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Abstract— Gaussian processes provide a compact represen-
tation for modeling and estimating an unknown function, that
can be updated as new measurements of the function are
obtained. This paper extends this powerful framework to the
case where the unknown function dynamically changes over
time. Specifically, we assume that the function evolves according
to an integro-difference equation and that the measurements
are obtained locally in a spatial sense. In this setting, we will
provide the expressions for the conditional mean and covariance
of the process given the measurements, which results in a
generalized estimation framework, for which we coined the
term Dynamic Gaussian Process (DGP) estimation. This new
framework generalizes both Gaussian process regression and
Kalman filtering. For a broad class of kernels, described by a
set of basis functions, fast implementations are provided. We
illustrate the results on a numerical example, demonstrating
that the method can accurately estimate an evolving continuous
function, even in the presence of noisy measurements and
disturbances.

I. INTRODUCTION

Gaussian Processes (GPs) have seen increasing interest in
recent years due to their universal applicability in the esti-
mation of unknown functions. This widely used framework
is non-parametric and generally provides accurate estimates
with relatively little data. In this paper, we extend this
powerful technique to the case when the unknown function
dynamically changes with time.

We consider the estimation of a class of spatio-temporal
models, which have a time dimension, as well as a space
dimension. The model class includes an evolving function
that is described by a generalized version of an integro-
difference equation (IDE) [1], [2]. The class also includes
an observation equation, which specifies that we take lo-
cal, noisy measurements of the evolving function at every
discrete time step. We call this model class the Dynamic
Gaussian Process (DGP).

Our main results pertain to the exact Bayesian estimation
of the DGP. We provide analytical expressions for the
conditional mean and covariance (with respect to available
measurement data and priors). These computations include
the calculation of an analytical integral at every time step
where new measurements are received. As a result, in the
general case, the DGP estimate expression and therefore the

The research is carried out as part of the ITEA4 20216 ASIMOV project.
The ASIMOV activities are supported by the Netherlands Organisation for
Applied Scientific Research (TNO) and the Dutch Ministry of Economic
Affairs and Climate (project number: AI211006). The research leading
to these results is partially funded by the German Federal Ministry of
Education and Research (BMBF) within the project ASIMOV-D under grant
agreement No. 01IS21022G [DLR], based on a decision of the German
Bundestag.

The authors are with the Control Systems Technology Section, De-
partment of Mechanical Engineering, Eindhoven University of Technol-
ogy, the Netherlands. Emails:{j.s.v.hulst, r.a.c.zuijlen,
d.antunes, m.heemels}@tue.nl

computation may become very complex as the number of
time steps increases. Therefore, we show that for a restricted
class of DGPs, the required computations can be simplified
considerably, leading to a rather efficient numerical imple-
mentation. The restricted class relies on basis functions and
yields computations with complexity O(M3), with M the
number of bases. Importantly, the computation no longer
scales with the number of time steps. This is highly beneficial
computationally, both when the DGP fits this simplified
framework, and when it is approximated to do so. Interest-
ingly, we also show that our Bayesian estimation framework
generalizes both Gaussian process regression and Kalman
filtering, two of the most important estimation frameworks
in the literature.

This is not the first work to examine a connection between
the Kalman filter (KF) [3] and the Gaussian process (GP) [4].
In fact, such connections have been studied extensively [5],
[6], [7]. The computational complexity of a GP estimator
can be drastically reduced by incorporating KF logic, given
temporal data [8], [9]. Alternatively, the computation can be
simplified by making use of sparse GP methods [10], [11],
recursive methods [12] or by introducing basis functions
[13], [14]. GPs have also been used alongside the Kalman
filter to estimate state-dependent disturbances [15]. More-
over, in [16], GPs are used to estimate the state dynamics
and observation model for different types of the Bayes filter,
including the extended Kalman filter.

Turning to the estimation of evolving functions and spatio-
temporal models, we find the KF and GP working in tandem.
For example, [17] proposes an evolving GP estimator in
continuous time using a vector of functions with spatial
input, effectively creating an infinite-dimensional KF in
continuous time. Moreover, [18] developed a framework for
the estimation of evolving functions described by IDEs in the
case that they are restricted to a set of basis functions. In the
current work, however, we also consider the exact Bayesian
estimation of the general unrestricted class. Additionally,
the current work relaxes specific structure assumptions such
as stationary measurement locations which are often not
met in practically relevant problems. The Kriged Kalman
filter is developed in [19], which presents a Kalman filter
projected onto basis functions, making it suitable for the
estimation of evolving functions. However, in this work, we
establish a rigorous connection to a spatio-temporal model
class, which allows our method to estimate IDEs. To the best
of the authors’ knowledge, there are currently no estimation
frameworks that simultaneously generalize the KF and GP-
based regression.

The remainder of this paper is organized as follows.
In Section II, the main estimation problem of this paper
is introduced. Moreover, it is explained how the problem
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generalizes the estimation problems in GP-based regression
and the KF. In Section III, the exact solution to the estimation
problem is detailed and analyzed. Section IV introduces the
special class of DGPs that results in efficient computation.
Section V presents the results of applying the proposed
method in a numerical case study. A code example is avail-
able at https://github.com/JvHulst/Dynamic_
Gaussian_Processes. Lastly, Section VI gives conclu-
sions and recommendations for future research.
Notation. Let R = (−∞,∞), and R≥0 = [0,∞). Let
N = {0, 1, . . .} denote the natural numbers. For a, b ∈ N,
let N[a,b] = {a, a + 1, . . . , b}. The identity matrix of size
n is denoted by In. Let Sn+ := {A ∈ Rn×n | A ⪰ 0}
denote the set of symmetric positive semidefinite matrices
of size n × n. A normal distribution with mean vector
m̄ ∈ Rn and covariance matrix Σ ∈ Sn+ is denoted
N (m̄,Σ). The expected value of a random variable x ∈ Rn

is denoted E [x]. The covariance of two random variables
is denoted cov(x1, x2) := E

[
(x1 − E [x1])(x2 − E [x2])

⊤].
A Gaussian process with the mean function f̄ : X → R
and the covariance function k : X × X → R is denoted
GP(f̄(x), k(x, x′)).

Given a function f : X → R, and a vec-
tor X = [x1, x2, . . . , xn]

⊤ ∈ Xn, let f(X) =
[f(x1), f(x2), . . . , f(xn)]

⊤ ∈ Rn. Let k : X × X → R
be a kernel function, and let X = [x1, x2, . . . , xn]

⊤ ∈ Xn

and X ′ = [x′
1, x

′
2, . . . , x

′
m]⊤ ∈ Xm be vectors. We define

the kernel matrix k(X,X ′) ∈ Rn×m corresponding to k to
be the matrix whose (i,j)-th entry is given by k(xi, x

′
j), i.e.,

k(X,X ′)ij := k(xi, x
′
j), for i ∈ N[1,n] and for j ∈ N[1,m].

II. MODEL CLASS

A. Model Class and Problem Statement

The DGP consists of a dynamically evolving function and
an observation model. The function at time t ∈ N is denoted
by ft : X → R, for x ∈ X ⊆ R, and its evolution dynamics
are described by

ft+1(x) =

∫
X
ft(s)µ(x, ds) + wt(x), (1)

where µ(x, .) is a set of measures parametrized by x and
such that the integral in (1) is given by the integral with
respect to the measure µ is defined as∫

X
f(s)µ(x, ds) =

∫
X
f(s)kf (x, s)ds+

m∑
i=1

f(si(x))bi(x).

(2)
Here, kf : X × X → R is a continuous kernel function,
and si : X → X , i ∈ N[1,m], continuous point mass
functions with corresponding continuous weight functions
bi : X → R, i ∈ N[1,m]. We assume that f0(x) ∼
GP(f̄0(x), Qf (x, x

′)) in which f̄0 : X → R and Qf :
X × X → R are, respectively, the mean function and
positive semidefinite covariance function of the initial con-
dition function f0, which are both continuous. The distur-
bances acting on the evolving function are denoted wt(x) ∼
GP(0, Qw(x, x

′)), t ∈ N, in which Qw : X × X → R
is a continuous positive semidefinite covariance function.

Because the integral transform is a linear transformation, it
directly follows that ft is a GP for any t ∈ N [4], [20].

For many of the results presented in this paper, the
discrete part of (2), i.e., the sum

∑m
i=1 f(si(x))bi(x), is

not considered. This leaves the evolving function dynamics
(1) as an integro-difference equation (IDE) with a stochastic
disturbance. The main purpose of the discrete part is to
accompany both GPs and the KF in the same framework.

While our main results consider first general kernel func-
tions kf , Qf , Qw for Theorems 1 and 2 in Section III below,
they will lead to computationally efficient implementations
when the kernels take a special so-called seperable form. We
say that a kernel k(x, x′) is separable, if

k(x, x′) = U⊤(x)ΛU(x′), (3)

for a vector of functions U(x) := [u1(x), . . . , uM (x)]⊤ and
a matrix Λ ∈ RM×M . This special form is further examined
in Section IV.

The observation model in the DGP is given by

Yt = ft(Xt) + vt(Xt), (4)

where Yt ∈ Rp is a vector of observations of the dynamic
function ft in (1) at each time step t ∈ N, following a
vector of corresponding locations Xt ∈ X p. vt follows
from vt(x) ∼ GP(0, Qv(x, x

′)), t ∈ N, which is noise
on the observation, in which the positive semidefinite kernel
Qv : X × X → R gives the covariance. It is assumed that
f0(x), wt(x), and vt(x) are uncorrelated for any t, x.

The problem considered in this paper is the estimation of
the function fN using the data set DN := {X(N), Y (N)}
in which X(N) := [X⊤

0 , X⊤
1 , . . . , X⊤

N ]⊤ ∈ XNp and cor-
responding Y (N) := [Y ⊤

0 , Y ⊤
1 , . . . , Y ⊤

N ]⊤ ∈ RNp as in (4),
and N ∈ N is arbitrary. This problem can be motivated from
two different perspectives:

1) as an extension of the GP-based estimation problem to
the case where the Gaussian process evolves in time;

2) as an extension of the Kalman filter problem to infinite-
dimensional systems.

The connection between GP and DGP is shown in Section
II-B below, while Section II-C addresses the connection
between the KF and the DGP.

B. Generalization of Gaussian Process Regression
A Gaussian process (GP) is in general an infinite-

dimensional set of Gaussian variables, of which any finite
subset constitutes a multivariate Gaussian distribution [4].
The GP framework is often used to estimate unknown
functions based on observations that are subject to Gaussian
noise, i.e.,

yt = f(xt) + vt, (5)

with xt ∈ X the function’s argument, yt ∈ R the observation,
f : X → R the unknown function to be estimated, and vt ∼
N (0, σ2), t ∈ N the Gaussian noise on the observation. An
estimate of f from (5) for t ∈ {0, 1, . . . , N} is completely
characterized by the measurements Y = {y0, y1, . . . , yN} ∈
RN , the corresponding inputs X = {x0, x1, . . . , xN} ∈ XN ,
and the prior beliefs on its mean and covariance, denoted
respectively f̄ : X → R, and k : X × X → R. In particular,
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given a data set D := {X,Y } of inputs and corresponding
outputs according to (5), we obtain the following joint
distribution[

Y
f(x)

]
∼ N

([
f̄(X)
f̄(x)

]
,

[
k(X,X) + σ2IN k(X,x)

k(x,X) k(x, x)

])
. (6)

We can perform Gaussian process regression by condition-
ing the joint distribution in (6) with the data D = {X,Y }
using Bayes’ rule. The resulting posterior distribution is
Gaussian and can be expressed in terms of a mean estimate
f̂ : X → R, and a covariance estimate ĉ : X × X → R:

f̂(x) := E[f(x) | D] = f̄(x) + L(x,X)(Y − f̄(X)), (7)

ĉ(x, x′) := cov (f(x), f(x′) | D)

= k(x, x′)− L(x,X)k(X,x′),
(8)

where L(x,X) := k(x,X)
[
k(X,X) + σ2IN

]−1
.

The standard GP regression framework can be considered
a special case of the problem posed in the previous subsec-
tion when (1) is restricted to

ft+1(x) = ft(x) (9)

with f0(x) = f(x). The function dynamics (9) are obtained
by choosing kf = Qw = 0, m = 1, s1 = x, and b1 = 1.
In this sense, we can see the stated problem in Section II-
A as an extension of the GP framework to the case where
the unknown function f evolves according to (1). Note that
if we choose Qw arbitrarily instead, the DGP behaves as a
GP-based estimator with a forgetting factor.

C. Generalization of the Kalman Filter
The Kalman filter is a well-known algorithm to estimate

the state of a dynamical system described by

xt+1 = Axt + wt, (10)

with the observation model

yt = Ctxt + vt, (11)

where xt ∈ Rn the state to be estimated, yt ∈ Rp the
system output, wt ∼ N (0,W ), the disturbance on the state
with covariance matrix W ∈ Sn+, and vt ∼ N (0, V ) the
measurement noise with covariance matrix V ∈ Sp+ at time
t ∈ N. Lastly, x0 ∼ N (x̄0, S̄) with mean x̄0 ∈ Rn and
covariance matrix S̄ ∈ Sn+.

The problem tackled by the Kalman filter is to obtain the
estimate of the system’s state that minimizes the covariance
of the estimation error, given a history of observations
{yi}Ni=0 generated by (11). We express the state estimate
in terms of a mean x̂t|l := E

[
xt | {yi}li=0

]
and covariance

St|l := cov
(
xt, xt | {yi}li=0

)
. The famous KF result yields

equations with which to optimally update these estimates
given observations, as well as predict the evolution of the
system using the dynamical model [3]. The update and
prediction steps can be combined into the expressions

x̂t+1|t = Ax̂t|t−1 +ALt(yt − Ctx̂t|t−1), (12)

and

St+1|t = ASt|t−1A
⊤ −ALtCtSt|t−1A

⊤ +W, (13)

with Lt = St|t−1C
⊤
t (CtSt|t−1C

⊤
t + V )−1 the Kalman

gain. Starting with an initial condition x̂0|−1 = x̄0 and
S0|−1 = S̄, we can use the recursive relationships (12) and
(13) to obtain an estimate for any N ∈ N. Importantly,
the KF has low memory requirements, due to the compact
representation of the estimate. Additionally, the computation
scales independently of the number of time steps N .

The standard Kalman filter can be seen as the solution to
a special case of the estimation problem considered in this
paper when we consider the estimation of ft for a finite set
of points Ξ = {ξ1, ξ2, . . . , ξn} ∈ Xn. The KF state is then
given by ft(Ξ). We obtain linear state dynamics by choosing
kf (x, s) = 0 si = ξi, and bi(ξj) = Aij in (1), with Aij the
elements of A in (10) for i, j ∈ N[1,n]. Lastly, the observation
model (11) is a result of the sampling locations Xt in (4).

The following section details the solution to the DGP
estimation problem.

III. ESTIMATION OF DYNAMIC GAUSSIAN PROCESSES

Here, we consider the estimation problem for the system
(1) with observation model (4). To solve the DGP estimation
problem, we will first state two theorems, which together
constitute the main contribution of this paper. The theorems
conceptually generalize Theorem 4.1 in [21, Chapter 7],
related to the Kalman filter.

We aim to estimate the true evolving function fN (x) for
arbitrary N ∈ N using the data set DN , and the model (1)
with the continuous part only, i.e.,

ft+1(x) =

∫
X
ft(s)kf (x, s)ds+ wt(x). (14)

The estimate is characterized by a mean function

f̂t|l(x) := E [ft(x) | Dl] , (15)

and a covariance function

ĉt|l(x, x
′) := cov (ft(x), ft(x′) | Dl) . (16)

The first theorem is concerned with the conditioning of the
mean and variance estimate based on newly obtained data.

Theorem 1 (DGP update). Consider the evolving function
dynamics (14) with a prior belief of ft based on Dt−1,
expressed in terms of a mean f̂t|t−1 and a covariance ĉt|t−1

as defined in (15) and (16). Consider the updating of this
belief based on new data Xt, Yt, obtained according to (4).
The posterior mean and covariance, conditioned on Xt and
Yt, are then given by

f̂t|t(x) = f̂t|t−1(x) + Lt(x,Xt)(Yt − f̂t|t−1(Xt)), (17)

ĉt|t(x, x
′) = ĉt|t−1(x, x

′)− Lt(x,Xt)ĉt|t−1(Xt, x
′), (18)

in which

Lt(x,Xt) = ĉt|t−1(x,Xt)
[
ĉt|t−1(Xt, Xt) +Qv(Xt, Xt)

]−1
.

Proof. The first step in the proof pertains to the separation
of the new data Xt, Yt from the previously obtained data
Dt−1 in terms of their contribution to the belief. To do so,
we define Ỹt := Yt − E [Yt | Dt−1] , which is independent
from Dt−1, following Theorem 3.2 in [21, Chapter 7]. Note
that since we only consider finite-dimensional data here, the
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result from [21] can directly be applied, even though we are
considering an infinite-dimensional system. We obtain

E
[
ft(x)

∣∣ Dt−1, Xt, Yt

]
= E

[
ft(x)

∣∣ Dt−1, Xt, Ỹt

]
= f̂t|t−1(x) + E

[
ft(x)

∣∣ Xt, Ỹt

]
− E [ft(x)] .

The first equality holds as it is a transformation of variables.
The second holds due to independence of Xt and Ỹt with
Dt−1, following Theorem 3.3 in [21, Chapter 7]. The expres-
sion shows that the incorporation of newly obtained data Xt,
Yt can be performed as an update on f̂t|t−1.

Next, we can express the second term in the last expression
by conditioning ft on the data Xt and Ỹt using Bayes’ rule.
We have

E
[
ft(x)

∣∣ Xt, Ỹt

]
= E [ft(x)] + Lt(x,Xt)(Ỹt),

in which
Lt(x,Xt) = ĉt|t−1(x,Xt)

[
ĉt|t−1(Xt, Xt) +Qv(Xt, Xt)

]−1
.

To get the posterior covariance, we use the definition of the
covariance and simply multiply the estimation error et|t :=

ft − f̂t|t with its transpose to obtain

ĉt|t(x, x
′) = ĉt|t−1(x, x

′)− Lt(x,Xt)ĉt|t−1(Xt, x
′),

which completes the proof.

We now proceed with the second theorem, which de-
tails the propagation of the mean and covariance estimates
through the function dynamics (14).

Theorem 2 (DGP prediction). Consider the evolving func-
tion dynamics given by (14) with a prior belief about the
mean and variance of ft based on the information set Dt,
denoted f̂t|t, and ĉt|t, respectively, as in (15) and (16). Then,
the belief evolves due to the functional dynamics in (14) to
obtain

f̂t+1|t(x) =

∫
X
kf (x, s)f̂t|t(s)ds, (19)

and

ĉt+1|t(x, x
′) =

∫
X

∫
X

kf (x, s)ĉt|t(s, s
′)kf (s

′, x′)dsds′ +Qw(x, x′).

(20)
Proof. Starting with the mean estimate, we have

E [ft+1(x) | Dt] = E
[∫

X
kf (x, s)ft(s)ds+ wt(x)

∣∣∣ Dt

]
,

=

∫
X
kf (x, s)E [ft(s) | Dt] ds,

where the first equality follows from the dynamics (1), and
the second follows from the zero-mean assumption on wt

and from the linearity of the expectation, since the integral
transform is a linear map.

Next, the covariance estimate. We first define the deviation
from the expected mean as et+1|t := ft+1− f̂t+1|t. We have

cov(ft+1(x), ft+1(x
′) | Dt) = E

[
et+1|t(x)et+1|t(x

′) | Dt

]
= E

[
wt(x)wt(x

′) +

(∫
X
kf (x, s)

(
ft(s)− f̂t|t(s)

)
ds

)

×
(∫

X
kf (x

′, s′)
(
ft(s

′)− f̂t|t(s
′)
)
ds′

) ∣∣∣ Dt

]
=

∫
X

∫
X
kf (x, s)ĉt|t(s, s

′)kf (s
′, x′)dsds′ +Qw(x, x

′).

The first equality holds by definition of the covariance. The
second holds because wt is independent of both ft and f̂t|t.
The last equality holds because the integral transform is
linear, because of the independence between wt and Dt, and
by definition of ĉt|t and Qw. This completes the proof.

We can combine the theorems to estimate the DGP at
arbitrary time steps N ∈ N. To do so, we initialize the
estimator’s mean and covariance, ideally, but not necessarily,
as f̂0|−1 = f̄0, and ĉ0|−1 = Qf . Then we perform the
following algorithm at each time step t:

1) Update the DGP estimator using Theorem 1 according
to newly obtained data;

2) Predict the DGP evolution using Theorem 2.
These steps can be performed recursively until we obtain
f̂N |N and ĉN |N , which presents the solution to the problem
posed in Section II.

The implementation of Theorems 1 and 2 applies to the
estimation of DGPs with a general structure. However, it
may get computationally very expensive to perform as N
increases due to the continuous integral, which in general
produces complicated expressions for the mean and covari-
ance estimates.

The next section details how the computation of the esti-
mator is reduced when the kernels of the DGP are separable.

IV. SEPARABLE KERNELS

In this section, we show that when kf , Qf , and Qw are
separable kernels we can perform the required computations
of the previous section efficiently. We start with exact DGP
when the kernels are truly separable, and detail afterward that
separable kernels can be used to approximate the problem
from Section II-A. To show the reductions in computational
steps in case of separability of kernels kf , Qf , and Qw,
consider the following lemmas.

Lemma 3. Suppose that

kf (x, x
′) = U⊤(x)ΛU(x′),

Qf (x, x
′) = U⊤(x)ΛfU(x′),

Qw(x, x
′) = U⊤(x)ΛwU(x′)

(21)

with Λ ∈ RM×M , Λf ,Λw ∈ SM+ and U(x) :=
[u1(x), u2(x), . . . , uM (x)]⊤ a vector of basis functions in
which ui : X → R, i ∈ {1, 2, . . . ,M} continuous, then the
DGP covariance update step in (18) reduces to

ĉt|t(x, x
′) = U⊤(x)Ψt|tU(x′) (22)

with Ψt|t := Ψt|t−1 + ΓtU
⊤(Xt)Ψt|t−1, in which Ψ0|−1 =

Λf , and

Γt := Ψt|t−1U(Xt)
[
U⊤(Xt)Ψt|t−1U(Xt) +Qv(Xt, Xt)

]−1

with U(Xt) :=
[
u1(Xt) u2(Xt) . . . u1(Xt)

]⊤ ∈
RM×p. Additionally, the covariance prediction step in (20)
is reduced to

ĉt+1|t(x, x
′) = U⊤(x)Ψt+1|tU(x′) (23)

with Ψt+1|t := ΛΛUΨt|tΛUΛ
⊤ + Λw, in which ΛU :=∫

X U(x)U⊤(x)dx.

3209



Proof. Initialize ĉ0|−1(x, x
′) = U⊤(x)Ψ0|−1U(x′) with

Ψ0|−1 = Λf , then substitute (21) into (18) and (20).

Remark. Note that Qv does not need to be separable, as
the measurement noise function vt is always evaluated for
a finite set of spatial locations Xt when taking observations
according to (4), and Qv(Xt, Xt) can be simply computed
and used in the calculations above.

To state Lemma 3 in other words, the assumption in (21)
causes the covariance estimate ĉt|l to remain in the basis
under operation of both the update and the prediction steps.
This enables a computationally efficient implementation of
the estimator since we now only need to keep track of
the matrix Ψt|l. However, the mean estimate computation
still scales poorly as the time index N increases. Efficient
implementation of the mean estimate is enabled by the
application of the following lemma.

Lemma 4. If (21) holds and additionally

f̄0(x) = U⊤(x)z̄, (24)

with z̄ ∈ RM and U the same vector of functions as in (21),
then the update of the mean estimate (17) reduces to

f̂t|t(x) = U⊤(x)zt|t, (25)

with zt|t := zt|t−1 + Γt(Yt −U⊤(Xt)zt|t−1). Additionally,
the prediction step in (19) is reduced to

f̂t+1|t(x) = U⊤(x)zt+1|t, (26)

with zt+1|t = ΛΛUzt|t.

Proof. Initialize f̂0|−1(x) = U⊤(x)z0|−1 with z0|−1 = z̄,
then substitute (21) into (17) and (19).

Note the similarity of the expressions in the lemmas to
the standard KF. With Lemma 3 and Lemma 4, the DGP can
be interpreted as a Kalman filter where the state estimates
are projected onto the functions in U , similar to [19].
Additionally, it can be evaluated at every spatial location
and the measurement data can occur anywhere in the set X .

If both lemmas apply, the problem presented in Section
II can be exactly estimated using the efficient equations
presented in this section. For the more general case, where
(1) does not satisfy the lemmas, the problem can be approx-
imated using basis functions. In order to do this, we approx-
imate the function f̄0 in the basis vector U , and the kernel
functions kf , Qf , Qw in the basis vector U(x)⊗U(x′), with
⊗ the Kronecker product. We can find Λ, Λf , Λw and z̄
by performing standard parametric function approximation
methods such as least squares using the L2-norm of the
approximation error. Note that this least squares problem
can be numerically approximated using Riemann sums. Two
important choices for the basis structure in U are highlighted.
The first is discrete bins, while the second is the Fourier
basis. Note that the class of separable kernels is dense in the
space of L2 integrable kernels for both of these choices.

The key benefit of the lemmas lies in the reduced com-
putational complexity. When the DGP structure admits the
basis functions, either through approximation or exactly, the
computation scales with O(M3), similar to the standard KF.

Fig. 1. Function ft over time steps t using a smoothening evolution kernel
kf , a Gaussian initial mean function f̄ , a smooth initial condition covariance
Qf , and smooth zero-mean disturbances wt.

Additionally, this implies that the approximation framework
provides a choice to the user in regard to computational
burden.

V. RESULTS

In this section, an application of DGPs and of the pro-
posed approximation method presented in Section IV to a
numerical example is presented. To assess the estimation
accuracy of the approximate methods, a ground truth model
is considered, which uses 625 basis functions in the form
of discrete bins compared to up to 91 Fourier bases in the
approximation. We select X = [−1, 1]. We model

kf (x, x
′) = ϕ(5.13, 0.07, (x− x′)),

in which ϕ(a, σ, d) := ae−
|d|2

2σ2 is a parametrized squared
exponential kernel. This choice results in local smoothing
and decay of the function ft every time step t. Furthermore,

Qf (x, x
′) = ϕ(1, 0.7, (x− x′)),

which ensures that the initial condition f0 smoothly deviates
from its mean. The disturbances are modeled to have smooth
covariance using

Qw(x, x
′) = ϕ(0.35, 0.15, (x− x′)).

Next,
Qv(x, x

′) = σ2
vδ(x− x′)

with δ the Dirac delta function and σv = 0.1 simulates white
noise on the measurements since this choice implies there is
no spatial correlation in vt. Lastly,

f̄0(x) = ϕ(10, 0.05, x)

simulates a Gaussian in the center of the function domain
at the initial time step t = 0. The spatial locations Xt are
selected randomly every t using a uniform distribution over
X with p = 3. Note that now, Xt is a random variable. This
still allows us to use the theorems and lemmas, however, as
it is independent of Dt−1. The results are shown in Fig. 1,
Fig. 2, and Fig. 3.

Observe Fig. 1, which shows a simulation of the ground
truth model. Note the smoothing of the function as the time
index t increases as a result of the choice of kernel kf . Note
furthermore that disturbances affect the function during the
entire simulation, for instance at the location x = −0.3 at
time step t = 1.

Fig. 2 displays the approximation of the DGP in Fig. 1
using 31 Fourier bases. Note that wherever an observation
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Fig. 2. Estimate f̂t|t of function ft using 31 Fourier bases over time steps
t. A confidence interval of 95% is plotted alongside the mean estimate.
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Fig. 3. 2-norm of the estimation error et|t over time steps t without
disturbances. A comparison is made between 3, 9, 31, and 91 Fourier bases
in U .

occurs, indicated by a cross, the local confidence is improved.
Note furthermore that even in the absence of measurements,
the estimate changes due to the prediction of the dynamics.
Finally, observe that the local disturbance in the true function
at t = 1 only appears in the estimate at t = 3, because
the local observation Xt did not occur in that local area
immediately when the disturbance happened.

Lastly, consider Fig. 3. More bases yield a lower error
2-norm at t = 0, since the initial mean function is ap-
proximated better as the number of bases increases, with
diminishing returns. Note that even when the number of
bases is high, the error at t = 0 is nonzero due to the uncer-
tainty function’s initial condition. After some measurements,
this uncertainty is resolved and the error decreases. As the
function evolves, it smoothens out, which reduces the amount
of high-frequency content, making it easier to approximate
even when the number of bases is lower.

VI. CONCLUSIONS

This paper presented an exact method for the Bayesian
estimation of dynamic Gaussian processes (DGPs) describ-
ing dynamically evolving uncertain functions. An explicit
connection to the powerful techniques of Kalman filtering
and Gaussian process regression is made. It is also shown
that the computation of the DGP estimation is reduced
when a separability structure is present in the kernel and
mean functions describing the problem. Next to this exact
method, we exploited the separable structure to derive an
approximation method using basis functions with reduced
memory and computational burden during operation. The
proposed framework is demonstrated in a numerical case
study.

Future research avenues include the analysis of the error
resulting from the approximation, the extension of the prob-
lem to include control inputs, and connecting the framework
to the estimation of partial differential equations.
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