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Electron microscopes are high-precision imaging systems that are used to image objects (specimens) up
to atomic resolutions. Even in highly-controlled industrial sites with minimal external disturbances,
internal disturbances cause the objects to move in the field of view of the imaging system. These
internal disturbances are jointly considered as drift, which can prohibit fast and accurate imaging. The
objective of this paper is to design a model-based control system that leads to the stabilization of
the region of interest of the object in the center of the field of view despite the presence of drift,
which can be achieved by controlling the movement of the object itself using an actuated positioning
Image processing system (stage). An interesting feature of the problem is that the displacement of the object can
Feature tracking only be measured through the imaging system itself, which requires a non-trivial image-processing
Delay step affected by significant delay and inaccuracy. In the image-processing step, a tracking algorithm
Feedback control provides drift estimates. The image-processing characteristics inherent to the tracking algorithm such
LQG as image-acquisition time, tracking delay, and measurement accuracy, are explicitly taken into account
Switched systems . . . .. L. L

in a novel LQG-type control design for this application. The decision for a LQG-type control design is
based on a stochastic model proposed for the drift motion of the specimen to include the uncertainty
in the drift. Moreover, we show that new switched control designs can improve our original (non-
switched) LQG design even further. To validate this approach, a simulator has been developed in
close collaboration with an industrial OEM of electron microscopes to simulate a relevant industrial
case study including tracking software and system parameters used in the industry. The simulator
automatically generates and analyzes representative images to simulate closed-loop imaging and
processing for feedback control.

Keywords:
Electron microscope

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction using magnetic lens systems, see, e.g., Fig. 1 for a schematic of
a transmission electron microscope (TEM) (FEI, 2010; Reimer &
Kohl, 2008). The image-acquisition process takes time, because a

sufficient amount of electrons needs to be detected in order to

1.1. General problem setting and context

An electron microscope (EM) (Egerton, 2005; FEI, 2010) is
a high-resolution tool for imaging objects (the specimens) at
sub-Angstrom resolutions (less than 0.1 nanometer per pixel,
i.e.,, more than a million times more precise than the human eye).
This makes EMs one of the primary tools for nanotechnology
and other applications in life sciences, electronics manufacturing,
and material sciences. By interaction of an electron beam with
the specimen, the image is projected on a camera or a detector
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provide enough contrast in an image, which is the main measure
for image quality. In practice, high-quality images are obtained by
averaging sequences of lower-quality images, which are obtained
at intervals in the order of hundreds of milliseconds.

While nowadays EMs are mostly used as analysis tools in
laboratories, their use in manufacturing industries is increasing.
Industrial users of EMs usually wish to perform multiple imaging
sessions for product analysis on various (batches of) specimens
and therefore throughput becomes important. The throughput of
specimens is determined by the time that is needed to create
a high-quality image, which depends on the exposure time re-
quired for contrast, and the time required for the specimen to be
(near) motionless in the view of the camera. Given the increasing
demands from industry, there is a clear desired to improve the
throughput of EMs.
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Fig. 1. Main components of a transmission electron microscope (TEM) system
(adapted from FEI, 2010). A beam of electrons emitted from a source is guided
by lens systems through a specimen that is imaged on a projector screen or
camera.

One of the bottlenecks in improving throughput is drift, a
phenomenon inherent to the current EM systems, which is a
collective term for several disturbance processes. Drift induces
a (very) slowly fading motion of the specimen, which causes
blurring of the image, because it corrupts the electron detection
process and therefore the image-acquisition process itself. Reduc-
ing the exposure time limits the drift effect but also the image
contrast, and thus also makes high-quality imaging infeasible.
Waiting for the drift to fade significantly limits the through-
put of images, but is current state-of-the-art in EM practice.
Hence, counteracting drift could be one of the enablers to increase
throughput, while preserving high-quality imaging.

In order to provide even better products for their customers,
Thermo Fisher Scientific envisions feedback control to correct
for drift as a means to improve imaging quality and throughput
beyond current limits imposed by drift in their systems. The
introduction of a controlled actuation system, called ‘stage’, to
move the specimen holder during the imaging process provides
a promising alternative to the conventional “waiting” before the
specimen comes to standstill by itself. To support this vision, this
paper present a modeling and control methodology that allows
to move the stage to correct for drift and make the specimen
(nearly) motionless in the view of the camera.

The focus in this paper will be on the imaging effects in
TEM systems, which takes full-resolution images, although the
authors believe that the results in the paper, can also benefit
scanning-type EMs on an image-to-image timescale. If pixel-to-
pixel tracking algorithms can provide fast enough drift estimates,
and provided that the control system is fast enough, the method-
ologies in this paper could be applied to correct for drift during
the scanning process. Here, we consider image-to-image tracking
algorithms with a well-defined finite completion time for given
imaging settings.

Throughout this paper, as a representative industrial example
and case study, an electron microscope image of gold (courtesy of
Thermo Fisher Scientific) will illustrate the problems in imaging
with disturbances. Fig. 2 depicts how image quality changes when
Poisson noise affects the electron detection process, and how drift
creates a blurring effect. A field-of-view (FOV) around a point-of-
interest (POI) of the object is shown. The first picture (a) can only
be obtained after a long exposure time without drift, the other
pictures (b) and (c) can be observed after a shorter exposure time
without and with drift, respectively. Clearly, much contrast is lost
due to drift. Since the images themselves are corrupted by drift,

(b) (©

Fig. 2. Object (gold) in high contrast (a), in low contrast image affected by
Poisson noise without blur (b), and with blur (c). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

post-processing cannot be used to adequately correct for it. From
observations at Thermo Fisher Scientific and their customers,
this drift is quite unpredictable and it is aggressive at first, but
becomes less aggressive as time progresses. Therefore, the quality
of the images improves over time if the system is not otherwise
disturbed. Typically, after a specimen has been placed in the EM
at least several minutes of waiting time are required before any
(low quality) image information can be obtained. This waiting
time varies from minutes to more than a day, depending on the
working setting. Often, it even occurs that the POI (almost) leaves
the FOV. If the POI leaves the FOV, at present a highly-trained
human operator may manually perform a rough correction for
the drift by controlling a joystick that moves the stage. Such an
operation by a human operator may, unfortunately, introduce
additional drift. In fact, in many cases, the initial drift is too
random and too fast for a human operator to correct for and
waiting is required. In current practice, online corrections during
the imaging process are not performed.

Given the above issues, our objective is to realize an auto-
mated drift compensation system based on this stage and the
online analysis of images to obtain measurements of the motion
of the POI, which thereby acts as an image-based soft sensor. We
stress again that the image-based sensor is the only means to
obtain estimates of the drift at the microscopic level, especially
if sub-Angstrém resolutions are desired. We follow a model-
based design approach, which takes into account a model for
the disturbances. In fact, some characteristics of the disturbances,
which will be discussed in more detail in Section 2, are known.

1.2. Related work

Some approaches for control in (electron) microscopes related
to our work have been proposed in the literature. To coordinate
low-level and high-level control of actuators in a TEM system, a
hierarchical MPC-based control design was proposed (Doornbos
& van Loo, 2012; Tarau, Nuij, & Steinbuch, 2011) without further
study of drift. Automation for remote operation was investigated
in O'Keefe et al. (1996). The papers (Andersson & Abramovitch,
2007; Andersson & Park, 2005) studied smart scanning methods
to decide where in the operating area to sample. In Elmokadem
and Yu (2015) a drift estimation method based on Bayesian
inference was proposed. Recent works (Jin & Li, 2015; Zhang,
Long, Liu, Zhang, & Feng, 2016) studied compensation of thermal
drift and distortions by beam-steering in scanning microscopes.
Typically, post-processing methods (Gonzalez & Woods, 2006;
Salmons, Katz, & Trawick, 2010; Sutton, Orteu, & Schreier, 2009)
are already used in EM systems, but these are not sufficient to
compensate for all aberrations caused by drift.

1.3. Contributions

In this work, we propose a vision-based feedback controller for
the stage (see Fig. 3) in order to compensate online for the drift
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Fig. 3. Image-based feedback loop with object actuation.

disturbances, which leads to improved imaging throughput and
quality. The first contribution is the mathematical formalization
of the imaging improvement problem as a stochastic optimal
control problem. Based on this formalized problem and modeling
framework, several control design approaches could be taken. We
propose a linear quadratic Gaussian(LQG)-type solution to this
problem, which follows as a natural choice for the seemingly
stochastic nature of the drift and the resulting stochastic optimal
control problem. In particular, we will use the modeling approach
proposed in van Horssen, Antunes, and Heemels (2015, 2019)
for which the data-acquisition method consists of the imag-
ing process as well as the tracking process. The application of
LQG-type control design in this industrial context is the second
contribution. Moreover, we show as a third contribution how
the switching approach introduced in van Horssen et al. (2015,
2019) can enhance performance even further by switching online
between different sets of sensing parameters, i.e., with different
data-acquisition settings. Note that we do not focus on improving
the image-processing methods themselves. A strong feature of
the applied method is not only the fact that performance may
improve, but also that the method is guaranteed not to lose per-
formance when switching, which is not guaranteed for switching
control methods in general (Geromel, Deaecto, & Daafouz, 2013).
Since multirate control is an often-used approach when timing
issues arise, our fourth contribution is a formalized multirate
solution in the industrial context of this paper. Our fifth contribu-
tion is a simulation environment to test closed-loop control of an
electron microscope with simulated industrial disturbances using
an image-based measurements system with industrial tracking
software by using benchmark industrial images, which we apply
to a case study that is highly relevant for our industrial partner.
The simulator includes image aberrations by including a Poisson
process for the camera exposure process and a Gaussian blurring
for motion during image acquisition. Our sixth contribution is the
validation of the proposed control approaches in this industrial
simulation environment.

The authors believe that this is a pioneering study of drift
compensation in EMs by using optimal control tools. To aid im-
plementation of the methods, we provide many details on the
control design and propose a design flow to identify system
parameters, which can be used in the simulator as well as in a
real system setup. The design flow and the proposed methods
are numerically illustrated in the newly developed simulation
environment by a representative case study of an EM model,
which is a seventh and final contribution.

1.4. Outline of the paper

The organization of the remainder of the paper is as fol-
lows. Section 2 provides an overview of the experimental system,

the drift model, and the main problem formulation. Section 3
presents the formal control design problem. Control solutions for
processing delay smaller and larger than one sensing interval are
presented in Sections 4 and 5, respectively. Section 6 gives details
on the electron microscope simulator environment and presents
numerical results of a relevant industrial case study to illustrate
the control designs. Concluding remarks are given in Section 7.

2. System description and problem formulation

This section provides details on the main components of the
electron microscope system that were described in the introduc-
tion and presents the main problem that is addressed in this
work.

2.1. System overview

Fig. 3 illustrates the setup under consideration in this paper.
A point ppg; € R™ on an object in the view of the camera is
chosen as the Point-Of-Interest (POI). The object is placed on
a holder, which is connected to a motion-controlled ‘stage’. A
low-level stage controller receives setpoints from an image-based
controller and positions the stage based on position measure-
ments from the stage and this setpoint information. Drift affects
the position of the POI, which cannot be measured by the stage
measurement system. To obtain drift information, an observa-
tion system in the form of an image-based sensor unit registers
changes in the position of the POIL In this image-based sensor
unit, camera images are acquired by dedicated hardware and
processed by a visual tracking system resulting in a position mea-
surement of the POI. Based on this POI position information, the
image-based controller in Fig. 3, detailed in the sequel, decides
on motion setpoints, which are fed to the stage to counteract the
drift motion of the object with respect to the camera.

Deviations from the initial position of ppg; in the field of view
of the camera are described by the position error

e(t) := ppoi(t) — proi(0), t € Ry, (1

where e(t) € R™. Recall that we select ppo;(0), and as such it is
exactly known.

In this work, we address multiple-input multiple-output
(MIMO) systems for reasons of generality, since such systems are
typically of interest in vision-based control. For ease of exposition,
we illustrate the ideas and results for a single-input single-output
(SISO) system with n, = 1.

2.2. Observation system and error model

The observation system in the form of an image-based sensor
unit can be divided into a camera, an image-acquisition system
and image-processing.

2.2.1. Camera and image acquisition

The camera captures grayscale images of w x h pixels, w, h €
N. The imaging accuracy of the system is expressed as the resolu-
tion r € R, which determines how much of the object is displayed
by one pixel, e.g., a resolution of 0.1 nm/pixel means that an
area on the specimen of 0.1 by 0.1 nanometer is imaged in one
pixel. Camera images are obtained at a frequency of f¢ € R.o Hz.

The time between camera images is given by ¢ = fic which is

the minimal exposure time of the camera. The imaging process
can be considered as an electron counting process that works
at low exposure levels with an average doserate of DR € R.y
electrons per pixel per second, which depends on the electron
beam strength and the type of specimen. The intensity of a pixel
in an image is given by the actual number of electrons that are
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Fig. 4. Templates with low contrast (left, low N¢, fewer intensity levels) and
high contrast (right, high N¢, more intensity levels).

counted. During an exposure of 7¢ seconds, the average number
of electrons detected per pixel in the camera is given by N¢, =
7¢ x DR. The actual pixel intensity depends on the specimen and
the electron arrival process. The number of arriving electrons per
pixel can be modeled as a Poisson process. Hence, we say that the
pixel intensity is corrupted by Poisson noise.

The output of the image-acquisition system is called a frame,
i.e., an image of a desired level of quality that is obtained with
a desired exposure time. Here, we discuss the imaging process
itself and, for now, neglect the blurring effect of drift, which is
discussed in more detail in Sections 2.4 and 2.5. The quality of
the frame can be assessed by its contrast. The contrast increases
with the average number of electrons that are counted. Hence,
in order to improve quality, we can count over longer exposure
times, which are restricted to durations that are multiples of €.
This increases image quality (and therefore the expected position
measurement accuracy) but comes at the cost of a larger delay
before information becomes available. In practice, the frame gen-
eration for multiple intervals t¢ is realized by either combining
multiple images taken at rate ¢ (i.e., summing the pixel values)
or by increasing the exposure time in the electron counting
process, leading to similar resulting frames. In this work, we
consider the first case in which multiple images are combined.
For N' € N imaging intervals combined, the average number of
electrons counted per pixel is N¢ := Ni x N;,;, and the total frame
acquisition time is h* := N’ x t° seconds. The blurring effect
of drift reduces the image contrast. Therefore, reducing the drift
effect also benefits the imaging process.

2.2.2. Image-processing

The image-processing step takes the acquired images/frames
and uses a feature tracker to identify deviations in the position
of a ‘template’ with respect to its expected position. Using a
‘first’ frame, the feature tracker decides (possibly with the help of
an operator) what the point of interest on the specimen is, and
thereby the position ppg;(0) in the frame. The template is a section
of the initial image around the POI (or around some feature near
it). Such templates of 256 x 256 pixels are depicted in Fig. 4 for
variations in N¢, which are sections of larger frames as depicted
in Fig. 2 by the green/blue squares.

The image-processing method used in this work is a nor-
malized cross-correlation filter with subpixel accuracy detailed
in Guizar-Sicairos, Thurman, and Fienup (2008) as the single-
step DFT algorithm. Input for the image-processing is the original
template and a new frame. This algorithm returns the position of
the template in the new frame by an optimization over a subpixel
approximation (with a predefined accuracy), and it does this in all
subsequent frames. In this work, we aim to present control de-
sign ideas rather than improvements in data-processing. Hence,
instead of searching for the best image-processing algorithm, we
assume the image-processing method to be given by the method

s
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Fig. 5. Sensing timing for three exposure intervals combined (N’ = 3): imaging
instants i,,n = 1,..., 6, sensing moment S, actuation moment a.

in Guizar-Sicairos et al. (2008). In the actual system, the tracker is
implemented in dedicated hardware such that the computational
time can be assumed constant.

2.2.3. Sampling intervals and measurement accuracy

Using the tracker, the error e in (1) is observed/measured at
discrete sensing instants sy € R>o, k € N leading to the sampling
intervals

h}, == Skt1 — Sk € Rog, k € N. (2)

We assume that a sensing instant corresponds to the central
time in sthe electron counting process, leading to a sensing delay

T = % equal to the difference between the central time and
the moment the last image in the series of length N' is obtained,
i.e,, the moment that the new frame is available. In this work, we
consider a blurring effect for the total motion during acquisition
such that the central time is the most natural choice. However,
our control approaches can easily be adapted to other choices of
the sampling instants, such as the start or end of the acquisition
time, as well. Traditionally, the system operates at a fixed rate
consistent with the acquisition time, i.e., hj = h* for some fixed
h* for all k € N. In this work, however, we will also deviate
from traditional operation and switch between different sensing
and actuation rates, as will be discussed in the sequel. In Fig. 5,
the sensing instants are depicted for the traditional case with
three exposure intervals combined (N' = 3). After a new frame is
acquired, the measurement of the error

Vi = e+ vy, k eN, (3)

where e, denotes e(sy), becomes available after a processing delay
7P € R. . Recall that the processing delay is a fixed constant, i.e,
it does not depend on the sensing interval. The measurements
are corrupted by measurement noise v, € R". We assume that
the Poisson noise at the pixel level results in a Gaussian deviation
in the measurements. In other words, the measurement noise is
assumed to be zero-mean additive Gaussian white noise (AGWN),
i.e., vg is a zero-mean Gaussian random variable with variance
Vi. This assumption will be validated through the analysis of
sequences of frames.

We take the actuation update instants ay € Rxo, k € N, to be
equal to the moments at with measurements yy, k € N, become
available. The total delay between the sensing instant s; and the
corresponding actuation instant ay is then given by

S
tk:r,f+t":%+t", keN, (4)
corresponding to the time between the central acquisition time
and the end of the processing. When the system operates at
a fixed rate, this total sensing-to-actuation delay is fixed and
denoted by t, see also Fig. 5.

2.3. Actuation system

The actuation system or stage consists of a moving part, the
specimen holder, which moves with respect to the camera, and a
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mechanically fixed part that is not moving with respect to the
camera, which enables relative motion of the specimen in the
view of the camera. A stage controller, see Fig. 3, uses direct
measurements of the stage, for example, the position p(t) €
R™,t € R, to accurately follow setpoints of up to 4th order

derivatives of a reference position pi?(t) € R™, t € R.o. We
assume that n, = np, such that we can set one derivative of
the position for each dimension of the position error (confer
(1)). Later, in Section 2.6, we will detail which derivative is most
suitable and use that reference setpoint as the control input for
the image-based feedback loop.

We assume the stage system to be a well-tuned closed-loop
system that can be assumed ideal with respect to the image-
based feedback loop, i.e., a time scale separation exists between
the stage control loop and the image-based control loop. Note
that if this assumption is not valid, an appropriate model, for
example, a more complex state-space model of the stage control
loop, may be included in the modeling and design steps that are
proposed next.

Assumption 1.
. ref
e, ps =ps .

We further assume that initially the stage is at standstill at
ps(0) = pi (0).

Stage movements are (to be) kept relatively small such that
there are no mechanical vibrations excited in the holder. Further-
more, the actuation system only allows for digital updates of the
actuation setpoint at discrete-time actuation update instants ay €
R-o,k € N and we have a standard zero-order hold approach
between actuation update instants.

Note that the actuation intervals hf = ai1 —a; € Rog,l € N
need not be equal to the sampling intervals. At first, we will
assume that there is one actuation update per sample, which
takes place after the processing delay 7y, i.e., ax = sy + 7 for
all k € N. We then have actuation intervals hj = a1 — a, €
R.o, k € N, and we propose control designs for the case where
hi = h, for all k € N. When the actuation rate is fixed, we
omit the subscript k or | and denote the actuation interval by h°.
Afterwards, in Section 4.5, we also propose a multirate approach
where actuation is faster than sampling, which leads to actuation
intervals h{ shorter than the sampling intervals hj.

We assume that the control computation delay is negligible
compared to the acquisition and processing delay t.

The stage perfectly follows a given setpoint,

2.4. Drift effect and motion blur

We assume that all changes in ppo; in the images are either a
result of movements of the stage or of the disturbances causing
differences between p; and ppo;. Those disturbances are jointly
modeled as drift d(t) € R™ in position for all t € R, i.e.,

e(t) == ppoi(t) — ppoi(0) = ps(t) — ps(0) + d(t). (5)

In the next subsection, we present a dynamic model for the (drift)
disturbance d.

In practice, motion of the object during image acquisition
results in blurring effects in the frames. We consider the motion
blur to manifest as a Gaussian filtration of the image with zero-
mean and standard deviation equal to the total movement in
pixels between obtained frames.

2.5. Disturbance model
As mentioned before, some characteristics of the disturbance

are known. Based on insights from industrial experts, we propose
an approximate model of the total movement due to drift d(t) €

R™ for all t € Rxo. Recall that, for simplicity, we consider n, = 1
in this work, although generalizations to higher dimensions are
straightforward.

One of the main causes of the disturbance is internal thermal
drift, which occurs in the system and in the specimen itself,
at frequencies up to 1 Hz. Other external disturbances, which
typically occur at higher frequencies, can often be well-addressed
by other measures taken on the working site of the EM system,
such as active vibration isolation. Therefore, we focus here on the
internal drift type disturbance. The main component of the drift is
a continuous motion in one unknown major direction in R™, with
small variations in a short period (e.g., up to several minutes),
but the movement speed is exponentially decaying over longer
periods (> 1000 min). For control purposes, we can consider the
behavior over a shorter period. Hence, we can assume that the
major drift component is a constant speed in one major direction
and that this main drift is randomly perturbed, which can be
on any time scale. We assume, based on insights from industrial
experts, that an accurate drift model for n, = 1 is given by the
following second order stochastic differential equation, which can
capture many variations of drift:

. dw?
dit) = 0 + By o (6)
constant speed —

small perturbations

where w? is a one-dimensional Wiener process with incremental

covariance (Astrom, 1970) and the gain B, « of the random Wiener
process models the variations in the speed. The differential equa-
tion (6) can be expressed in state-space form as

-6 o[ 2

The initial condition

d(0) 0
[c’iw)] = [dz] (®)

models the almost constant initial drift velocity by dj € R, which
is unknown.

In this work, for ease of exposition, we assume the drift to
have an effect only in one direction (n, = 1). Using the insights
in this paper, the methods proposed in this work can readily be
extended to compensate for multi-directional drift as well.

2.6. Acceleration control

Since we can control the stage position reference up to 4th
order, we have direct control over either pi (t), pr (t), B (t),
or 'ﬁ:ef(t), and thus by Assumption 1 over ps(t) or higher order
derivatives, respectively. From (5) and (6), we can see that ve-
locity of the stage can directly compensate for the main constant
drift speed if it is known. However, the drift speed is corrupted
due to the small time-varying perturbations in (6) and therefore
only approximately known from the measurements. Hence, to
achieve compensation for the velocity and the small perturba-
tions in (6), we select to control the acceleration of the stage
..ref . ..ref
Ds” (), ie, u(t)=ps (t),t €R.

2.7. System performance

A measure for the performance is the average deviation of
the POI from its initial position, which is given by the error e.
This measure reflects the amount of displacement during imaging
and, hence, the image quality. To prevent large control actions
(which could induce additional drift), we also penalize the control
input, which is a function u of the reference of the stage position,
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i.e., (derivatives of) pgef . The control performance over some time
interval [0, T] is measured by

T
o= [ Bl Quete) + uyRaao e (©)
0
with Q, € ST, R, € S";’, where S} denotes symmetric positive
definite matrices of dimension n x n and E[-] denotes expectation.
For the one-dimensional system considered in this work, we
select Q. = 1 and tuning involves only the parameter R, € R..

In this work, we consider a stabilization problem of the error
over periods of time much larger than the sensing intervals.
Therefore, T in (9) can be assumed infinite and we will consider
infinite horizon control designs based on performance measure
J= limT—mo]T-

Control designs for infinite T typically perform well even in
finite horizon problems. Nevertheless, finite horizon counterparts
for the design may be directly deduced from the equations in
this work and the derivations in van Horssen et al. (2019). Note
that switching conditions that are explicitly derived for the finite
horizon case will be more involved in terms of computations (see
also van Horssen et al., 2019). Using a meaningful final cost is
important in the finite horizon case.

2.8. Problem formulation and approach

Formally, the main goal considered in this work is the reduc-
tion of performance measure (9) for T — oo in comparison to
the uncontrolled case, meaning that the POI is stabilized close
to its initial position (which can be selected arbitrarily) by a
model-based design of an image-based feedback controller (as in
Fig. 3).

The approach we take to solve the problem will address the
following challenges:

(1) Establish an appropriate model of the open-loop system.
(2) Model-based design of image-based feedback controllers.
(3) Validation of the control design.

In this paper, we tackle these challenges in the order in which
they are presented. The first challenge is already partly addressed
in the first part of the paper. Firstly, we established (3) as the
measurement model. Second, we proposed a model for the error
(5) and a model (6) for the drift disturbance. Next, we illustrate
how we can establish an open-loop model and how we can use
that model in control design. In particular, by using the frame-
work presented in van Horssen et al. (2015, 2019), we design
controllers that take into account the drift, the measurement
inaccuracies, and the delay. Note that most works in the vision-
based control literature do not explicitly address the delay caused
by processing (Corke, 2011; Se, Lowe, & Little, 2005), whereas van
Horssen et al. (2015, 2019) aimed to exploit knowledge about
the delay instead and study the relation with accuracy of the
processed measurement, which was studied by Krautgartner and
Vincze (1998) and Sharkey and Murray (1996) in a different
context as well. Lastly, we present an industry-based simula-
tor to test open-loop and closed-loop behavior of an electron
microscope system with image-based feedback to illustrate and
validate our designs.

3. Formalizing the control design problem

Using the models proposed in the previous section, we can
design controllers for the system with measurement delay. To
formalize the control design problem, we give a state-space
representation of the open-loop system and a discretization.

3.1. Open-loop state-space system model

The ideal dynamics of the error system are given by
é=bpo:=b5+d=b§ef+d, (10)
which follows from (1) and (5). For generality, we can include
an additional Wiener process w® for any additional unmodeled
perturbations on the position of the POl The open-loop system,
taking into account (7), can then be represented in state space as

[ e 01 17[e 0 Bue 0 7 [du
d =0 0 O d 4+ 10 |u+ 0 de dwtd s
A 0 0 o]|p¥ 1 0 0Ll

which can be rewritten as

e 7 o 1 e 0 B, 07|%
a+5§ef}—[o o] [d+p§ef}+[1}”+[o de] [dwd ’
x_q./_z —_————— — —~ [N —— de

X Ac X Bc By dw

(11)

where the system can be written with state x := [ e , d +p'¥ T,
and thus more compactly, as

. dw
x:ACx—l—Bcu—i-Bwa, (12)
where w is an n,-dimensional Wiener process and (Ac, B.) is
controllable.

The measurements are given by

Y = Cx(sg) + vy, (13)

where C = [1 0] and vy is a zero-mean Gaussian random variable
with variance Vj. The variance Vj represents the accuracy of the
measurements, which depends on the data acquisition settings,
as explained in Section 2.

The performance (9) can be expressed as a standard linear
quadratic Gaussian (LQG)-type average cost function (Astrom,
1970)

1 T
o= [ Bl weie, (14)
0
where g.(x,u) := x"Q.x + u'R.u with positive definite matrix

R. > 0, and positive semi-definite matrix Q. > 0. In particular,
we have

Q O

with (A, ch/ 2) observable.

Rc =Ru, (15)

3.2. Discretization

We assume s, = 0 and the first actuation update is thus
delayed by ao. A standard zero-order hold sampled-data (Astrom
& Wittenmark, 2013) approach is taken between actuation update
instants, i.e.,

u(t) = uy, for all t € [ay, G1), (16)

where uy, := u(ay) and u(t) = u_q := 0 for all t € [0, ay).

Let x, := x(ax) denote the state at the actuation update
instants for all k € N. By discretization of the system (12) at times
ai, k € N, we obtain

Xkr1 = A(hy)xi + B(hyuy + wy, (17)

where A(h) := " and B(h) = foh e’<sB.ds. The Wiener process
can be represented in discrete time by a sequence of Gaussian
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zero-mean independent random vectors w, € R™, k € N, with
covariance E[wy(wi)T] = W(h{), where W(h) = f e’csB,, BT eAs
ds.

The average cost (14), for T = ag + ZN ! h, N € N., can be
written as

N-1
1 g 0), u(0), ap) + e Uk b)) | (18
h= S [g(x()u ). do) kZ:Ojg(x, uy k)} (18)

where g(x, u, h) := x"Q(h)x + 2x'S(h)u + u™R(h)u + «(h), with

5 -8 s 8 e

and, for tr(-) denoting the trace of a matrix,

h t
a(h) == tr(Q. / / e’sB,,BT MSdsdt),
0 0

which is the cost associated with the continuous-time behavior
of the Wiener process between update instants.

Note that, for the system with one-dimensional drift, the
matrices of the discrete-time dynamics with time interval h can
analytically be computed to be equal to

n2
A(h):[g, ’{]B(h)z[;},

B h3 B? yh?

2.h+ wi
W= 27
wZ deh

1
a(h) = EQE (6B2ch* + B2 ;h*).
3.3. Control problem

We formulate here the control problem for h;, = h§ for
all k € N, which can be generalized to the multirate case in
a straightforward manner. The information set available to the
controller at time ay, k € N, is given by

Ik = {y} U{Uk—l, hi_y, Tk—1} with I = {yo, u_1, ao, So}.

The control problem is the design of the inputs u; and the
selection of the data-acquisition intervals h;/hg such that (18)
is minimized. Observe that (17) is an LTI dlscrete time system
if hy = h® is fixed for all k € N, which results in an LQG-type

design problem. Recall that we assume T to be very large, and
we aim to minimize | := limr_ o Jr. It follows from dynamic
programming (see, e.g., Bertsekas, 2005), that the optimal control
input u minimizes E[g(Xk, Uk, h*) + V(xks1) | ], where V(x) =

X"Px for some P > 0. Recall that we have sensmg to-actuation
delay and partial ‘measurements. From, e.g., Astrém (1970) it is
known that the separation principle holds if hi = hj, for all k € N.
Thus, when hif = h}, = h°* = h? s fixed for all k € N, we can design

an optimal controller in the form of a state feedback regulator
and a state estimator that can be computed separately by solving
algebraic Riccati equations, as detailed in the next sections.

Optimization of both the inputs u, and hj, for an infinite (or
large) number of sampling instants results in a combinatorial
problem for which no tractable and optimal solutions are known
to exist. Hence, we propose a suboptimal switched control de-
sign based on van Horssen et al. (2019), which is guaranteed to
perform at least as good as the best non-switched design and
can provide improvements nonetheless. Furthermore, we first
consider the case where t < h® in Section 4. Later, in Section 5,
we discuss the case t > h°.

| 4 s ) ! |
1 § = "l .
1€ T 14 1 € 2 U 4 |
[} # t h 4 | >
. . :
| I | I [}

S A1 Sk ak Skl

x: & Xk-1 &k Xk

I. ~ Y1 ~ Yk

A 43 A A A

X: e Xk-1 & Xic

u: Ug-1 Uk

Fig. 6. Timings for control under small delay.

4. Control design for t < h®

We first present the optimal control design for a non-switching
strategy, based on the assumption that hj = h; = h* = h® is
fixed for all k € N. From a performance analysis of this control
design, we can determine the optimal choice h, € R.q of a fixed
sampling interval, i.e., we can determine the optimal value of the
exposure time of the system for the case that hj = h, = h,
for all k € N. Subsequently, we present switching conditions
to select online at time a, the next interval hj, = hj and the
corresponding measurement accuracy Vi in order to improve
performance. Finally, we present a multirate design for faster
actuation, i.e., h* > h% We assume here that the processing delay
is less than the sampling interval, as depicted in Fig. 6.

4.1. Optimal regulator

Here, we assume that we have an estimate X, := E[x, | I;] of
the full state available at ay. If the estimator is optimal, then the
optimal regulator is given, for all k € N, by

U = —KXy. (19)
The control gain K is obtained by solving, for positive definite P,
the Riccati equation

P = A(h®)TPA(h®) + Q(h*) — KTGK

K = G~ Y(B(h*)TPA(h®) + S(h®)T)

G = B(h*)™PB(h®) 4+ R(h%).

4.2. Optimal estimator

The estimate X, = E[x(ax) | I¢] can be obtained by an
estimator-predictor design. Note that u;_; is known after aj_;.
We first recall that y, is a measurement of the error delayed by
T W.I.t. a. The estimate at actuation time can be expressed as a
function of the state estimate at sampling time as

Xk = IE[X(al) | [k
= E[A(T)X(sk) + B(7 )ug—1 + wlsk, 7) | Ikl
A(T)ELX(sk) | k] + B(T Jug—1
A(7 )8 + B(T)uk-1, (20)
where &, = E[x(sx) | Ik] is the estimate of the state at the
sampling instant after y, has arrived at the controller and where
w(Sk, T) is a zero-mean Gaussian disturbance with covariance
W(t). This is a pure prediction step.
The variance of the estimate is given by
Oy = E[(x(ar) — Xi)(x(ax) — X" | L]
= E[A(7)(X(sk) — &i)(x(sk) — §)TA(T)
+ w(sk, T)w(sk, T)7 + crossterms | I;]
= A(T)E[(X(sk) — &)(x(sk) — &))" | WJA(T)" + W(z)
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= A(T)OA(T)" + W(r), (21)

where ©; = E[(x(sx) — &)(x(sx) — &) | Ix] and the crossterms
with w(sk, ) vanish when taking the expectation.

Since the delay is less than the actuation interval, the state es-
timate & is a current state estimator. However, I, is not available
at sx. Hence, we require a predicted estimate of x(s;) after a;_1,
which we define as

Ei = El&k | Liet] = E[E[x(st) | L | Teer] = EIx(s) | I
= E[A(h* — 7)x(ax-1)
+ B(h* — T)up—1 + w(a, i° — ) | Ir_1]
=AW — t)X¢_1 + B(h* — T)ug_q. (22)
The covariance of the predicted estimate is given by
OF = El(X(s1) — &)(X(sk) = &7 | Ten]
= E[A(h® — T)(x(ak—1) — Rg—1)
X (X(a-1) — Xe—1)TA(R* — )T
+ w(ag, h* — t)w(ag, h* — )7 + crossterms | I;_1]
= Al — )0 _A(h* — )" + W(K — 7). (23)
After the new measurement arrives, we can use an optimal
observer to update the state estimate
& = BIX(se) | Ie] = & + Ly — i), (24)
where the optimal gain is given by L, = (:);CT(C(:);CT —i—AVk)‘l (see,

e.g., Astrom, 1970), i.e., the Kalman gain. Note that C& = E[e; |
Ix—_1]. The variance is given by

Oy = E[(x(sk) — &)x(sk) — &) | Lkl
= E[(x(sk) — & — Ly — C&))*)T | k]
= E[(x(sk) — & — LiC(x(sk) — &) — L) (%) | 1]

= (I = LOEIX(s¢) — &)(x(si) — &7 | 1]
x (I = LC) + L VL,

= (I = LO)OY — L) + LVl (25)

Combining the above equations, we obtain the relation
OF = A()[( — LO[A(R® — 1)OF_,A(h* — T)

+ W — )| — L) + LViLE JA(T) + W(r)

= A(7)I — LOAR — 1)0;_,

x A(h® — 7)"(I — LC)A(T)T

+ A(T)I = LOW(R® — 7)(I = LC)A(T)" + W(T)

+ A(T)LViLLA(T)T, (26)
for changes in the covariance between actuation instants. The
expression (26) is similar to Joseph form (Bar-Shalom & Li, 2001)
of the covariance update equation. If L, is the optimal time-
varying Kalman filter, then (25) and (26) may be simplified. If L;
is not the optimal gain, then we can use the Joseph form (26) to
compute the variance update. Note that when hj = h; = h* = h*

is fixed for all k € N, (26) converges to a stationary solution with
Of =6,

Remark 1. If h* = h" = t, ie, if the delay is exactly equal to
one sampling interval, then standard equations (see, e.g., Astrom,
1970) are recovered.

4.3. Performance

The optimal LQG-type control design minimizes (18) for N —
oo and the minimal value is then given by

1
J = "= tr(W

i (P + ©°K™GK) + a(h®), (27)

where ®¢ is the converged stationary solution to (26). The con-
tributions from the interval gy are reduced to zero in the infinite
horizon.

The standard observability and controllability conditions are
satisfied. Therefore, stabilizing solutions exist under the addi-
tional condition that the sampling is non-pathological (Chen &
Francis, 1995).

4.4. Switched controller

Suppose that we are allowed to choose the number N’ online
in the sense that we can decide the number of images to combine,
and therefore the length of the sensing interval, for the next
frame. Recall that there is a trade-off in the sense that a longer
sensing interval typically results in a smaller covariance of the
measurement noise if the specimen is not moving during image
acquisition, i.e., due to higher contrast in the image. We design
a switching law based on the switching conditions for multiple
data-acquisitions methods presented in van Horssen et al. (2019),
which are based on the rollout method (Bertsekas, 2005). Let
there be up to M € N. 1 possible selections of the sensing interval
h, at each actuation instant. We can compute for each m €
{1,2,...,M} = M the optimal non-switching controller and
a correspondmg fixed observer gain L, = @SCT(C@SCT + V)!
where @ follows from the stationary solution ®“ and one step
n(23).

Suppose that b* € M minimizes (27) amongst the methods
with fixed intervals. Let the corresponding actuation variables be
denoted P, G, K. Furthermore, define for all m € M Py, Gn, Kiy as
the one-step finite horizon solution to the standard control Riccati
equation with initial condition P for a sensing/actuation interval
of length hy,. The corresponding delay is given by T;,.

Then, at actuation time (when the latest measurement has
arrived), we can make a decision about the next sensing mo-
ment and the next actuation time, i.e, about the next moment
at which information will become available and the accuracy
of that information. In van Horssen et al. (2019), a method to
derive switching conditions that guarantee performance whilst
achieving performance improvement is presented, specifically,
the switched controller is formally guaranteed to achieve a cost
J that is equal or less than the cost J!%¢ without switching. It
selects the method that is expected to yield the minimal future
cost, in the sense of limr_, J7, for an infinite horizon cost pre-
diction (see van Horssen et al., 2019 for details). Based on the
result in van Horssen et al. (2019), we can derive the following
switching condition to determine the next sensing interval for the
case in this paper. The method o}, € M that is expected to yield
the least future cost is given by

O = arg mm x, TP + Nmn(OF) — =i + a(hm), (28)
br
where
Nm(Ok) = tr(O¢Pn + OFK] GmKm)
+ tr(W(hm)P) + tr(Zy (O, | )KTGK) (29)

and' Z,+(@) = vec™! ((I — Tp+)~'vec (©)) with
Tm = Am ®Am, (30)
where ® denotes the Kronecker product and Ap = AT —

LnC)A(hy, — T) with L, the stationary observer gain for interval

1 The operator vec (-) denotes the operation that stacks the columns of a
matrix and vec~! denotes the inverse operation.
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h.,. We require the computation of the one-step prediction of the
variance

Oy = vec™" (Tmvec (0f,4)) + ¥n. (31)
where
W 1= At )T — LnC)W (S, — T )(I — LnC)TA(Ti)T

+ W(tn) + At )L Vin (L )T AT )T

The next actuation and switching instant is then given by
ak+1 = hg, + ax. The control input is given by uy in (19) with
gain K;;, and the observer gain L in (24) is given by L,.

Remark 2. In this work, for simplicity, we use only the stationary
filter gains L, for estimation and prediction. We could also use
the time-varying Kalman filter for estimation and for the first
prediction step as proposed in van Horssen et al. (2019). In the
setup in this work, predicting more steps with the Kalman filter
could provide additional expected gain but is computationally
unattractive.

Remark 3. For simplicity, we consider in this work only a one-
step decision horizon for the switching. Based on van Horssen
et al. (2019), this can easily be extended.

4.5. Multirate controller: faster actuation

If flexibility in the actuator allows a faster actuation update
rate, a multirate controller (see, e.g., Colaneri & de Nicolao, 1995;
Colaneri, Scattolini, & Schiavoni, 1990) can be designed in which
h® is smaller than h®. Note that we consider here the non-
switching multirate approach. In a general multirate approach,
actuation and sampling need not be aligned or have a fractional
relation between the intervals. We aim to illustrate how a mul-
tirate approach can be considered in our control design, rather
than to present new mathematical theory. Therefore, for ease
of exposition, we consider only actuation rates that are fixed
fractions of h°. i

Let agn = ax +h x h% h € N n—1), where H := Z—u € N. Then,
the multirate actuation solution is to use in each corresponding
interval of length h® after a; j the control input

Ugn = —KRi p, (32)
where, for h € Ny 1),
Xeni1 = Elx(axhr) | il

= A(h")x(ay,n) + B(h" Jug (33)

with initial value X;o := X;. For all k € N, for h € N -1, the
covariance at actuation time ay j, is given by

O = E[(x(ak.n) — Xe.n)(X(arn) — Xin)" | T
= A(ha)@g‘hi]A(hH)T + W(h%), (34)

where @l?,o = O for all k € N. This multirate case is illustrated
inFig. 7.
Define ®@;' as the solutions to (34) with @}, = O, with ¢

as used in (27). For the multirate approach, the minimal value of
(18) for N — oo is given by

1 ~ ~ -~
JUR . — rato Gai= tr(W(h")P + @K™GK) + a(h?), (35)
where @¢ := 1 31" &¢ and where P, K, G are now computed

from the smaller h®.

Remark 4. A combination of switching and multirate is also
possible. Such an approach would make the switching condi-
tions more complex. Here, we focus on illustrating possibilities
in image-based feedback instead of detailing all technicalities.

| s |
4 h >
1 4 T < |
a a a a
I e e e il s Y
) H
! h=1 Ih:z h=3 ' Ih:l
t: Sk aka k-1 A1 ak Sk+1 Ak
h=1 h=2 h=3
X G Xk Xk-1 X-1 Xk
I. ~ Yk
A N A= Ah=2 Ah=3 A
X & Xi Xk-1 X-1 Xk
. h=1 h=2 h=3
M Uk-1 Uk-1 Uk-1 Uk
Fig. 7. Timings for small delay multirate control.
| |
| ¢ h* P ——H’ &
I 4 t a ! { 4 a ! 'Y
| A} h ¥ P | € h T 14 >
L L r
I I I I I
T Sk a2 Sk Akl Ske1 Ak
X: &1 (3 Xk-1 Xk
I. ~ Yk-1 Yk
A A A A A
X: &k &k Xk-1 Xk
u: Uk-1 Uk

Fig. 8. Timings for large delay control.

5. Control design for 7 > h°

For camera systems with variable imaging settings, the pro-
cessing delay t” may be larger than one imaging interval €. On
the EM system that we consider, combining only two images
to obtain a frame leads to the case when t > £’ ie, the
total sensing-to-actuation delay t may be larger than a sensing
interval. Hence, we also present equations to compute controllers
for this case, illustrating the differences. In particular, we focus on
the case 2h* > t > h® from which extended cases (with larger
differences between t and h®) may be derived by similar methods.
The main differences with the small delay case T < h® are in the
optimal estimator and result in a different state estimate. In fact,
the actuation structure remains the same as for the small delay
case and will not be explicitly discussed.

Recall that a shorter sampling interval typically results in less
accurate information, hence a setup with shorter sensing interval
does not necessarily lead to better performance, as we will show
in Section 6. There is a clear trade-off here.

5.1. Single actuation instant

Fig. 8 depicts the case with h® = h® with a large delay. At
actuation time ai, we compute the state estimate

X = Elx(ar) | Ll
= A(1)& + A(h")B( — h®)uy—z + B(h" i1 (36)

as a function of the last updated estimate of the state. The
variance is computed by (21), but now with t relatively larger
than in Section 4.

The computation of & and ®; follows from (24) and (25),
respectively. At time ay, the previous prediction ék is based on the
previous estimate &,_; that was updated based on the previous

measurement y,_1, as given by
ék = E[& | lk—1] = E[E[x(sk) | Ie] | Ik—1] = E[x(sg) | Ix—1]
= E[A(h*)X(sk—1) + A(r — h*)B(h® — (7 — h*))uy_3

+ B(t — h*)ug—z + w(sg—1, h*) | Ix—1]



10 E.P. van Horssen, BJ. Janssen, A. Kumar et al. / IFAC Journal of Systems and Control 11 (2020) 100074

I 4 s |
4 h T
I 1 a ) 1r a d 1 a__) 4 a A
| e e ey
. 4
i | i I |
h=1 =2 h=1
sk Ak Ak-1 A1 Sk+1 Ak ak
h=1 h=2
X & Xk-1 X1 Xk
I. ~ Yk
A A Ah=1 Ah=2 A
X & Xk-1 Xk-1 Xk
. h=1 h=2
u: Uk 1 Uk-1 Uk

Fig. 9. Timings for large delay multirate control.

= A(h*)g1 + A(t — h*)B(2h° — T)ug_3 + B(T — h*)ug 5.

The prediction made at time a,_; will be used at time a,. The
corresponding covariance update is given by

OF == E[(x(sk) — &)(X(sK) — &) | 1]
= A)O;_A(l°)T + W(I). (37)

The stationary solution for the covariance estimates at actu-
ation time can be found by computing the stationary solution
to

OF = (I — LOAK)O_AR) (I — L)Y
+ (I — LOW(R)I — L)
+ LViL] (38)

for ®°, with L, = (:);CT(C(:);CT + Vi)~!, and then inserting
the solution in (21). Performance can then be computed using
the same Eq. (27) as for the small delay case, but the actuation
variance matrix is now relatively larger, in least-squares sense.

5.2. Multirate controller: faster actuation with large delay

Fig. 9 depicts the multirate case with a fractional actuation rate
with a large delay. By using the solution to the single actuation
results for the estimate at a, with large delay, as given in the
previous subsection, and the multirate approach for the subse-
quent actuation instants from the small delay case, as given in
Section 4.5, again the optimal controller solution can be obtained.
For conciseness, we omit the derivation of the equations.

6. Validation of control methodologies in a simulated indus-
trial case study

To validate the proposed control designs, an electron micro-
scope simulator with image-based feedback control is developed
(in Matlab) based on the industrial expertise of Thermo Fisher
Scientific, including several real-life ingredients. A minimal work-
ing example for the simulator framework, containing the main
characteristics of the actual machines, is used to illustrate our
methodologies. Other trackers and control designs can be imple-
mented as well as other methods to generate the images (such
as different blurring effects). In this section, we first present the
details on the simulator implementation. Subsequently, we follow
a work flow for the control design and implementation of the
image-based feedback control system. Finally, we numerically
validate the control designs using the simulator.

6.1. Simulator description
The simulator takes a large (high resolution) benchmark im-

age and generates frames taking out a section from the bench-
mark image. We use a 4 k image source and generate frames

base image (with normal y axis)

«— Observation frame
X ~| POL:

px = 2050

py = 2849

y [pixels]

X — point: px = 800, py = 500

x [pixels]

Fig. 10. 4k benchmark image of gold (Source image data courtesy of Thermo
Fisher Scientific) with initial observation frame around the point of interest (POI).

of 640 x 480 pixels. The source image, which is obtained from
industry, the POI and the initial observation frame that are used
in this work are depicted in Fig. 10.

When frames are generated, the sections of the benchmark
image are then first corrupted by Gaussian blurring, consistent
with the total movement between frames, and then by Poisson
noise, consistent with the electron arrival process, as explained
in Section 2. The tracker uses the first frame to create a tracking
template, which it searches for in the subsequent frames. We use
a tracking template of 256 x 256 pixels. The tracker returns the
expected position of the template in the frame, as detailed in
Section 2.2. This position estimate is taken as input to a controller,
which is designed according to Section 4 or Section 5, depending
on the control configuration. In particular, a state estimate is
computed and, subsequently, the control inputs are determined.
Based on the chosen control inputs and randomly generated
disturbances, the state is propagated according to the model (17).
The new position of the state results in a change in the frame
position with respect to the benchmark image. A new image is
then generated, with blurring and noise, which closes the image-
based feedback loop, see also Fig. 3. Linear interpolation is used
to generate subpixel shift in the image.

The source image is normalized to have mean pixel intensity 1,
which corresponds to an average of 1 counted electron per pixel
and will later be multiplied by N°¢. The velocity, induced by drift
and stage actuation, is assumed to be approximately constant
between samples. The total motion during image acquisition is
determined by multiplying the velocity with the sensing interval
h;. The total movement in pixels is used as standard deviation for
the Gaussian filter that generates blur. For a particular imaging
session in electron microscopes, the doserate DR is a fixed con-
stant. Hence, if N' is fixed, N¢ is also constant. To generate the
frame with Poisson noise, the normalized frame values are mul-
tiplied by the chosen value of N such that the average intensity is
approximately N¢ as explained in Section 2.2. The resulting pixel
values are used as the parameter for Poisson distributions. This
generates images that are accurate representatives of those of a
real EM system.

Note that, in this work, we assume the POI to be within
the observation frame at all times since the loss of the POI is
not taken into account in the current control design framework.
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Fig. 11. Measurement inaccuracy V versus N°¢ (logarithmic). Increased N¢
improves accuracy. The impact of blur is less when sampling faster.

Furthermore, we do not consider the case where the POI is
identified in the wrong location. Adaptive methods to deal with
such cases may be combined with the approaches proposed here,
but this is beyond the scope of this paper.

In the remainder of this section, we explain the steps taken to
identify the relevant system parameters and provide numerical
results to illustrate and validate the control designs presented in
this paper.

6.2. Work flow for design and implementation

To implement the proposed control solutions and validate
them in this simulation environment, several steps are required.
The steps taken in this work can be summarized as follows.

(1) Identify appropriate disturbance parameters dg and B, q.

(a) Choose the values based on suggestions by industrial
experts inferred from experience.

(2) Identify the measurement accuracy Vj for several system
settings.

(a) Generate open-loop images and analyze the tracking
error to estimate the variance.

(3) Compute controller variables (K and L) and expected per-
formance (J) for several system settings.

(a) Compare in theory and validate in (simulated) exper-
iments.

(4) Compute and validate advanced controllers.

(a) Compare in theory and validate in (simulated) exper-
iments.

Next, we illustrate these steps numerically.

Note that df is only required for simulation purposes and that
in the implementation it will be estimated by the Kalman filter.
In practice, as a general problem for LQG-type control designs,
it may be difficult to choose a good estimate for B,« and online
learning methods are often employed to improve upon the initial
choice of parameter. The same holds for the measurement noise
V.

6.3. Disturbance and cost parameters

Based on suggestions by industrial experts, an appropriate
choice for the initial drift is dj = 1.5 nm/s, which eventually
causes the object to leave the FOV if uncontrolled. Note that dj is
not available to the observer and the initial drift estimate is equal
to 0.

We select B,,« = 1 nm/s to create variations in the drift and
we assume no other disturbance source, hence we take B,e =

0 nm. In a real-life setting, B« should be estimated, e.g., by an
online method or by an open-loop identification procedure (see,
e.g., Odelson, Rajamani, & Rawlings, 2006).

The cost is chosen as Q. = 1 and R, = 0.01 such that there is
only a small penalty on actuation.

6.4. System settings and measurement accuracy

We consider a system with a maximum camera rate of f, =
40 Hz corresponding to a minimal acquisition interval of t¢ =
25 ms. The doserate of the exposure is DR = 50 e/pix/s. This
corresponds to N7, = 1.25 e/pix/frame. The resolution of the
camera is r = 0.1 nm/pixel.

We consider a tracker with a processing delay of t? = 29 ms.
The requirement ¢ < h° such that a; < s,.; requires N' > 3.
For N' = 3, t = 66.5 ms and h°* = 75 ms. As already mentioned,
the tracker is the single-step DFT algorithm (Guizar-Sicairos et al.,
2008), which implements a normalized cross-correlation filter

with approximated subpixel accuracy of ﬁth of a pixel.

The image quality depends on N¢, which determines the level
of Poisson noise, and on the motion blur. Note that the accuracy
of the measurements typically also depends on the contrast in the
content of the image itself, the study of which is out of the scope
of this work. We first compute randomly perturbed sequences of
images for variations in N® without any blur. This corresponds to
an optimal measurement situation and gives a baseline for the
accuracy of the tracker as a function of N¢. We also compute
sequences with a motion blur consistent with a constant drift of
1.5 nm/s at imaging rates of 5, 10, 20 and 40 Hz. At least 500
images were used in each sequence. Fig. 11 illustrates that the
blur can significantly impact the accuracy. For N < 3, which
would result in the case in Section 5, we see that the image
quality is very low and misidentifications of the tracker occur.
Hence, we do not analyze these cases here. This also occurs for
higher N if much motion blur is present, as can be seen in Fig. 11
by the steep increase of the accuracy curves. Autocorrelation and
the histogram of the measurement noise were computed and
supported the assumptions of independence and Gaussianity.

Recall that N® = N¢, x N' and that N' is directly related to h?,
such that Fig. 11 also represents a relation between the sensing
interval and the accuracy.

The above parameters are used in the control designs pro-
posed in this paper.

6.5. Two-phase control and processing approach

We consider two phases in the behavior of the closed-loop
system. In the first phase, the main drift velocity is not yet
compensated by the stage motion and the POl moves away from
the imaging center. The main objective in this phase is to obtain
a good drift estimate and stabilize the POI near the imaging
center by actuating the stage. Once the main drift component
is appropriately counteracted, the motion blur will reduce and
image quality will improve. In the second phase, the main con-
troller goal is to minimize the position error such that the POI
is at or near the center of the frame. To this end, the tracking
template may be updated to improve measurement accuracy.
Furthermore, a controller for higher measurement accuracy may
be selected at that time as well. Here, we illustrate the two
control phases separately, while in practice online updating of the
template, e.g., by a recursive filter, can be implemented to make
the transition more gradual from a sensing perspective. Next, we
numerically illustrate these two phases separately to ease the
analysis.
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Fig. 12. Comparison of the actual drift velocity to the drift estimates based
on the measurements between the proposed observer of the control algorithm,
i.e. (20) or (36), and to a first-order hold (FOH) estimate.

Fig. 13. Part of frames with initial blur (left) and with low blur after correction
of the main drift component (right). Blur causes significant accuracy problems in
the tracker, i.e., an error between the measured position (blue square) and the
true area around the POI (green). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

6.5.1. Phase 1: Drift velocity estimation and stabilization

Here, we assume that a low-quality template has been ob-
tained, which has been corrupted by a significant amount of
motion blur. Since the effect of the blur is difficult to quan-
tify, a non-switched LQG-type controller is implemented and
its performance studied. As Fig. 12 illustrates, it takes several
measurements over several seconds (approximately 2 s) for the
observer to obtain a reasonably accurate estimate of the drift
velocity. Clearly, the observer estimate is much better than a
first-order hold estimate based on the measurements directly,
provided that measurement and noise parameters are accurately
identified. Since estimation and subsequent compensation of the
drift only takes several seconds, this first phase can already signif-
icantly increase throughput of the overall system. The difference
in blur before and after compensation is depicted in Fig. 13.
Clearly, updating the template will improve accuracy, as even
small tracking errors can cause significant imaging aberrations.

6.5.2. Phase 2: Improved stabilization

In this second phase, we assume a high-quality template has
been obtained and the blurring effect is small. Then, the mea-
surement variance can be assumed small, e.g., we can assume a
best-case scenario (which is what we aim to achieve) and let the
variance only depend on N°€. In particular, we assume that there
is no blurring and compute the variance V for N® = 1,..., 30
using 1000 open-loop images. The relation between the variance
and the number of electrons is depicted in Fig. 14.

Fig. 15 depicts the theoretical control performance (27) for
variations in h°, corresponding to 3 < N' < 30, for By =
1. Fig. 15 clearly illustrates how the trade-off between delay
and accuracy, as illustrated by Fig. 14, results in variations of
performance for the EM system considered in this work. Settings
and cost corresponding to different N' are given in Table 1. For
the chosen system settings, the best performance for the LQG-
type control without switching is obtained by selecting N' = 5.
The cost seems to increase for N' < 3, therefore not considering

10-1 L

V [pixels]

10-2 L

0 5 10 15 20 25 30
Ne [e/pix/fr]

Fig. 14. Measurement inaccuracy V versus N°¢ (logarithmic) without blurring

effect based on generated experimental images.

045 Cost versus sensing interval

04 J

03 ]

025 ]

Theoretical cost J

0.2 . . . . . .
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Sensing interval [s]

Fig. 15. Control performance J versus h° (N’ > 3), optimum indicated by x.
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Fig. 16. Switching gain for one Monte-Carlo experiment.
Table 1

For computational reasons and because the optimum is expected at N =5, not
all values for J*™ and J*P were computed.

Ni hs T Ne 1% ]theory ]sim ]exp

3 0.075 0.0665 3.75 0.0522 0.2426 0.2430

4 0.100 0.0790 5 0.0304 0.2369 0.2372 0.2405
5 0.125 0.0915 6.25 0.0190 0.2336% 0.2339 0.2366
6 0.150 0.1040 7.50 0.0140 0.2396 0.2401

7 0.175 0.1165 8.75 0.0109 0.2483

8 0.200 0.1290 10 0.0079 0.2536

2Performance for several system settings with best setting.

those cases is validated. If B« is smaller, the curve in Fig. 15 dips
more on the right side and the optimum shifts right.

To verify the theoretical results, we perform Monte-Carlo (MC)
simulations in which the disturbances are randomly generated.
First, MC simulation without actual images were performed to
verify the theoretical expected cost for 3 < N' < 6. The
measurement noise was randomly generated with corresponding
variance V. Simulation time was 10000 s, such that the average
cost, given in Table 1, had approximately converged, for 50 MC
simulations.

From the non-switched results, we find that b* is given by
the mode with N' = 5 and we can compute switching conditions
as given in Section 4.4. We perform a simulation with switching
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and obtain a cost Of]sszivniltched = 0.2339, which is equal to the best

non-switching cost J$™ = 0.2339 found for N’ = 5.

Nevertheless, we observed frequent switching between modes
N’ = 4 and N' = 5 (the other modes were not used). This
illustrates that the switched controller guarantees equal perfor-
mance to the non-switched case as expected from van Horssen
et al. (2019). Next, experiments using the simulator will illustrate
potential performance improvement due to the impact of control
on the image quality.

We select modes N = 4,5 for experimental simulation
(experiments) with images and switching. Note that we restrict
the number of modes for simulated experiments since the current
implementation is a proof-of-concept that is not computation-
ally efficient and requires significant amounts of time when the
simulation time is large, even when the number of MC simula-
tions is small. Hence, we perform experiments for 10 000 s, such
that the average cost had approximately converged, for 12 MC
simulations.

The non-switching controllers perform slightly worse than
expected (J§™ = 0.2372, J§™ = 0.2339 and J;¥ = 0.2405, )% =
0.2366), which can be attributed to the blurring effect that was
not taken into account in the pure simulations or when the values
of V in Table 1 where determined. Initially, we use the switched
controller with switching conditions based on the best case pa-

rameter for V, as given in Table 1, and we obtain Jf e v,...... =

0.2388, which is not an improvement over both methods due to
the fact that the switching expects a better cost when switching
than can be realized. To correct for the mismatch between the
cost for expected V and the realized cost, we correct the expected
cost by recomputing the estimation variables, especially a new
solution to (26), for a new V... Note that, for fair comparison,
we kept all observer gains equal to those computed for the
original Vpesecase. We find that for a small adjustment to Viye =
0.0320,0.0199, for N\ = 4,5, amount to a theoretical cost
(27) equal to the values found for J;7,Js¥, respectively. After
this correction for the cost predictions, the switched controller
performs slightly better than both non-switched controllers at

a cost JOP = 0.2362, although the improvement is very

small (osr%llgﬁedof 0.2%). As expected, a good model is required to
make a good cost prediction and to realize appropriate switching
to improve performance. In Fig. 17, the position, the position
estimate and the measurement are depicted, illustrating how the
observer improves the estimation error by filtering the variations
in the measurements. Consistent switching at random instants is
observed in the MC simulations and experiments. The expected
switching gain, i.e., the predicted cost differences in (28) with
the choice b*, for one experiment is depicted in Fig. 16. The
expected gain per switch is small, but over time a performance
improvement is achieved. The gain depends on many factors such
as the system itself but also the available system settings. The
results motivate further study as to which system settings should
be used for control and for switching.

The current results show feasibility of the switched approach.
Here, a switching horizon of one step was selected. Based on van
Horssen et al. (2019), switching conditions for a larger horizon
can be derived which may increase the expected switching gains.
One simulation shows that, even without initial drift, in 500s the
random walk due to B,q« could have caused a position drift of
5000 pixels if the system was uncontrolled. Hence, the relevance
and importance of closed-loop image-based feedback are clear.

6.5.3. Multirate performance

For comparison, we analyzed the theoretical performance of
the system for different multirate settings, described in Sec-
tion 4.5. The relation between the number of update instants

position error, measurement and estimate

i
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Fig. 17. Error, measurement and estimate.
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Fig. 18. Multirate performance ] versus the number of actuation instants
between samples for mode N' = 5.

and the expected cost is depicted in Fig. 18 for N\ = 5. We
observe that the control performance improves monotonically up
to approximately 0.2313 (1.1% improvement compared to one
actuation instant) but the gain by updating faster is limited after
using more than ten actuation instants per measurement. Hence,
we can expect that increasing the control rate will improve per-
formance provided that an accurate model is available. Note that
for large numbers of actuation instants the discretization of the
cost variables can become numerically difficult due to h* being
small, which can lead to numerical problems in computation of
the cost, as can be seen in Fig. 18 for more than 20 update instants
by the non-monotonic decrease.

7. Conclusion

This paper demonstrated how an image-based feedback con-
trol loop can be designed for active drift compensation in an
electron microscope, where the required measurements (regard-
ing drift) can be only obtained through the images themselves.
We illustrated how drift, which is partly random, can be counter-
acted by the movement of the specimen that is in view by using
only information extracted from images. Our solution was based
on a stochastic model for the drift, which was proposed based on
insights from industrial experts. An LQG-type control design was
proposed, which was shown to achieve automatic stabilization of
the image, and can thereby improve image quality and through-
put considerably. This was validated on a relevant industrial case
study using a simulator for feedback control based on images that
are generated online in a closed-loop structure. This simulator
was developed based on discussions with industrial experts and
uses real trackers and images from the EM industry. The trade-
off between measurement accuracy and sensing delay has been
shown using industry-proposed parameters for the sensing sys-
tem, which involves a data-acquisition delay consisting of both
image-acquisition delay and image-processing delay. Variations
on the model-based control design methods are proposed to im-
prove image quality further. In particular, feasibility of the novel
switched controller design approach proposed in van Horssen
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et al. (2019) is demonstrated, which can exploit flexibility in data
acquisition to improve performance. While the results for the
current set-up are not improved much by switching, it provides
a solid basis for the redesign of the hardware and software
components of the imaging system of the industrial partner.

Several directions for further study are of interest. (i) The
simulator can be equipped with different trackers, other source
images, or other motion blur filters. Rotations of the image may
be accounted for in the image-processing step by the tracker,
but nonlinear control approaches can also be studied. (ii) Im-
plementation of the methods on a real system is, of course,
another important recommendation for future work. To make the
framework more robust, possible failure of the feature tracker
should be addressed in either the tracker, an adaptation of the
controller and/or another safety system. (iii) For truly SISO sys-
tems, loopshaping control designs may be more intuitive to some
designers than the state-space design approach taken here, hence
studying the relation between loopshaping parameters and the
LQG-type tuning parameters can provide new insights. Here, a
LQG-type approach was taken for the ease of extension to a
MIMO solution, corresponding to the two-dimensional nature of
the images. A comparative analysis to PID-type or other types of
controllers would be valuable, although an analogy for the MIMO
and switching nature of the proposed methods requires further
study. The simulation environment allows the implementation
of other types of controllers. (iv) Currently, experimentation us-
ing the simulator takes a significant amount of time if many
Monte-Carlo runs or long experimentation times are desired.
Optimization of the implementation of the simulator can reduce
experimentation times, e.g., by parallelization or implementa-
tion in dedicated hardware. (v) Methods such as Odelson et al.
(2006) may be helpful in (online) estimation of variances, such
that open-loop experiments are not needed. Analysis of more
benchmark images will give a better understanding of varia-
tions in the relation between measurement variance and con-
trast in the image content. (vi) An implementation with a time-
varying Kalman filter may improve performance as discussed in
Remark 2. (vii) If a fast beam-steering mechanism is in place,
the proposed engineering framework can be applied to correct
for drift by beam-steering. This could be an interesting alterna-
tive for, e.g., scanning-type microscopes, but may require more
complex low-level controllers. (viii) Also, a combined switching
multirate design is an interesting subject for study.

As a final comment, this paper laid down a design framework
that demonstrates the potential of (switched and non-switched)
feedback controllers for drift compensation in EMs leading to
significantly improved imaging (compared to the uncontrolled
case) at high throughput. The framework offers many directions
for further research and as such is an important starting point for
further studies in this relevant application domain.
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