1

0 }. (17)

is an L2-induced norm bound of the discrete-time system (1)
for the state transmission time sequence η. In the following
lemma, we illustrate the non-decreasing behaviour of the
eigenvalues of M̄τ

ti(γ) with respect to i∈NTpτ−1
0 for the τ -

step periodic transmission sequence.
Lemma 3: For the τ -step periodic transmission sequence

and any γ∈Γpτ , the eigenvalues sequence of the matrix
sequence {M̄τ

ti(γ)|i∈NTpτ−1} are non-decreasing with re-
spect to i∈NTpτ−1

0 and therefore, M̄τ
ti(γ)≤M̄τ

ti+1
(γ) for

all i∈NTpτ−1
0 and ti= iτ . �

IV L2-CONSISTENT TRANSMISSION SEQUENCE

In this section, we propose an L2-consistent transmission
sequence for the finite-time horizon problems in Section IV-
A and then investigate its behaviour as time horizon ap-
proaches infinity in Section IV-B. Then, in Section IV-C, we
extend the L2-consistent transmission sequence for the case
when the parameters of the performance output are time-
varying.
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IV-A Finite-time horizon problems

In this section, we introduce an L2-consistent state trans-
mission sequence to the controller based on Definition 2. The
idea behind this sequence is inspired by the non-decreasing
behaviour of the eigenvalues of M̄τ

ti(γ) with respect to trans-
mission time-step ti for the periodic transmission sequence
according to Lemma 3. This data transmission sequence is
formed by selecting at every transmission time-step (ti) the
largest inter-transmission time interval (τi) so that M̄τi

ti (γ)
has its minimum eigenvalue in the closest proximity of zero.

Theorem 1: (L2-consistent state transmission sequence)
Suppose that γpτ ∈Γpτ is an L2-induced norm bound of
the system (1) for the τ -step periodic state transmission se-
quence. Then, for γ=γpτ , the transmission time sequence µ
for which the transmission time-steps are determined as

ti+1 = ti+(νi−1) (18)

for t0 =0 and

νi=min{r∈N|M̄r
ti(γ)=γ2Ir×l−D̄ᵀ

r N̄
r
tiD̄r≤0}

for all i∈NTµ−1
0 where,

N̄r
ti =

{
Nti+1, if r=1

diag(Ir−1⊗Q,Nti+r), otherwise
(19)

is L2-consistent, i.e., it results in fewer or at most the
same number of transmissions in comparison with the τ -step
periodic state transmission sequence as γpτ is the L2-induced
norm bound of the system for both transmission sequences.

�
The proof of Theorem 1 is provided in the Appendix.
Note that the value of γpτ in Theorem 1 can be selected

very close to the infimum value of the set Γpτ which is
actually defined as the L2-induced norm of the system [16].

IV-B Horizon approaches infinity

The L2-consistent state transmission sequence proposed
in Theorem 1 has the ability to decrease the number of
transmissions for finite-time horizon problems, while still
guaranteeing the same value for the L2-induced norm bound
of the system. It is also of interest to evaluate the effec-
tiveness of the proposed L2-consistent state transmission
sequence as the horizon approaches infinity. The following
lemma shows that if the time horizon is long enough, then
there is a time-step L̄∈NK−1

0 where the L2-consistent state
transmission sequence of Theorem 1 follows the periodic
transmission sequence at all k∈NL̄0 .

Lemma 4: Assume that the data transmission follows the
L2-consistent state transmission sequence µ proposed in
Theorem 1 for a given τ ∈N and γpτ ∈R>0. Then for
every time-step L̄∈N0, there exists a time-step K̄ >L̄ such
that if K>K̄ then for every k∈{0, . . . , L̄}, µ∈{0, 1}K
follows the periodic transmission sequence with a fixed time
period τ ′∈N which is equal or larger than τ , i.e. for all k≤ L̄

δµk =

{
1, if k= iτ ′

0, otherwise,

where i∈N0 and τ≤τ ′. �
Lemma 4 states essentially that for the long or infinite-

time horizon problems, the L2-consistent state transmission
sequence of Theorem 1 follows the periodic transmission
sequence from the initial time-step with a period equal or
larger than τ and as time approaches the final time-step,
the transmission sequence may become aperiodic with inter-
transmission times larger than τ .

IV-C Time-varying performance output

In this section, we consider a class of time-varying per-
formance outputs for the system (1) as

zk=Ekxk+Fkuk, (20)

where Eᵀ
kEk=Qk≥0, F ᵀ

k Fk=I , Eᵀ
kFk=0 and (A,Q

1
2

k ) is
observable for all k∈NK−1

0 . In order to find the set of L2-
induced norm bound (7) for the time-varying performance
output (20) and any fixed transmission sequence η, we can
follow (17) and Lemma 2 where (16) needs to be adapted
as follows

N̄τi
ti =

{
Nti+1, if τi=1

diag(Qti+1, . . . , Qti+τi−1, Nti+τi), otherwise.

Moreover, in the following lemma, we provide the condition
under which the transmission sequence of Theorem 1 is L2-
consistent for the time-varying performance output (20).

Lemma 5: The transmission sequence determined based
on Theorem 1 where (19) is adapted to the time varying
performance output (20) as

N̄r
ti =

{
Nti+1, if r=1

diag(Qti+1, . . . , Qti+r−1, Nti+r), otherwise,

is L2-consistent if Qk≥Qk+1≥0 for all k∈NK−2
0 . �

Based on Lemma 5, we can design an L2-consistent
transmission sequence similar to one proposed in Theorem 1
when the series of eigenvalues of {Qk|k∈NK−1

0 } is a non-
increasing function of time.

V SIMULATION RESULTS

V-A Scalar system

Consider A=1, B=1 and D=5 as the parameters
of a scalar system, Q=0.01 and K=37. Then for
every τ -step periodic transmission sequence where
τ ∈{1, 2, 3, 4}, we can select an L2-induced norm bound
from the set Γpτ given in (17). These selected values
are γp1 =4.7110, γp2 =4.8538, γp3 =5.0204, γp4 =5.2089,
which are all very close to the infimum value of the set Γpτ

for every τ ∈{1, 2, 3, 4}. For these fixed L2-induced norm
bounds, we determine their L2-consistent state transmission
sequence counterparts based on Theorem 1, where the
resulting total number of transmissions from the initial
time-step is shown in Fig. 2(a). As it can be seen, for
the given values of K, τ and γpτ , transmissions follow a
periodic pattern at time-steps close to the initial time-step.
However, as time approaches the final time-step, the
inter-transmission times become larger which results in
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Fig. 2: a) Number of transmissions up to time-step k for
the L2-consistent transmission sequence, b) total number
of transmissions versus an L2-induced norm bound for the
periodic and L2-consistent state transmission sequences.

fewer total transmissions. Fig. 2(b) shows the total number
of transmissions with respect to the considered L2-induced
norm bound of the system for both periodic transmission and
its L2-consistent data transmission sequence counterpart.
Based on that, the number of transmissions of the L2-
consistent sequence is fewer than the one for the periodic
sequence while they both guarantee the same L2-induced
norm bound. Moreover, for this example, as the final time
tends to infinity, the transmission reduction (Tpτ −Tµ)
achieved by the L2-consistent sequence converges to a
bounded value, which is shown in Fig. 3. It indicates that
if for this system time horizon converges infinity, then the
L2-consistent transmission sequence approaches periodic
transmission where the time period is equal to τ , i.e. τ ′=τ .

V-B System with delayed disturbance input

Consider the linear system (1) with K>n and

A=


0 1 0

. . .
. . .

. . . 1
0 0


n

, B=


1
0
...
0

 , D=


0
...
0
1

 ,

where n≥2 and Q=diag(1, 0, . . . , 0). Based on these dy-
namics, it takes n−1 time-steps for every disturbance input
to affect the first state (or, equivalently, the performance
output) of the system while the control input affects the first
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Fig. 3: Transmissions reduction achieved by the L2-
consistent state transmission sequence as time horizon ap-
proaches infinity.

state directly. By using (12), we determine NK =0 and

Nk=



diag(1, 0, . . . , 0), if k=K−1

diag(1, 1
2 , 0, . . . , 0), if k=K−2

. . .

diag(1, 1
2 , . . . ,

1
2 , 0), if k=K−(n−1)

diag(1, 1
2 , . . . ,

1
2 ), if k≤K−n

for any admissible value of γ∈R>0. Moreover, based
on (17), for the τ -step periodic feedback transmission se-
quence, the set of L2-induced norm bound is given by

Γpτ =

{
( 1√

2
,∞), if τ≤n−1

(1,∞), otherwise,

irrespective of the time horizon K. Determining the L2-
consistent state transmission sequence based on Theorem 1
results in a periodic transmission sequence with τ=n−1 for
any γpτ ∈( 1√

2
, 1], while, it results in just one transmission

at k=0 for γpτ ∈(1,∞). Therefore,

Tη=

{
K−1
n−1 , if γpτ ∈( 1√

2
, 1]

1, if γpτ ∈(1,∞),

and the fraction of the transmission reduction (TR) resulting
by the L2-consistent transmission sequence is

TR=
Tpτ −Tµ
K−1
τ

=

{
1− τ

n−1 , if τ≤n−1

1− τ
K−1 , otherwise.

This indicates that for some conditions, we can omit a large
portion of the total transmissions irrespective of the time
horizon. In these situations, the L2-consistent transmission
sequence of Theorem 1 results in a periodic transmission
with average inter-transmission time larger than τ .

VI CONCLUSIONS

In this work, we introduced a notion of L2-consistency
for a data transmission sequence from the sensors to the
controller, which guarantees an L2 control policy with the
same or a smaller L2-induced norm bound as that of the
τ -step periodic transmission policy, however with fewer or
at most the same number of data transmissions. Then, based
on the crucial observation that for the finite-time horizon
problems, the eigenvalues of the weighting matrix of the
saddle-point zero-sum quadratic dynamic game value have
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a constant or decreasing behaviour with respect to time,
we propose an aperiodic L2-consistent data transmission
sequence. In principle, the proposed transmission policy
increases the inter-transmission time as time is approaching
the final time-step and the eigenvalues of the saddle-point
weighting matrix are becoming smaller. This results in
the L2-consistency property. We also investigate the case
where the horizon approaches infinity. For this case, the
proposed L2-consistent transmission sequence counterpart of
every periodic transmission sequence approaches a periodic
transmission sequence with an equal or larger time period.

APPENDIX

A Theorem 1

Assume that ti∈NK−1
0 is a transmission time-step gen-

erated by the proposed algorithm in this theorem. To prove
the result, we just need to show that for this transmission
time-step τi=νi−1≥τ . Equivalently, we can show it by
establishing that at any ti∈NK−1

0 , M̄r
ti(γ)>0 for all r∈Nτ1

and any γ∈Γpτ where M̄r
ti(γ)=γ2Īr×l−D̄ᵀ

r N̄
r
tiD̄r. Since

we know that M̄τ
t0(γ)>0 and due to the non-increasing

behaviour of Nk with respect to time, we can conclude
that M̄τ

ti(γ)>0 at any ti∈NK−τ0 . In the following, we
show that M̄r

ti(γ)>0 for all r∈Nτ−1
1 given the condition

that M̄τ
ti(γ)>0. Let us partition M̄τ

ti(γ) as follows

M̄τ
ti(γ)=

[
γ2I(τ−1)l−R̄τ−1 −S̄ᵀ

τ−1A
ᵀNti+τD

−DᵀNti+τAS̄τ−1 γ2I−DᵀNti+τD

]
,

where R̄τ−1 =D̄ᵀ
τ−1Q̄

τ−1
ti D̄τ−1 + S̄ᵀ

τ−1A
ᵀNti+τAS̄τ−1,

D̄τ =

[
D̄τ−1 0
AS̄τ−1 D

]
, S̄τ−1 =

[
Aτ−2D . . . D

]
.

Then by using the Schur complement, guaranteing
M̄τ
ti(γ)>0 for any γ∈Γpτ is equivalent to the inequali-

ties Ξ1(γ)=γ2I−DᵀNti+τD>0 and

Ξ2(γ)=γ2I(τ−1)l−R̄τ−1 +(AS̄τ−1)ᵀNti+τD(
γ2I−DᵀNti+τD

)−1
DᵀNti+τAS̄τ−1>0.

By simplifying Ξ2(γ) and using the Lemma 6.2 in [21] we
arrive at the following expression

Ξ2(γ)=γ2I(τ−1)l−D̄ᵀ
τ−1Q̄

τ−1
ti D̄τ−1−

S̄ᵀ
τ−1A

ᵀNti+τ (I−γ−2DDᵀNti+τ )−1AS̄τ−1>0.

Moreover, since D̄ᵀ
τ =[D̄ᵀ

τ−1 S̄ᵀ
τ ], we can represent

the above equation as follows Ξ2(γ)=γ2I(τ−1)l−
D̄ᵀ
τ−1N̂

τ−1
ti+τ−1D̄τ−1>0, where

N̂τ−1
ti+τ−1 =diag

(
Qti+1, . . . , Qti+τ−1+

AᵀNti+τ (I−γ−2DDᵀNti+τ )−1A
)
.

Furthermore, M̄τ−1
ti (γ)=γ2I−D̄ᵀ

τ−1N̄
τ−1
ti+τ−1D̄τ−1 where

N̄τ−1
ti+τ−1 =diag

(
Qti , . . . , Qti+τ−1+

AᵀNti+τ
(
I+(BBᵀ−γ−2DDᵀ)Nti+τ

)−1
A
)
.

Since BBᵀNti+τ ≥0, then we can conclude that
N̄τ−1
ti+τ−1≤N̂

τ−1
ti+τ−1 and therefore, for any γ∈Γpτ

we have 0<Ξ2(γ)≤M̄τ−1
ti (γ) which indicates that

if M̄τ
ti(γ)>0 then M̄τ−1

ti (γ)>0. Following an induction
argument, we can also prove that M̄r

ti(γ)>0 holds for
all r∈N̄τ−2

1 which proves the theorem.
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