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Abstract—This work presents a novel control strategy
for systems with actuation delays with known stochastic
distribution, which improves upon previously proposed
deadline-driven and event-driven strategies. In the event-
driven strategy, the control input is immediately updated
after the delay, whereas in the deadline-driven strategy,
the actuation is updated in a periodic fashion, where the
sampling period sets a deadline; if the delay is larger than
this deadline, the actuation is not updated. Our method
switches between these two strategies and guarantees
better performance, in a linear–quadratic–Gaussian sense,
than either method considered separately. An extension of
the novel method with a deadline-optimization scheme is
shown to improve the performance even further. Simulation
results illustrate the effectiveness of the proposed methods.

Index Terms—Data loss, dynamic programming,
event-driven control, sampled-data control, self-triggered
control, stochastic optimal control, stochastic time delay.

I. INTRODUCTION

D ELAYS ARE present in many control applications, result-
ing from timing effects in the loop such as control com-

putation, communication between distributed components, or
measurement acquisitions [1]. These control delays can lead to
significant performance degradation in various control settings,
especially in industry that requires embedded systems [2], [3];
(shared) communication networks [3]–[5]; and/or data-intensive
processing [6], [7].

Many works in the literature addressing control problems
with uncertain delays use a worst-case approach, taking into
account the largest possible delays, and exploit robust stabil-
ity analysis techniques (see, e.g., [8]–[10]). In particular, in a
traditional control setting, a sufficiently large sampling time is
chosen such that the worst-case delays, which may be very large,
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are accommodated. Naturally, this approach is conservative and
can lead to poor closed-loop performance. In this paper, we
take an alternative approach, exploiting knowledge of the prob-
ability distribution of the delays when selecting the sampling
intervals. However, selecting sampling intervals shorter than
the delay causes a data dropping effect for which some solu-
tions have been proposed (see, e.g., [11]–[18]). The sampling
interval thus plays the role of a deadline and, as such, we denote
this approach deadline driven. This method leads to a tradeoff
between “data-loss” and control rate. In [13], this tradeoff was
studied in the context of reliability analysis of a networked con-
trol system with energy constraints, while in this work, we con-
sider linear–quadratic–Gaussian (LQG)-type performance. Al-
ternatively, some works address the stochastic nature explicitly
[19]–[21], proposing the so-called event-driven strategies. Such
event-driven strategies (differing from state-dependent event-
triggered control; see, for example, [22] and [23]) consider that
the control input is immediately updated after the delay and,
therefore, the update intervals are equal to the stochastic delay
[24]. Results for systems with stochastic parameters [25] can be
used to find optimal control strategies for this case.

The current work extends the results in our preliminary work
[24]. The work [24] concluded that event-driven or deadline-
driven approaches do not necessarily perform better than one
another (in an LQG performance sense). Here, we propose a
novel switching strategy that is guaranteed to result in bet-
ter performance than that of event-driven and deadline-driven
approaches by switching between them. The switching strat-
egy combines strategies that are event driven, deadline driven,
and/or event driven with a deadline, where the control input is
updated after the delay, except when the delay exceeds a dead-
line, in which case a data drop occurs. In addition, we show that
the novel switching strategy can be combined with a deadline-
optimization scheme to obtain additional performance benefits.

The new results are obtained in the setting of linear
continuous-time systems with Gaussian disturbances.

The stochastic delays in the control-to-actuation link are as-
sumed to be independent and identically distributed (i.i.d.), as is
very common in the networked control systems community and
justified in several contexts involving computation (see, e.g.,
[26]) or communication delays (see, e.g., [27] and [28]). Digital
control with delayed zero-order hold inputs is used, as illus-
trated in Fig. 1. The closed-loop performance is evaluated by
an infinite horizon average cost function as in a standard LQG
framework. The performance gain of the proposed policies is
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Fig. 1. Control loop with actuation delay.

illustrated by numerical examples. The proofs of the main re-
sults resort to Doob’s optional sampling theorem [29].

The remainder of this paper is organized as follows. The
control setup with actuation delay and the problem formulation
are detailed in Section II, where the deadline-driven and event-
driven strategies are also discussed, as well as the event-driven
with deadline strategy. Using a discrete-time model of the sys-
tem, the performance analysis of the nonswitching approaches
leads to a preliminary result in Section III. Section IV provides
the main results for the proposed control policies. Numerical ex-
amples in Section V illustrate the novel results and the benefits
of the new method. Concluding remarks are given in Section VI.
The proofs of the main results can be found in the Appendices.

II. PROBLEM FORMULATION AND BACKGROUND

In this section, we first discuss the control setting and the
formal control problem. Subsequently, we discuss several basic
control strategies that serve as a benchmark for the methods
proposed in this paper.

A. Problem Setting

We consider a continuous-time plant modeled by the stochas-
tic differential equation

dxc = (Acxc + Bcuc)dt + Bw dw(t), xc(0) = x0 , t ∈ R≥0
(1)

where xc(t) ∈ Rnx is the state and uc(t) ∈ Rnu is the applied
control input at time t ∈ R≥0 , and w is an nw -dimensional
Wiener process with incremental covariance Inw

dt [30]. We
assume that (Ac,Bc) is controllable and Bc has full rank.

As in the standard LQG framework, the average quadratic
cost

J := lim sup
T →∞

1
T

∫ T

0
E[gc(xc(t), uc(t))]dt (2)

is chosen as the performance criterion, where gc(x, u) :=
xᵀQcx + uᵀRcu with positive-definite matrix Rc � 0 and

positive-semidefinite matrix Qc � 0 for which (Ac,Q
1
2
c ) is ob-

servable.
We consider a setup with a simple hold device at the plant

input such that the plant actuation signal is held constant be-
tween discrete update instances tk , k ∈ N, with tk+1 > tk , for
all k ∈ N, and t0 = 0. In particular, we write

uc(t) = ûk , for all t ∈ [tk , tk+1)

where ûk ∈ Rnu is the digital input value held at time tk , k ∈ N.
We assume that û0 := uc(0) is known.

We assume, for now, that the plant may be sampled at any
time instance and discuss how to relax this assumption in
Remark 2. In particular, we choose the sampling instances to
coincide with the actuation update instances, that is, the plant is
sampled at times tk , k ∈ N, with tk+1 > tk for all k ∈ N. The
time-varying “sampling” intervals can then be defined as

hk := tk+1 − tk , k ∈ N .

At every sampling instance tk , we assume that the sensor pro-
vides a measurement of the full state xc(tk ) and denote this by
xk := xc(tk ), k ∈ N.

The sampling intervals hk , k ∈ N, will take different values,
detailed later, depending on the chosen control strategy. We
assume that there exists a (possibly small) hmin ∈ R>0 such that
hk ≥ hmin for all k ∈ N, which imposes a minimal interval.

The computation of a new control action uk ∈ Rnu by the
controller starts immediately after a new sample is obtained, that
is, at time tk for all k ∈ N as a function of all the information
in the control platform at time tk . Due to computational delays
or communication delays, the new control action can only be
applied after a delay τk ∈ R>0 for all k ∈ N. The delays τk ,
k ∈ N, are i.i.d. with the known delay distribution defined by
the probability measure μ.

The support of μ is allowed to be unbounded, but we as-
sume that μ((0,∞]) = 1 and μ({0}) = 0. The measure μ can
be decomposed into continuous and discrete components as
μ = μc + μd with μc((0, s)) =

∫ s

0 fc(τ)dτ , where fc is a mea-
surable function, and μd is a discrete measure that captures
possible point masses at bi ∈ R>0 ∪{∞}, i ∈ I ⊆ N, such that
μ({bi}) = wi, i ∈ I. The (Lebesgue–Stieltjes) integral of some
function W with respect to the measure μ is defined as∫ t

0
W (s)μ(ds) :=

∫ t

0
W (s)fc(s)ds +

∑
i∈I:bi ∈(0,t]

wiW (bi).

The cumulative distribution function (cdf) F : R>0
∪{∞} → R[0,1] is given by F (τ) := μ((0, τ ]) =

∫ τ

0 fc(s)ds +∑
i∈I:bi ∈(0,τ ] wi , for τ ∈ (0,∞], which is equal to

P (τk ≤ τ), k ∈ N, where P denotes probability. The
probability distribution function (pdf) associated with F is
denoted as f : R>0 ∪{∞} → R≥0 . The expected value of the
delay is equal for all k ∈ N and is denoted by τ̄ := E[τk ].

If the sampling interval hk has a maximum value
Dk ∈ R>0 , k ∈ N imposed, then this works as a deadline. If
the delay exceeds the deadline, that is, if τk > Dk for some
k ∈ N, then the newly computed control action uk is dropped
and the previous actuation signal ûk is held constant. We as-
sume that there exists a (possibly large) Dmax ∈ R>0 such that
Dk ≤ Dmax for all k ∈ N, which imposes a maximum deadline
value. The new plant input ûk+1 , after the interval hk , becomes,
for all k ∈ N≥0

ûk+1 =

{
uk , if τk ≤ Dk

ûk , otherwise.
(3)

We assume that only one message, that is, a control action, is
allowed in the actuation channel within each sampling interval,
and that a deadline is known at the actuator (if a deadline is
applied).
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We use a Bernoulli random variable γk , k ∈ N, to capture
the occurrence of data drops. In particular, γk = 1 denotes that
the control input uk has been successfully applied to the sys-
tem, while γk = 0 denotes that uk has been dropped. This is
described by the dropping mechanism

γk =

{
1, if τk ≤ Dk

0, if τk > Dk .

As a consequence, (3) can be rewritten as

ûk = γk−1uk−1 + (1 − γk−1)ûk−1 , k ∈ N>0 . (4)

Remark 1: A typical actuation channel cannot be instanta-
neous; therefore, a minimal delay is always present. Hence, it
is easy to determine some hmin ∈ R>0 such that F (hmin) = 0.
Otherwise, one can consider a new probability measure μ̃ with
the probability F (hmin) �= 0 accumulated at μ({hmin}) and ar-
tificially delay the system if τk < hmin for some k ∈ N.

Remark 2: The problem setting can also capture the
sampled-data scenario where the sensors can only be sampled at
discrete intervals but at a fast rate, in the sense that the sampling
period is much smaller than typical delay values. Delaying the
actuation updates to the next sampling instance causes the de-
lays to take values in a countable set, which can be captured by
a piecewise constant cdf. Since only one message is allowed in
the actuation channel, extra samples taken within the actuation
update interval are discarded.

Remark 3: The setup requires that either the sensor has
knowledge of the actuation update instances, which informs the
controller by sending a new measurement, or that the controller
has knowledge of the channel, such that it can trigger the sensor
to provide a new measurement. This can be satisfied by, for
example, a collocated sensor–actuator at the plant or a channel-
sensing mechanism at the controller.

B. Control Problem

The control problem is the design of a methodology to obtain
suitable control actions uk , k ∈ N, and delay deadlines Dk ,
k ∈ N, such that the performance index (2) is smaller than for
known existing methods.

To minimize performance index (2), that is, to solve the con-
trol problem optimally, by, for example, the use of dynamic
programming [31] is not possible due to the curse of dimen-
sionality. As such, we opt to design a suboptimal methodology
that is better than current practice. In particular, our goal is to
obtain a control policy π that provides uk and Dk , i.e.,

(uk ,Dk ) = π(Ik ), k ∈ N

as a function of the information available for control at time tk ,
being

Ik := {xk} ∪ {xl, ul ,Dl, hl , γl |l ∈ N [0,k)} ∪ {û0}.
In this paper, we provide control policies that are guaranteed

to improve over both optimal event-driven and deadline-driven
strategies as proposed in [24], in the sense that the performance

index (2) is smaller or equal. Simulation results are evidence
that significant improvement can be realized.

C. Basic Control Strategies (Background)

In this paper, we consider the following basic strategies or
base policies, which we will indicate by d, e, and ed, respec-
tively.

1) Periodic Deadline-Driven Control (d): This typical de-
sign approach sets a fixed deadline Dp

d for each interval and
the control update interval coincides with this deadline, that is,
Dk = Dp

d and hk = Dp
d for all k ∈ N. This results in drop-

ping uk with probability 1 − F (Dp
d ), that is, P (γk = 0) =

1 − F (Dp
d ). Note that imposing a deadline is a natural way

to deal with large delays. In practice, however, the deadline is
imposed without further analysis of the dropping effect, while
this may significantly impact the stability and/or performance,
as we will see.

2) Event-Driven Control (e): This aperiodic strategy up-
dates ûk directly after the delay without considering a deadline,
that is, hk = τk (and Dk = ∞) for all k ∈ N. Note that uk is
never dropped, that is, P (γk = 0) = 0. When considering this
case, we make the additional assumption μ({∞}) = 0, which
is necessary for stabilizability and is equivalent to all bi < ∞
for all i ∈ I.

3) Periodic Event-Driven Control With Deadline (ed):
This aperiodic strategy updates ûk directly after the delay if
the delay is less than the set deadline Dp

ed and at the dead-
line when the delay is larger, that is, hk = min(τk ,Dk ) and
Dk = Dp

ed for all k ∈ N. This results in dropping uk with prob-
ability 1 − F (Dp

ed), that is, P (γk = 0) = 1 − F (Dp
ed), but up-

dating ûk+1 earlier at time tk + τk with probability f(τk ) for
each value of τk ≤ Dk . Note that assuming μ({∞}) = 0 is not
necessary for stabilizability in this case.

The methods d and e were previously discussed in our
preliminary work [24], where it was suggested to use event-
driven approaches to improve performance over conservative
but easy-to-implement deadline-driven approaches that are typ-
ically adopted in practice.

Through an example, it was found that event-driven ap-
proaches can indeed give significant improvement, but this is
not necessarily always the case, as was illustrated by another
example that showed better performance for periodic control.
This motivated the design and investigation of the ed strategy,
proposed here.

Building upon the results in [25], for each of the above meth-
ods, an analytical expression for the value of performance in-
dex (2) can be obtained. A method to calculate this cost value is
explained in Section III-B. The cost is given by

Jb :=
1
h̄b

cb , cb := tr(PbWb) + αb, b ∈ {d, e, ed} (5)

where h̄b denotes the average interval hk , that is, h̄b := E[hk ],
and where, as in standard LQG, Pb corresponds to the solution
of a Riccati equation, as described in Appendix A, Wb is a noise
term from the Wiener process w, also given in Appendix A, and
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αb is a term resulting from the intersampling behavior of the
system, given in Appendix B.1

The values of Jb, b ∈ {d, e, ed} are called the base costs and
will serve as a reference to compare our newly proposed meth-
ods. The main results in this work derive control policies π
that guarantee that Jπ ≤ Jb while typically performing (signif-
icantly) better in the sense that Jπ < Jb for all b ∈ {d, e, ed}.
For d and ed, the cost (5) depends on the chosen deadline D, and
the corresponding costs can be denoted by Jd(D) and Jed(D),
respectively. Optimal deadline values that minimize the cost (5),
are denoted by D�

d and D�
ed , respectively. The costs (5) corre-

sponding to the basic strategies (with optimal deadline) are de-
noted by Jd� := Jd(D�

d ), Je , Jed� := Jed(D�
ed), respectively.

These costs correspond to parameters with the same subscripts
h̄d� , Pd� , Wd� , αd� for periodic deadline-driven and analo-
gously e and ed� for event-driven and periodic event-driven
with deadline, respectively. Note that h̄d� = D�

d , h̄e = τ̄ , and
h̄ed� = E[min(τ,D�

ed)].
Remark 4: Although of interest, it is beyond the scope of

this paper to establish a guarantee of strict performance improve-
ment of the proposed strategies. However, we do prove Jπ ≤ Jb

and show the strict improvements via various numerical ex-
amples. In addition, note that we believe that strict performance
improvement guarantees could be derived by following a similar
approach to the one in [32], where a switched system derived in
a different context was studied. Such an approach entails rather
long arguments, requiring concepts such as ergodicity, and it is,
therefore, not pursued here.

III. PRELIMINARY RESULTS

In this section, for reasons of completeness and self-
containedness, we discuss shortly the analysis needed to obtain
the results in our preliminary work [24], which will be used as a
benchmark, and how this leads to an initial result for the ed pol-
icy in Lemma 1. In order to analyze the proposed strategies, it is
convenient to obtain a discrete-time description of the system,
which we provide next.

A. Discretization

By discretization of system (1) at times tk , k ∈ N, we obtain

xk+1 = A(hk )xk + B(hk )ûk + wk (6)

where A(h) := eAc h and B(h) :=
∫ h

0 eAc sBcds. The distur-
bance is a sequence of zero-mean independent random vectors
wk ∈ Rnw , k ∈ N, with covariance E[wk (wk )

ᵀ
] = W (hk ),

where W (h) :=
∫ h

0 eAc sBw Bᵀ
w eAᵀ

c sds.
We augment the state with the current input and define ξk :=[

xᵀ
k ûᵀ

k

]ᵀ
. The state evolution of the augmented system can then

be written as

ξk+1 = Aγk
(hk )ξk + Bγk

uk + ŵk (7)

1The additional factor αb in (5) was not considered in our preliminary work
[24], where the cost due to intersampling behavior was neglected. Typically, the
value of αb is small compared to tr(Pb Wb ), as was the case in [24], and a good
approximation of the actual cost can be obtained by neglecting αb .

where Aγ (h) := [A(h)
0

B (h)
(1−γ )In u

], Bγ := [ 0
γ In u

], and where

ŵk = [wᵀ
k 0]ᵀ with covariance Ŵ (h) := [W (h)

0
0
0 ].

The average cost can be written as

J = lim sup
T →∞

1
T

E

⎡
⎣

N (T )−1∑
k=0

g(ξk , hk )

⎤
⎦ (8)

where N(T ) := min{L ∈ N [1,∞] |
∑L

k=0 hk > T} and g(ξ, h)
:= ξᵀQ(h)ξ + α(h), with

Q(h) :=
∫ h

0
e

⎡
⎣ Ac Bc

0 0

⎤
⎦

ᵀ

s
[

Qc 0
0 Rc

]
e

⎡
⎣ Ac Bc

0 0

⎤
⎦s

ds

and

α(h) := tr

(
Qc

∫ h

0

∫ t

0
eAc sBw Bᵀ

w eAᵀ
c sdsdt

)
(9)

which is the cost associated with the intersampling behavior
of (1).

The model (7) can be used to describe the behavior for all
proposed strategies. Later, we sometimes use the notation γ|D
and h|D to indicate that the probability distributions of those
variables depend on the deadline D.

B. Performance of the Basic Control Strategies

Each cost Jb in (5) is associated with an optimal control policy
(note that τk is not known at time tk )

uk = −Kbξk , b ∈ {d� , e, ed�} (10)

where the expressions for the gains are given in Appendix A. We
assume that mild conditions for mean-square stabilizability hold
(see [33, Prop. 3.42] and [25, Theor. 6.1]), such that solutions
(10) are well defined. Note that for the event-driven case e,
γk = 1 for all k ∈ N. While for the d and e cases, the use of the
results in [25] is straightforward, for the ed case, it is possible to
observe that a new probability distribution for hk can be defined
as a function of the probability distribution of τk , determined
by the cdf

Fh(τ,D) :=

{
F (τ), if τ < D

1, if τ ≥ D

and the results in [25] also apply.
For compactness, we introduce the following notation. For a

Bernoulli variable γ and a random variable h, random matrices
X and Y as in Section III-A that depend on γ and h, and some
matrix P , the expected value Eγ ,h [Xγ (h)ᵀPYγ (h)] is denoted
as Xγ (h)ᵀPYγ (h), and analogously, Eγ ,h [Xγ (h)] is denoted
as Xγ (h).2

2As a special case, we have that Xᵀ
γ P Yγ = p(Xᵀ

1 P Y1 ) + (1 −
p)(Xᵀ

0 P Y0 ), where Xγ and Yγ are random matrices depending on Bernoulli
random variable γ and p is the probability of success, given by p = Pr[γ = 1].
Additionally, we have that X (τ )ᵀP Y (τ ) =

∫ ∞
0

[X (s)ᵀP Y (s)]dF (s). Fi-

nally, if a deadline D is given, for τ with cdf F h (τ, D) and γ =
1 if τ ≤ D and γ = 0 if τ > D, we have that Xγ (h)ᵀP Yγ (h) =∫ D

0
[X1 (s)ᵀP Y1 (s)]dF (s) + (1 − F (D))[X0 (D)ᵀP Y0 (D)].
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Intuitively, the ed� strategy seems to be better than both the
d� and e strategies. From the derivation in this section, we obtain
directly the following result.

Lemma 1 (ed� is better than e): The cost (2) of the event-
driven policy with optimal deadline is not larger than that of the
event-driven policy, i.e.,

Jed� ≤ Je.

The proof follows directly from the fact that Jed(D) → Je

for D → ∞ and the policy e is contained in the class of policies
ed parameterized by D. �

There may exist (pathological) cases for which updating the
control before the deadline has a negative effect on performance.
Thus, a guarantee analogous to Lemma 1 for d does not directly
exist. However, the main results of this paper, for a new strategy,
do give such a guarantee.

IV. CONTROL POLICY AND MAIN RESULTS

In this section, the main results are presented. First, we pro-
pose the novel switching strategy that leads to a performance
guarantee, which is formalized in the main theorem. Subse-
quently, we present a switching strategy that extends the main
result with a deadline-optimization scheme.

A. Two-Policy Control (&)

We propose using a switched approach to the problem for-
mulated in Section II-B. In particular, we allow the system to
choose online which type of strategy, that is, d/e/ed, to use for
the next update instance. Actually, the result is derived for the
combination of only d� and ed� because Lemma 1 shows that
the performance of ed� is not larger than that of e. The proposed
control policy for this case is denoted as d�&ed� . The result in
Theorem 1 shows that this policy leads to better performance
than using either d� or ed� all the time.

The idea behind our policy is to choose, at each sampling
instance, the control strategy to use during the next interval, de-
noted by σk ∈ {d� , ed�}, while assuming that either of the base
policies, denoted by bk ∈ {d� , ed�}, can be used all the time
afterwards, such that the expected future cost is the smallest.
After the next interval, the impact of disturbances is neglected
in the switching condition to ensure that the cost of the looka-
head predictions can be computed. Now, at each tk , k ∈ N,
four switching options are available, and we establish switching
conditions to determine the best option.

Let p� := arg minp∈{d� ,ed� } Jp select the best periodic base
policy with an optimal deadline from the possible base policies,
whose costs were defined as Jb in (5). Now, we define two func-
tions that are to be used in the switching conditions. First, we
define a value function Vp(ξ) := ξᵀPpξ, where p ∈ {d� , ed�}
and Pp is defined as in (5), that is, as solutions to the Riccati
equations given in Appendix A. Second, we define a difference
function

V Δ(ξk ,m, b) :=E

[
Vp� (ξk+1) − Vb(ξk+1) | ξk ,

[
σk

bk

]
=

[
m

b

]]

where ξk+1 follows (by a prediction step) from (7). In particular,
the value of ξk+1 follows from (7) given that σk = m and bk =

b, meaning that in (7), uk is the optimal input for the next
interval, which is defined below in (12), and that γk and hk are
random variables that depend on the deadline Dk corresponding
to the choice σk = m, that is, γk |D�

σk
and hk |D�

σk
[see also

(13)]. Furthermore, we define a set-valued function

S(ξ) := {m, b ∈ {d� , ed�} | V Δ(ξ,m, b) ≤ 0}
mapping ξ into the choices m and b that guarantee that
V Δ is nonpositive. Note that, by definition, for any ξ,m,
V Δ(ξ,m, p�) = 0 and, therefore, the set S(ξ) is nonempty.

The proposed control policy d�&ed� is the following function
of the state ξk to be evaluated for all tk , k ∈ N:[

σk

bk

]
= arg min

(m,b)ᵀ∈S(ξk )
ξᵀ
k Z�

m,bξk + β�
m,b (11)

uk = −K�
σk ,bk

ξk (12)

where the arguments are given by

Z�
m,b := Aγk

(hk )ᵀPbAγk
(hk ) + Q(hk )

− K�
m,b

ᵀ(Bᵀ
γk

PbBγk
)K�

m,b

K�
m,b := Bᵀ

γk
PbBγk

†Bᵀ
γk

PbAγk
(hk )

β�
m,b := tr(PbWm ) + αm − h̄m

h̄p�

cp�

with cp� given in (5), and αm = E[α(hk ) | σk = m] as defined
in Appendix B, and where the distribution for hk (and γk )
depends on the value of the deadline D� in

hk =

{
D�

d , if σk = d�

min{τk ,D�
ed}, if σk = ed�

(13)

corresponding to the value of σk = m. The symbol † denotes the
pseudoinverse. The expectations can be numerically computed
(using footnote 2). In the first two terms, the scalars β�

m,b contain
the cost due to noise over interval hk , and in the third term,
they contain a correction for the time difference between (the
expectation of) the interval hk and that of the best base policy.
The policy selects (σk , bk ) as the values that minimize the right-
hand side of (11) subject to the condition that V Δ(ξk , σk , bk ) ≤
0. The condition V Δ(ξk , σk , bk ) ≤ 0 guarantees that switching
to a different base policy while neglecting the disturbances after
the next interval does not cause a performance loss.

Let the value of performance index (2) obtained for the policy
(11)–(13) be denoted as Jd� &ed� . The following result is the
main result of this paper.

Theorem 1: The cost (2) of the two-policy approach given
by (11)–(13) is not larger than that of both base policies ed and
d in the sense that

Jd� &ed� ≤ Jed� and Jd� &ed� ≤ Jd� .

The proof is given in Appendix C and resorts to Doob’s
optional sampling theorem [29]. �

The following remark explains a relaxation of the switch-
ing condition, which will be used in the numerical example in
Section V.
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Remark 5: From the proof of Theorem 1, one can see that
Theorem 1 also holds if the condition V Δ(ξk ,m, b) ≤ 0 on
S(ξ) is relaxed to V Δ(ξk ,m, b) ≤ Δ(ξk , p� , p� ,m, b), where
Δ is defined in (18).

Remark 6: Note that V Δ(ξk ,m, b) ≤ 0 is directly satisfied
for all ξk and m if Pp� � Pb for all b.

Remark 7: The result of Theorem 1 would directly extend
to a policy d�&e if D�

ed = ∞ would be selected. The derivation
of the policy is omitted for brevity. The result for this case is
summarized in the following corollary.

Corollary 1: The cost (2) of the two-policy approach given
by (11)–(13) when D�

ed → ∞ is not larger than that of both base
policies e and d in the sense that

Jd� &e ≤ Je and Jd� &e ≤ Jd� .

The proof follows the same arguments as the ones used to
prove Theorem 1. �

B. Online Deadline Optimization (s)

In our preliminary work [24], we proposed the idea of dead-
line optimization in the form of a self-triggered policy for the
periodic deadline-driven controller. Here, we show that our idea
of online deadline optimization can be extended to all policies
that consider a deadline, including the two-policy case and the
ed case.

Next, we describe extended switching conditions that include
an optimization procedure for the deadline for the two-policy
strategy. Analogous to S(ξ), we define the extended set that
includes a deadline variable

Ss(ξ) := {m ∈ {d, ed},D ∈ D,

b ∈ {d� , ed�} | V ΔD (ξ,m,D, b) ≤ 0}

where, for mathematical and practical convenience, D�
b ∈ D

for all b ∈ {d� , ed�}, where D ⊂ R>0 is a finite but possibly
arbitrarily large set of allowable deadlines, and m corresponds
to a method with deadline, and

V ΔD (ξk ,m,D, b) := E

⎡
⎢⎣Vp� (ξk+1) − Vb(ξk+1) | ξk ,

⎡
⎢⎣

σk

bk

Dk

⎤
⎥⎦

=

⎡
⎢⎣

m

b

D

⎤
⎥⎦

⎤
⎥⎦

now has an additional argument D ∈ D for the choice of dead-
line compared to V Δ(ξk ,m, b).

We propose using the following control policy:

⎡
⎢⎣

σk

Dk

bk

⎤
⎥⎦ = arg min

(m,D,b)ᵀ∈Ss (ξ)
ξᵀ
k Zs

m,b(D)ξk + βs
m,b(D) (14)

uk = −Ks
σk ,bk

(Dk )ξk (15)

where

Zs
m,b(D) := Aγk

(hk )ᵀPbAγk
(hk ) + Q(hk )

− Ks
m,b(D)ᵀ(Bᵀ

1 PbB1F (D))Ks
m,b(D)

Ks
m,b(D) = (Bᵀ

1 PbB1F (D))†(Bᵀ
γk

PbAγk
(hk ))

βs
m,b(D) = tr(PbWm (D)) + αm (D) − h̄m,D

h̄p�

cp�

and where the distribution for hk (and γk ) depend on the value
of the deadline D in

hk =

{
Dk, if σk = d

min{τk ,Dk}, if σk = ed
(16)

corresponding to the value of σk = m. In particular, h̄m,D =
E[hk | Dk = D,σk = m], Wm (D) := E[Ŵ (hk ) | Dk = D,
σk = m], and αm (D) := E[α(hk ) | Dk = D,σk = m].

Let the cost of the above policy (14)–(16) be denoted as
Js

d&ed . We obtain the following result, which can be seen as an
extension of Theorem 1.

Theorem 2: The cost (2) of the online deadline-optimization
policy (14)–(16) is not larger than that of the two-policy method
d&ed with fixed optimal deadlines in the sense that

Js
d&ed ≤ Jd� &ed� .

The proof is given in Appendix D. Again, the condi-
tion V ΔD (ξk ,m,D, b) ≤ 0 can be relaxed as explained in
Remark 5. �

Let the cost of the policy (14)–(16), when bk = ed� and σk =
ed for all k ∈ N, be denoted as Js

ed . By restricting the choice of
the base policy, we obtain the following result.

Corollary 2: The performance (2) of the online deadline-
optimization policy (14)–(16), when bk = ed� for all k ∈ N, is
not larger than that of the base policy ed� in the sense that

Js
ed ≤ Jed� .

In the next section, we show numerical results for the pro-
posed policies and the performance gain that can be achieved
by addressing the delay probability directly. �

Remark 8: Note that the above approach requires the com-
putation of the argument in (14) for many different options. By
reducing the search space for the deadline, the computational
load can be easily reduced to match the available computational
capacity.

C. Computational Complexity

Here, we consider the computational complexity of the on-
line optimization methods considered. For each argument for
the minimization (11) and (14), the matrices Z and the scalars
β can be computed offline a priori and, for example, stored
in memory. The same holds for the gains in (12) and (15).
Therefore, to compute the optimal arguments, it is required to
compute and compare the terms ξᵀZξ + β for #deadlines ×
#switchingpolicies × #basepolicies switching options in
the setsS and Ss . Note that the size of the setsS andSs depends
on the current state and is upper bounded by the total number of
switching options. Knowledge of sets S and Ss may be used to
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reduce computations by limiting online the number of options
in (11) and (14), but in some implementations, it may be more
convenient to compute all possible options. The computation of
V Δ for the sets S and Ss requires two computations of the form
ξᵀXξ + Y , where X and Y are a matrix and a scalar, which
can be computed offline for each switching option, taking the
forms (A − BK)ᵀP (A − BK) and tr(PW ), respectively. The
number of computations in the terms ξᵀZξ + β scales quadrat-
ically with the state dimension and linearly with the number of
switching parameters, but they can be computed in parallel for
all elements in S or Ss (or all switching options). For the control
inputs, the multiplication Kx scales linearly with the state.

From this analysis, we conclude that, typically, the time re-
quired to compute (11) and (14) is small when compared to the
communication or data-processing computation delay modeled
by F . However, in cases in which these computation times are
non-negligible (because the initial computation/communication
delay modeled by F can be small), it can be incorporated in a
new probability distribution modeling the sum of delays, say F̄ .
Therefore, the methods in this paper can be used to analyze this
case as well. Note, however, that in the latter case, one should
compare the simpler d� and e methods considering the initial
distribution F with the ed� method considering F̄ and, there-
fore, the method ed� does not guarantee better performance than
e a priori.

V. NUMERICAL RESULTS

In this section, we compare the performance of the proposed
strategies on a second-order system taking the form (1) with

Ac =

⎡
⎣ 0 1

g

l
− d

ml

⎤
⎦ , Bc =

[
0
1

]
, Bw =

[
0.05 0
0 0.05

]

which represents a linearized inverted pendulum system with
force input, gravitational acceleration g = 10 ms−1 , mass of
pendulum m = 0.25 kg, length l = 0.5 m, and damping coeffi-
cient d = 1 N · m/rad · s−1 .

The cost function matrices in (2) are taken as

Qc =

[
20 1
1 20

]
, Rc =

[
3
]
.

We consider for the delay both a Gamma distribution f1 with
shape and scale parameters k = 3 and θ = 4/100, respectively,
and the piecewise constant two-block distribution

f2(τ) =

⎧⎪⎨
⎪⎩

4.5, if τ ∈ [0.05, 0.25)
0.1, if τ ∈ [0.50, 0.60)
0, otherwise.

Note that although f1 does not satisfy the condition F1(ε) =
0, it can easily be adapted (see Remark 1) to meet such an
assumption, with a small ε, without impacting on the results.

First, for f1 , the optimal solutions for the base policies are
computed. For D in the interval [10−3 , 1], the stochastic Riccati
equations for Pd(D), Pe , and Ped(D) (see Appendix A) are
solved iteratively, with initial value P = 10−4Inx

, up to accu-
racy 10−4 of the mean square error. All cost values are depicted

Fig. 2. Comparison of the performance of the three base policies vary-
ing with the deadline for f = f1 . The optimal deadlines are marked (x)
and shown in the pdf (top figure). The bottom figure is a zoom of the
middle figure. The black vertical line indicates the stability limit for the
deadlines.

TABLE I
VALUES OF PERFORMANCE INDEX (2) FOR f = f1

Method Base cost Jb

(analytical)
Base cost Jb

(simulation)
Cost with deadline

optimization Js

(simul.)

d 12.3283 12.3305 (=Jd� ) 11.3743 (=Js
d )

e 7.9507 7.9591 (=Je ) n.a.

ed 7.9267 7.9307 (=Jed� ) 7.2421 (=Js
ed )

d&ed n.a. 7.7993 (=Jd� & ed� ) 7.3047 (=Js
d& ed )

d&e n.a. 7.7850 (=Jd� & e ) 7.3514 (=Js
d& e )

as a function of the deadline in Fig. 2. Subsequently, the op-
timal values Jd� and Jed� of Jd(D) and Jed(D), respectively,
are found for their respective optimal deadlines D�

d and D�
ed .

The optimal deadline values, are found to be D�
d = 0.1508 and

D�
ed = 0.3307. Furthermore, τ̄ = 0.1200 and h̄ed� = 0.1194.

The optimal costs Jd� , Je , and Jed� for f1 are given in Ta-
ble I. Although the contribution of the intersampling behavior
is very small, since αb � 0.0014 for all the base policies, it has
been taken into account in the calculation of the costs and our
simulations.

For this example, observe that the green line in Fig. 2 is be-
low the blue line everywhere, indicating that even for a subopti-
mal deadline, the ed approach outperforms the deadline-driven
approach. As expected from Lemma 1, Jed(D) performance
approximates Je for large D.

For each delay value and each switching option, all variables
are computed a priori to speed up computation for Monte Carlo
(MC) simulations. For ξᵀ

0 = [0, 0, 0]ᵀ, we run 40 “long” MC
simulations for t ∈ [0, 24000] s such that the average costs have
approximately converged for each simulation. Then, the costs
are averaged over the MC simulations, and the values are given
in Table I. Due to the limited simulation time and the limited
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Fig. 3. Comparison of the performance of the three base policies vary-
ing with the deadline for f = f2 .

TABLE II
VALUES OF PERFORMANCE INDEX (2) FOR f = f2

Method Base cost Jb

(analytical)
Base cost Jb

(simulation)
Cost with deadline

optimization Js

(simul.)

d 19.5069 19.5230 (=Jd� ) 18.0640 (=Js
d )

e 30.6565 36.9563 (=Je ) n.a.

ed 11.9640 12.0625 (=Jed� ) 11.2330 (=Js
ed )

d&ed n.a. 12.0023 (=Jd� & ed� ) 11.2774 (=Js
d& ed )

number of MC simulations, the cost is not completely averaged
over the probability space, leaving a small error.

The cost differences that support our theorems are indeed visi-
ble, thereby underlining the results. Note that for the two-policy
approaches, the relaxed switching conditions (see Remark 5)
are used, giving a small additional performance gain of 1–2%.
It is notable that, while adding an optimal deadline only gives
small improvement over the event-driven case (Jed� ≈ Je ), the
fact that deadline optimization can be enabled brings significant
advantage of 6–9% compared to the nonswitching case (e.g.,
Js

ed < Je and Js
d&ed < Jd� &ed� ). Furthermore, the strategy with

deadline optimization on ed, which builds upon our previously
proposed policies, performs better than the two-policy approach
in the sense that Js

ed < Js
d&ed . However, such a performance

improvement is not guaranteed formally, and the converse, i.e.,
Js

ed > Js
d&ed , may also occur for different examples. Further-

more, a quantification of the performance difference for the
deadline-optimization approaches may only be obtained through
simulation or experiments.

For f2 , the results are given in Fig. 3 and Table II. Similar cost
benefits as for f1 are observed. For this example, it is found that
the optimal deadlines are the same (D�

d = D�
ed = 0.2508), but

again the ed policy performs better. Furthermore, τ̄ = 0.1900
and h̄ed� = 0.1592. Both d and ed are better than e for this case,
showing that pure event-driven control is not necessarily better
than periodic control with a deadline. The large deviation of e
from the analytical values is due to the fact that the cost has not
yet converged.

As a final note, we observed a significant amount of switching
occurrences without any recognizable pattern, as was expected
since the switching depends on realizations of the random dis-
turbances. While one might expect that only the best base policy,
denoted by p� , is chosen in the two-policy case, we observed
that this is not necessarily the case. While the number of occur-
rences is small, the selection σk �= p� is recurring, indicating

that for some parts of the state space switching to a different
base policy is the best strategy.

VI. CONCLUSION

This paper presents novel control policies for linear systems
subject to actuation delays with a known probability distribution.
From optimal control policies for deadline-driven, event-driven,
and event-driven control with a deadline, analytic solutions for
optimal performance/cost and deadline values were deduced.
The proposed “switched” policy can combine the different ben-
efits of nonswitching policies to improve closed-loop perfor-
mance. The performance of this policy is proven to be better than
that of any of the nonswitching policies. Furthermore, the idea of
deadline optimization that was presented in preliminary work is
extended to both the proposed “event-driven with deadline” pol-
icy as well as the “switched” policy. This allows for additional
guaranteed performance improvement, which was not attain-
able in previous event-driven or deadline-driven approaches.
Numerical examples illustrate the results and give insight in the
tradeoffs in systems with delay, showing that gains of 6–9% can
easily be obtained with the proposed policies. Performance rela-
tions between switched policies with deadline optimization are
still subject of study. Moreover, future work also includes the
output-feedback counterpart, which adds an estimation problem
influenced by stochastic delays, and studies of robustness with
respect to model uncertainty.

APPENDIX

A. Riccati Equations for the Base Policies

To compute the cost for event-driven control with deadline,
it is required to solve, for Ped(D) � 0, the generalized Riccati
equation

Ped(D) = Aγ |D (h|D)ᵀPed(D)Aγ |D (h|D) + Q(h|D)

− Ked(D)ᵀGed(D)Ked(D) (17)

Ged(D) := Bᵀ
γ |D Ped(D)Bγ |D = F (D)Bᵀ

1 Ped(D)B1

Ked(D) := Ged(D)†(Bᵀ
1 Ped(D)

∫ D

0
A1(s)μ(ds))

and to compute Wed(D) := Ŵ (h|D) =
∫ D

0 Ŵ (s)dF (s) +
(1 − F (D))Ŵ (D); see also footnote 2 on page 11. The so-
lution to the Riccati equation can be found by, e.g., the iteration
Pk+1

ed (D) = Ric(Pk
ed(D)) for k ≥ 0 where Ric(·) is the func-

tion of the right-hand side of (17). One can recover the Riccati
equations for d and e, respectively, since considering any new
probability measure with μ((0,D)) = 0 and μ({D}) = F (D)
gives

Pd(D) = Aγ (D)ᵀPd(D)Aγ (D) + Q(D)

− Kd(D)ᵀGd(D)Kd(D)

Gd(D) := Bᵀ
γ PdBγ = F (D)Bᵀ

1 Pd(D)B1

Kd(D) := Gd(D)†(Bᵀ
γ Pd(D)Aγ (D))
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and, alternatively, by letting D → ∞, we have

Pe = A1(τ)ᵀPeA1(τ) + Q(τ) − Ke
ᵀGeKe

Ge := Bᵀ
1 PeB1

Ke := Ge
†(Bᵀ

1 PeA1(τ)).

Furthermore, Wd(D) = Ŵ (D) for a given value of D, and

We = Ŵ (τ).

B. Cost Due to Intersampling Behavior

For the base policies b ∈ {d, e, ed}, where hk , k ∈ N, are
i.i.d., in (5), the contribution αb, b ∈ {d, e, ed}, of the inter-
sampling behavior of the Wiener process is given by the aver-
age value E[α(hk )], where α(h) is given in (9). This follows
from lim supT →∞

1
T E[

∑N (T )−1
k=0 α(hk )] = 1

E[hk ] E[α(hk )] =
1
h̄ b

αb , which can be concluded from [34, Prop. 3.4.1]. Specif-
ically, for a given deadline D ∈ R and policy b ∈ {d, e, ed},
αb(D) := E[α(hk ) | Dk = D,σk = b]. Then, in (5), we have
αd(D) := α(D), αe := α(τ), αed(D) := α(h|D); see also
footnote 2 on page 11.

C. Proof of Theorem 1

We drop the superscript � for Z and β for brevity, and let d
and ed be represented by m or b or p. Note that for each option,
ξᵀ
k Zm,bξk + tr(PbW (hk |D,m)) + α(hk |D,m) is the minimal

value of the optimization

min
uk

E

[ ∫ tk +hk |D

tk

x(t)�Qcx(t) + u(t)�Rcu(t)dt

+ ξ(tk + hk |D)�Pbξ(tk + hk |D)

]
.

This follows from standard LQG arguments (see [30]).
Define the difference in arguments in (11) by

Δ(ξ,m1 , b1 ,m2 , b2) :=
[
ξᵀZm 1 ,b1 ξ + tr(Pb1 Wm 1 ) + αm 1 −

h̄m 1

h̄p
cp

]

−
[
ξᵀZm 2 ,b2 ξ + tr(Pb2 Wm 2 ) + αm 2 −

h̄m 2

h̄p
cp

]
(18)

where cp is given in (5), such that, for p ∈ {d� , ed�}, we have

Δ(ξ, p, p, p, p) := 0

Δ(ξ, p, p,m2 , b2) := [ξᵀPpξ + cp ]

−
[
ξᵀZm 2 ,b2 ξ + tr(Pb2 Wm 2 ) + αm 2 −

(
h̄m 2 − h̄p

h̄p

)
cp

]

where h̄m = E[hk | σk = m], such that, e.g., h̄m = D if m =
d, and we use the fact that Zp,p = Pp . Observe that the switching
condition (11) aims to maximize the value of Δ(ξk , p, p, σk , bk )
for p = p� . Note that it is always allowed to choose the optimal
base policy σk = p, bk = p since it directly satisfies the con-
dition on V Δ . It corresponds to a value Δ(ξk , p, p, p, p) = 0.

Hence, Δ(ξk , p, p, σk , bk ) is non-negative since any choice
of σk , bk following from (11) satisfies Δ(ξk , p, p, σk , bk ) ≥
Δ(ξk , p, p, p, p) = 0.

Moreover, we consider

E

[
g(ξk , hk ) + Vb(ξk+1) | ξk ,

[
σk

bk

]
=

[
m

b

]]

= ξᵀ
k Zm,bξk + tr(PbWm ) + αm

= ξᵀ
k Zm,bξk + tr(PbWm ) − ξᵀ

k Ppξk + ξᵀ
k Ppξk

+
(

h̄m − h̄p

h̄p
− h̄m − h̄p

h̄p

)
cp + αm

=
h̄m

h̄p
cp − cp − ξᵀ

k Ppξk + ξᵀ
k Ppξk

+ ξᵀ
k Zm,bξk + tr(PbWm ) −

(
h̄m − h̄p

h̄p

)
cp + αm

=
h̄m

h̄p
cp − Δ(ξk , p, p,m, b) + Vp(ξk ).

As defined in Section IV-A, p� = arg minp∈{d� ,ed� } Jp . The
one-step cost of the proposed control policy is then given by the
difference

E

[
g(ξk , hk ) | ξk ,

[
σk

bk

]
=

[
m

b

]]

=
h̄m

h̄p�

cp� − Δ(ξk , p� , p� ,m, b)

+ Vp� (ξk ) − E

[
Vb(ξk+1) | ξk ,

[
σk

bk

]
=

[
m

b

]]
. (19)

Note that the condition V Δ(ξk ,m, b) ≤ 0, guarantees that

E

[
Vp� (ξk+1) − Vb(ξk+1) | ξk ,

[
σk

bk

]
=

[
m

b

]]
≤ 0.

Define

GN :=
N∑

k=0

g(ξk , hk ), EN :=
N∑

k=0

E [g(ξk , hk ) | Ik ] .

Note that g(ξk , hk ) given Ik is a random variable since Ik
includes ξk but hl only for l < k. We have that the process
X := (Xk )k∈N , with Xk := Gk − Ek , is a martingale with re-
spect to the filtration associated with Ik+1 , since

E [Xk+1 | Ik+1]

= E [Xk + g(ξk+1 , hk+1) − E [g(ξk+1 , hk+1) | Ik+1] | Ik+1]

= E [Xk | Ik+1] = Xk.

Note that N(T ) is a stopping time w.r.t. (Xk, Ik+1), which
has finite expectation for given T , i.e., E[N(T )] < ∞ since
hk ≥ hmin > 0 for all k ∈ N, and that N(T ) → ∞ as T → ∞.
Provided that we prove that there exists some constant c ∈ R
such that E [|Xk+1 − Xk | | Ik+1] ≤ c for all k < N(T ) for k ∈
N, which we will do in the following, we can apply Doob’s
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optional sampling theorem (see, e.g., [35, Th. 9, Sec. 12.5] or
[29, Th. 2.2, Ch. VII]) and have

E
[
XN (T )

]
= E [X0 ] = 0.

where we use the fact that

E [X0 ] = E [g(ξ0 , h0) − E [g(ξ0 , h0) | I0 ]] = 0.

This implies that E[GN (T ) ] = E[EN (T ) ]. Furthermore,
since by the law of total expectation (or tower rule),
E

[
g(ξN (T ) , hN (T )) − E

[
g(ξN (T ) , hN (T )) | IN (T )

]]
= 0, we

have that

E

⎡
⎣

N (T )−1∑
k=0

g(ξk , hk )

⎤
⎦ = E

⎡
⎣

N (T )−1∑
k=0

E [g(ξk , hk ) | Ik ]

⎤
⎦ .

(20)
We have that

E [|Xk+1 − Xk | | Ik+1] =

= E
[∣∣∣g(ξk+1 , hk+1) − E [g(ξk+1 , hk+1) | Ik+1]

∣∣∣ | Ik+1

]

≤ E
[∣∣∣g(ξk+1 , hk+1)

∣∣∣ +
∣∣∣ E [g(ξk+1 , hk+1) | Ik+1]

∣∣∣ | Ik+1

]

= 2 E [g(ξk+1 , hk+1) | Ik+1]

≤ 2
(

h̄σk + 1

h̄p�

cp� + Vp� (ξk+1)
)

where the last inequality follows from (19). The first term is
bounded since h̄σk + 1 ≤ τ̄ for all k ∈ N for strategies e and ed,
and h̄σk + 1 ≤ Dmax for all k ∈ N for strategy d. The fact that
E [|Xk+1 − Xk | | Ik+1] ≤ c follows then from mean-square
stability of ξk , which is proven by boundedness of E[Vp� (ξk )]
for all k ∈ N as k → ∞, which follows similar arguments as a
similar proof in [32, Th. 4].

Summing (19) for k ∈ {0, . . . , N(T ) − 1}, we have

N (T )−1∑
k=0

E[g(ξk , hk ) | Ik ] =
N (T )−1∑

k=0

h̄σk

1
h̄p�

cp� − δk + νk

+ Vp� (ξ0) − Vp� (ξN (T )) (21)

where

δk := Δ(ξk , p� , p� , σk , bk ) − V Δ(ξk , σk , bk )

and

νk := Vp� (ξk+1) − E[Vp� (ξk+1)| Ik ].

Next, we substitute (20) and (21) into (8). Taking the expecta-
tion, we have that E[νk ] = 0 for all k ∈ N. Then, when taking
the limit T → ∞ in (8), the last two terms in (21) vanish, since
E[Vp� (ξN (T ))] is bounded as T → ∞, as explained before, and
E[Vp� (ξ0)] is bounded by the initial condition. Furthermore, the
first term becomes equal to Jp� since

lim sup
T →∞

1
T

E

⎡
⎣

N (T )−1∑
k=0

h̄σk

⎤
⎦ = 1. (22)

This holds by the fact that (H̃k )k∈N , with H̃N :=∑N
k=0 hk − h̄σk

, is a martingale with respect to the filtration
associated with Ik+1 and again the fact that h̄σk

is bounded by τ̄
or Dmax . These conditions, again by Doob’s optional sampling
theorem [29], [35], imply that

E

⎡
⎣

N (T )−1∑
k=0

h̄σk

⎤
⎦ = E

⎡
⎣

N (T )−1∑
k=0

hk

⎤
⎦ .

Then, (22) holds by the fact that limT →∞ 1
T E

[
∑N (T )−1

k=0 hk ] = 1, since the discretization error vanishes
in the limit.

As a result, we get, for π = d�&ed� , that

Jd� &ed� =
1

h̄p�

cp� − lim
T →∞

1
T

E

⎡
⎣

N (T )−1∑
k=0

δk

⎤
⎦ (23)

≤ 1
h̄p�

cp� = Jp� = min{Jd� , Jed� }

with δk ≥ 0 by the fact that Δ is non-negative and V Δ is non-
positive by definition of (11). Note that δk = 0 for the choice
(σk , bk ) = (p� , p�). This proves the theorem.

D. Proof of Theorem 2 and Corollary 2

Consider all allowable choices of combinations (m,D),
where D is in the finite set D, as new methods m̃ such that
(m̃, b)ᵀ ∈ Ss(ξ). Each method m̃ has the particular value of
D as its optimal choice of deadline D� . By reformulation, the
switching condition (14) then takes the same form as (11) and
the proof of Theorem 1 applies. For Corollary 2, the switching
options are limited to bk = ed� and σk = ed� for all k ∈ N,
hence always V ΔD ≤ 0, and the deadline D is the only switch-
ing parameter.
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Venlo, The Netherlands. His current research interests include hybrid
and cyberphysical systems, networked and event-triggered control sys-
tems, and constrained systems including model-predictive control.

Dr. Heemels served/serves on the Editorial Boards of Automatica,
Nonlinear Analysis: Hybrid Systems, Annual Reviews in Control, and
the IEEE TRANSACTIONS ON AUTOMATIC CONTROL. He received a per-
sonal VICI grant awarded by STW (Dutch Technology Foundation).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


