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Abstract: Many control applications, such as vision-based control, require data-processing
methods to distill sensor information. This data-processing introduces several undesired effects in
the control loop, such as delays, the probability of not acquiring information, and measurement
inaccuracies. Often, these effects obey a trade-off. For example, the probability of acquiring
control-relevant information, related to the probability of data-loss, is typically higher if a
larger delay is allowed. While a single processing method with a reasonable trade-off is typically
selected, we propose instead a solution to switch between data-processing methods with different
delays and corresponding data-loss probabilities. We prove that the proposed method achieves
a better LQG-type performance when compared to the individual methods. A simulation
considering a second-order system illustrates the advantages of the proposed method.
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1. INTRODUCTION

There is nowadays a growing industrial interest in mod-
eling data-processing units in the control loop, rather
than assuming that these are ideal or account for the
worst case. This is especially relevant in high-end applica-
tions and in data-intensive applications, such as big data
and image-/vision-based control. In such applications, the
data-processing element is a non-trivial component that
converts large quantities of measurement data to control-
relevant information. Typically, data-processing units are
not limited to only one processing method, but many
are available. Several characteristics can be included in
the models of those processing methods, such as delay,
accuracy of information, and the probability of acquiring
information, often obeying trade-offs between the charac-
teristics. Typically, once the characteristics of the process-
ing methods have been identified, a single method with
reasonable trade-offs is selected for implementation.

Recently, in van Horssen et al. (2015), we proposed to
switch between data-processing algorithms on-line to im-
prove closed-loop performance. In van Horssen et al.
(2015), we have considered the trade-off between speed,
modeled by the processing rate at which a given method
can run, and accuracy, modeled by the noise characteristics
(covariance matrix) of the processed data. In this paper,
we tackle another important trade-off present in selecting
data-processing algorithms, namely the trade-off between
processing delay and probability of data-loss, i.e. the prob-
ability of acquiring control-relevant information from the
data. In fact, if more processing time is allowed, the
probability that useful information is obtained typically
becomes higher, at the cost of a larger delay. Compared to
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Fig. 1. Control loop with two data-processing algorithms

the previous work, several new challenges are addressed in
the design of the switching policy for this new trade-off,
which are described shortly.

We consider the interconnection of a physical system with
sensors and actuators, a data-processing unit consisting of
several data-processing methods, and a digital controller
in a feedback structure, as depicted in Fig. 1. The data-
processing algorithms, or methods, acquire the data from
the same sensors, but the way they produce control-
relevant output varies. Each data-processing method is
characterized by the incurred processing delay and the
probability of having a correctly processed measurement.
Only one processing method is allowed to be active at any
given time, which is consistent with typical limitations on
processing power. The goal is to design a switching and
control policy to achieve a better closed-loop performance
than the typical approach of selecting and implementing
only the fixed method with best performance. Although
only two methods are depicted, the results presented in
this paper are valid for a higher number of processing
methods.
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Building upon available results in optimal control theory
(Åström (1970); Schenato et al. (2007)) and ideas from
(approximate) dynamic programming (Bertsekas (2005);
van Horssen et al. (2015); Antunes et al. (2012)), we
establish a switching and actuation policy that achieves
improved closed-loop performance compared to the typical
non-switching approach. To guarantee this improvement,
a condition is used to establish the best non-switching
policy, which is different from the assumption made in
van Horssen et al. (2015) (see Remark 2). Since high-
tech systems are typically resource-constrained, several
suggestions are made towards efficient implementation of
the method. Monte Carlo simulations for a second-order
system illustrate the effectiveness of the method and the
achievable performance improvement.

While the ideas of the present paper and of van Horssen
et al. (2015) are, to our best knowledge, novel, there
is some related work available in literature. Switching
approaches to schedule measurements from different sen-
sors have been considered previously, e.g. for sensor data
scheduling (Wu et al. (2013); Kouchiyama and Ohmori
(2010); Molin and Hirche (2009); Leong et al. (2015)). The
recent self-triggered (Araújo et al. (2011); Antunes et al.
(2012); Gommans et al. (2014)) and event-triggered (Wu
et al. (2013); Rabi et al. (2008); Molin and Hirche (2010))
approaches to schedule transmissions in a control loop
also exploit switching to improve the control performance.
The relation between delay and information loss was ad-
dressed using a different approach in Demirel et al. (2015).
Dropouts in the optimal control context are addressed in
Schenato et al. (2007). The problem of selecting which
part of the data is most relevant is considered in sensor
management Hero and Cochran (2011), sensor fusion, and
sensor selection literature. An alternative tool to construct
switching and control policies is the embedding method
(Bengea and DeCarlo (2005); Vasudevan et al. (2013)).

Besides tackling a different trade-off with respect to van
Horssen et al. (2015), the present paper addresses the
following challenges. No restricting relation is assumed
between the delays of the different processing methods,
leading to aperiodic sampling (see Remark 1). The new
result allows asynchronous decision intervals, i.e. future
decisions instances are not fixed in time (see Remark 3).
Uncertainty of acquiring useful processing results inhibits
regular innovation of the state information.

The problem formulation is given in Section 2. Section 3
explains the proposed methodology, provides the main
result, and gives details on the implementation. A numer-
ical example in Section 4 illustrates the benefits of the
proposed method for a second-order system.

2. PROBLEM FORMULATION

This section describes the plant, the cost criterion, and the
measurement and actuation methods used, leading to the
problem formulation.

2.1 Plant and performance criterion

Let a linear stochastic system be described by the differ-
ential equation

d

dt
xC(t) = ACxC(t) +BCuC(t) +Bω

dω

dt
, (1)

where xC(t) ∈ Rnx is the state and uC(t) ∈ Rnu is
the control input at time t ∈ R≥0, and ω is an nw-
dimensional Wiener process with incremental covariance
Inw

dt (cf. Åström (1970)). We assume that (AC , BC) is
controllable and BC has full rank. The initial condition is
a Gaussian random vector xC(0) ∼ N (x̄0,Φ

x0).

Performance of the system is measured by the average
cost function, as in the linear quadratic Gaussian (LQG)
framework, and is described by

Ja
C := lim sup

T→∞
E

[
1

T

∫ T

0

gC(xC(t), uC(t))dt

]
, (2)

where gC(x, u) := xᵀQCx + uᵀRCu, with positive semi-
definite and positive definite matrices QC and RC , respec-

tively. Additionally, we assume that the pair (AC , Q
1
2

C) is
observable.

2.2 Measurements from data-processing

At sampling times t�, � ∈ N, with t0 = 0, a new sample of
raw data pertaining to the plant is taken. At this time,
a data-processing method σ� ∈ M is activated to distill
information that is relevant for feedback control. In this
section, we assume, for simplicity, that M = {M1,M2}
and we will refer to the processing methods by their indices
{1, 2}. Furthermore, only one method may be active at a
given time.

After a certain method-dependent delay incurred by the
choice of processing method

τ� := τ̄σ�
=

{
τ̄1, if σ� = 1,

τ̄2, if σ� = 2,
τ̄σ�

∈ R≥0, (3)

the system provides new information y� to the controller.

The new information, which arrives at the controller at
t� + τ�, contains either information about the full state of
the system at the sampling time, or no information at all,
depending on an indicator γ� ∈ {0, 1}, i.e.

y� :=

{
xC(t�), if γ� = 1,

∅, if γ� = 0.
(4)

Upon information arrival, a new sample is taken, i.e.
t�+1 = t� + τ�.

Apart from the delay, the processing methods are distin-
guished by the probability that they will provide informa-
tion. This property is modeled by the Bernoulli distribu-
tion of γ� for each method. In particular, we have that

Pr(γ� = 1 | σ�) =: γ̄σ�
=

{
γ̄1, if σ� = 1,

γ̄2, if σ� = 2.
γ̄σ�

∈ R(0,1],

(5)

Typically, when the processing methods are given a shorter
processing time to compute the output, they have also a
higher probability of not producing an output. For two
methods, this can be captured by the properties τ̄1 > τ̄2
and γ̄1 > γ̄2, which can be generalized to several processing
methods by a proper ordering.

Remark 1. An important challenge introduced in this set-
ting with respect to van Horssen et al. (2015) is that, by
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selecting different delays immediately after the previous
delay, the intervals between scheduling decisions become
time-varying.

2.3 Digital control

The digital control platform applies a zero-order-hold
actuation signal to the system, i.e. the signal

uC(t) = uC(t�) = u�, for all t ∈ [t�, t�+1), (6)

is constant between samples. Then, the system (1) can be
represented at the sampling times t� by

x�+1 = Aσ�
x� +Bσ�

u� + ω�, ω� ∼ N (0,Φω
σ�
), (7)

y� =

{
x�, if γ� = 1,

∅, if γ� = 0.
(8)

where x� := xC(t�) ∈ Rnx and u� ∈ Rnu are the state
and control input in discrete time for � ∈ N, respectively
(c.f Åström and Wittenmark (2013) and Åström (1970)).
Moreover,

Am := eAC τ̄m , Bm :=

∫ τ̄m

0

eACsBCds, m ∈ M.

The disturbance ω is a sequence of zero-mean independent
Gaussian random vectors ω� ∈ Rnω with covariances
E[ω�(ω�)

ᵀ] = Φω
σ�

for all � ∈ N, with

Φω
m :=

∫ τ̄m

0

eACsBωB
ᵀ
ωe

Aᵀ
C
sds, m ∈ M.

The cost function can be written in terms of the discrete-
time system as

Ja
C = lim sup

�→∞
E

[
1

T�

�−1∑
l=0

g(xl, ul, τl)

]
, for T� :=

�−1∑
l=0

τl,

(9)
where g(x, u, τ) := xᵀQ(τ)x + 2xᵀS(τ)u + uᵀR(τ)u, and,
where
[
Q(τ) S(τ)
(	)ᵀ R(τ)

]
:=

∫ τ

0

e

[
AC BC

0 0

]ᵀ

s
[
QC 0
0 RC

]
e

[
AC BC

0 0

]
s
ds.

We define

Qm := Q(τ̄m), Rm := R(τ̄m), Sm := S(τ̄m), m ∈ M.

2.4 Problem statement

The objective is to find the best σ� and u� for each � ∈ N
such that (2) is minimal. Thus, we can formulate the
problem as follows. Find a switching and actuation policy
(co-design problem), i.e., a sequence π = (µ0, µ1, . . .)
of multivariate functions that provide the switching and
actuation inputs at sampling times t�

(σ�, u�) = µ�(I�), � ∈ N, (10)

based on the information vector available at the controller

I� := {I�−1, σ�−1, u�−1, y�−1, γ�−1} , � ∈ N,
with initial information I0 := {x̄0,Φ

x0}. Note that at t�,
the information y�−1 has just arrived at the controller.

Formally, we can write the control design objective as
finding a policy π to minimize the expected cost

Jπ := {Ja
C | (3)− (6), π}. (11)

We first observe that finding optimal switching and actua-
tion policies, i.e. finding π� = argminπ Jπ, is a hard prob-
lem in general (see, e.g., Antunes and Heemels (2014)).
Here, we take a sub-optimal approach for which we will
guarantee improvement over non-switching policies where
σ� is constant (i.e. only one switching method is selected).

Let Jb denote Jπ for a non-switching policy, i.e. where
σ� = b ∈ M for all � ∈ N and an optimal policy for the
control input is selected. This optimal control input policy
will be discussed in the sequel. In what follows, we address
such policies as base policies. Furthermore, we denote one
optimal choice of b by b�, i.e. Jb� ≤ Jb for all b ∈ M.

Definition 1. A proposed policy π for the system (1)-(6) is
said to expectedly improve over any non-switching policy
if it achieves

Jπ ≤ Jb� ≤ Jb, for all b ∈ M. (12)

To achieve our results, we need the following assumption.

Assumption 1. Ãb := Ab

√
(1− γ̄b) is Schur for all b ∈ M.

Assumption 1 guarantees that solutions of the base policies
remain bounded, i.e. Jb < ∞, and is satisfied if γ̄b satisfies
the critical observation arrival probability condition in
Sinopoli et al. (2003); Schenato et al. (2007) for all b ∈ M.

Remark 2. Note that it is not specified which policy
b ∈ M corresponds to b�, which is different from the as-
sumption made in van Horssen et al. (2015).

3. PROPOSED SWITCHING AND CONTROL
POLICY

In this section, we describe the proposed control policy
for the system leading to our main result. Details on
implementation are given subsequently.

3.1 Switching policy

The switching policy we propose is based on stochastic
approximate dynamic programming and is known as a
rollout method (see Bertsekas (2005)). In the policy, a
switching decision is made at t� on which algorithm to
choose next, assuming that afterwards the optimal base
policy b� is always used, as it is illustrated in the following
diagram.

t

t� τ̄σ�

t�+1
τ̄b�

t�+2
τ̄b�

t�+3
τ̄b�

This is then repeated in a receding horizon fashion, i.e., the
same procedure is repeated at times t�+1, t�+2, . . . . Our
actuation policy is based on the standard optimal LQG
controller design (see Åström (1970)).

Let

Ja
C,[t,t+T ] :=

1

T

∫ t+T

t

E [gC(xC(t), uC(t))] dt. (13)

be the cost incurred after some time t and up to time
t + T . The switching criterion is defined as the choice of
the methodm ∈ M that minimizes (13) when that method
is first selected assuming that afterwards methods b� is
always selected. Formally,

σ� := arg min
m∈M

Jm
� (14)
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where

Jm
� := {Ja

C,[t�,t�+T ] | I�, σ� = m ∈ M,

σl = b�, for all l > �}. (15)

While this defines a family of policies parameterized by T ,
later, we will let T → ∞ and consider the unique resulting
policy. Note that taking the limit in (13) directly would
leave (14) ill-defined. For now, we assume that T is a large
number.

The derivation of Jm
� is detailed in the next sections,

leading to the switching condition (32), provided below.

Remark 3. An important challenge introduced with re-
spect to van Horssen et al. (2015) is that the future
decision moments become decision-dependent and are not
aligned in time for all m ∈ M.

3.2 Optimal estimation of the current state

In this section, the optimal estimation of the current state
is detailed when the Kalman filter is used.

Since the system is linear and time-varying, the time-
varying Kalman filter provides optimal state estimates in
the least-squares sense. Due to the processing delay, an
additional prediction step is needed to acquire an estimate
of the current state. The best estimate of the current state
is given by the estimator-predictor

x̄� := E [x� | I�]
= Aσ�−1

x̄�−1 +Bσ�−1
u�−1 + L�−1(y�−1 − x̄�−1). (16)

with x̄0 as initial estimate (see Åström (1970)). The time-
varying Kalman gain L�−1 and the covariance Θ� :=
E[(x� − x̄�)(x� − x̄�)

ᵀ | I�] are given by recursions of the
Riccati equation

L�−1 := γ�−1Aσ�−1
(17)

Θ� = (Aσ�−1
− L�−1)Θ�−1(Aσ�−1

− L�−1)
ᵀ +Φω

σ�−1
, (18)

where Θ0 = Φx0 .

We can distinguish two cases for (16) and (18) according to
whether the last measurement was successfully processed
or not. Specifically,

x̄� =

{
Aσ�−1

y�−1 +Bσ�−1
u�−1, if γ�−1 = 1,

Aσ�−1
x̄�−1 +Bσ�−1

u�−1, if γ�−1 = 0,
(19)

Θ� =

{
Φω

σ�−1
, if γ�−1 = 1,

Aσ�−1
Θ�−1A

ᵀ
σ�−1

+Φω
σ�−1

, if γ�−1 = 0,
(20)

where we see that Θ resets to Φω after a measurement
is correctly processed within the available time. We note
here that (x̄�,Θ�) is a sufficient statistic for x� at time t�
Åström (1970). Furthermore, the conditioning of σ� on I�
guarantees the optimality of the Kalman filter.

3.3 Control policy

The proposed switching policy (14) compares different
scheduling options where the future choices of σ are
assumed to be known. Hence, for each of these options,
Al, Bl, for l > � are assumed to be known and we denote
them by Aσl

and Bσl
, respectively. The optimal actuation

policy is then known to satisfy the separation principle,
and is given by the time-varying LQG controller (see e.g.
Åström (1970)), which consists of a time-varying Kalman

filter and a time-varying LQR controller. The time-varying
Kalman filter is given by (17),(18). We detail now the time-
varying LQR.

At times t�, actuation updates take place according to

u� = −Ǩσ�
x̄�, (21)

where the control gains Ǩm, m ∈ M, are given by

Ǧm = Rm +Bᵀ
mP̄b�Bm (22)

Ǩm = (Ǧm)−1(Bᵀ
mP̄b�Am + (Sm)ᵀ) (23)

P̌m = Aᵀ
mP̄b�Am +Qm − Ǩᵀ

mǦmǨm, (24)

solved backward, where P̄b� = P̌b� is the stationary
solution to the infinite horizon LQR problem when using
only base policy b�. Additionally, we define Ḡb� = Ǧb� and
K̄b� = Ǩb� .

3.4 Expected cost

To establish an estimate for the cost incurred after the
decision moment, predictions of the future state and co-
variance are needed.

Let
Ľ�,h := E [L�+h | I�] = γ̄σ�+h

Aσ�+h
(25)

We can make predictions of the future state estimates and
their variance according to

x̌�,h+1 := E [x̄�+h+1 | I�]
= Aσ�+h

x̌�,h +Bσ�+h
u�+h (26)

with initial condition x̌�,0 = x̄�, and

Θ̌�,h+1 := E [(x�+h+1 − x̄�,h+1)(x�+h+1 − x̄�,h+1)
ᵀ | I�]

= Φω
σ�+h

+
[
Aσ�+h

Θ̌�,hA
ᵀ
σ�+h

]
· (1− γ̄σ�+h

) (27)

with initial condition Θ̌�,0 = Θ�. Note that (27) follows
directly when taking the expected value over (20).

We do not have measurement noise, hence the minimal
and maximal bounds of the predictions (as e.g. detailed in
Schenato et al. (2007)) coincide. Assumption 1 guarantees
that for the base policies the expected covariance converges
to some Θ̄b that satisfies

Θ̄b = Φω
b +

[
AbΘ̄bA

ᵀ
b

]
· (1− γ̄b) (28)

for any initial value of Θ̌�,0.

Using (Åström (1970); Schenato et al. (2007)) and in
accordance with our switching policy, we can establish for
each m ∈ M the expected future cost (15) up to time
t� + T , for T = Nτ̄b� + τ̄m, N ∈ N, as

Jm
� = lim sup

N→∞

1

Nτ̄b� + τ̄m

[
x̄ᵀ
� P̌mx̄� + χm(Θ�, N)

]
, (29)

for with

χm(Θ�, N) := tr(Θ̌�,0P̌m + Θ̌�,0Ǩ
ᵀ
mǦmǨm) (30)

+ tr(Φω
mP̄b� + Θ̌�,1K̄

ᵀ
b�Ḡb�K̄b�)

+
N∑
l=2

tr(Φω
b� P̄b� + Θ̌�,lK̄

ᵀ
b�Ḡb�K̄b�)

where Θ̌�,l are forward predictions of the variance accord-
ing to (27), starting with Θ�, while assuming that σ� = m,
and σl = b� for all l > �.
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It is known from optimal control theory (Åström (1970);
Schenato et al. (2007)) that the cost for a non-switching
policy, in which always method b is chosen, is given by

Jb := Ja
C |σ=b = lim sup

�→∞
E

[
1

� τ̄b

�−1∑
l=0

g(xl, ul, τ̄b)

]

=
1

τ̄b
tr(Φω

b P̄b + Θ̄bK̄
ᵀ
b ḠbK̄b) (31)

where the matrices follow from the stationary solutions to
the Riccati equations in Section 3.3.

Observe that lim supl→∞ Θ̌�,l = Θ̄b� by the proposed
switching policy and Assumption 1. Hence, we can deduce
that, for some large N , the matrix norm ||Θ̌�,N − Θ̄b� || <
ε for some arbitrarily small ε. Thus, the term in the
summation in (30) converges to

cb� := tr(Φω
b� P̄b� + Θ̄b�K̄

ᵀ
b�Ḡb�K̄b�)

which is equal to the numerator part of the cost (31) when
b� is used every instance.

We can now establish a computable switching condition.

3.5 Switching condition and main result

The next proposition provides the proposed policy (14)
with (29) when T → ∞, i.e. when N → ∞.

Proposition 1. For T → ∞, the switching condition (14)
is equivalent to

σ� := arg min
m∈M

x̄ᵀ
� P̌mx̄� + η̃m(Θ�) + (1− τ̄m

τ̄b�
)cb� (32)

where

η̃m(Θ�) := tr(Θ�P̌m +Θ�Ǩ
ᵀ
mǦmǨm)

+ tr(Φω
mP̄b�) + tr(Fm(Θ�)K̄

ᵀ
b�Ḡb�K̄b�), (33)

where Fm(Θ�) is the solution Y to the Lyapunov equation

Ãb�Y Ãᵀ
b� − Y = − [Φω

m +AmΘ�A
ᵀ
m · (1− γ̄m)] , (34)

which always has a solution by Assumption 1. �

Proof. For brevity, only a sketch of the proof is provided.
In the summation in (30), tr(Φω

b� P̄b�) and parts of Θ̌�,l, for

l ≥ 1, are not dependent on m. The remainder of Θ̌�,l can

be replaced by Ãl−1
b� Θ̌�,1(Ã

l−1
b� )ᵀ, leading to the solution of

the Lyapunov equation.

Here, η̃m(Θ�) is defined as the method-dependent part
(the terms that depend on a particular choice of m) of
χm(Θ�, N) for N → ∞. The last term in (32) corrects for
the misalignment of the expected sampling times such that
the term 1

Nτ̄b�+τ̄m
in (29) equals to the same value of T in

(15) for each m ∈ M. Hence, the divisor can be eliminated
from the argmin.

We can compute the right-hand side of (32) explicitly for
each m ∈ M and thus our switching condition has become
explicit. We can now state our main result.

Theorem 1. Under Assumption 1, the following holds

Jπ ≤ Jb� ≤ Jb, for all b ∈ M, (35)

if the control policy functions (10) are given by (14) and
(21). �

Proof. For brevity, only a sketch of the proof is pro-
vided. Each decision incurs a cost increment of τ̄m

τ̄b�
cb� −

time [t (s)] ×104
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Fig. 2. Running average cost, averaged over all Monte
Carlo simulations. Comparison to using only M2.

fm(x̄�,Θ�), where fm(x,Θ) := xᵀ(P̄b� − P̌m)x+ η̃b�(Θ)−
η̃m(Θ)−(1− τ̄m

τ̄b�
)cb� . Ifm is chosen according to (32), then

fm(x̄�,Θ�) ≥ 0, leading to the guarantee that

Jπ =
1

τ̄b�
cb� − lim sup

L→∞

1

TL
E[

L−1∑
�=0

fσ�
(x̄�,Θ�) | I�] ≤ Jb� .

Theorem 1 means that our proposed policy achieves the
improvement conditions in Definition 1. The effectiveness
of the method is illustrated in the next section.

The following remark is relevant for implementation of the
policy for resource-constrained systems such as embedded
systems.

Remark 4. Since Θ� will reset regularly, it can be ben-
eficial to precompute values of Fm(Θ�) for evolutions of
Θ� according to (20) with initial condition Φω

m. Using the
precomputed values may provide a significant reduction
in on-line computational effort, at the cost of memory to
store the values.

4. SIMULATION

We simulate our method for the following second-order
system

AC =

[
0 1
−1 0.8

]
, BC =

[
0
1

]
, Bω =

[
0.8
0.1

]
, (36)

and a cost

QC =

[
100 0
0 100

]
, RC = 100. (37)

We take two processing methods, given by
M1(τ̄1 = 1s, γ̄1 = 0.9) and M2(τ̄2 = 0.62s, γ̄2 = 0.55). The
expected average costs (31) of the fixed policies are found
to be J1 = 1156.6 and J2 = 1140.9, i.e. M1 performs 1.3%
worse and thus b� = 2.

We run 100 Monte Carlo simulations of the system. We use
a small initial condition near the origin x0 ≈ [0, 0]ᵀ, and
small initial covariance Φx0 << Φω

m, for all m ∈ M. We
take t ∈ R[0,24000] such that the cost has approximately
converged. We observed that near the origin the slow
method was often selected and further away the fast
method was selected increasingly often.

The running average cost when averaged over all Monte
Carlo simulations is depicted in Fig. 2. It also shows the
cost of the base policy b� = 2 and its theoretical value. We
see that our switched policy (red) performs better, i.e. it
has lower average cost, than using Mb� all the time (blue).
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Cost Theoretical value

Only M1 1156.1 1156.6
Only M2 1139.9 1140.9
Switched 1026.5 n.a.

Table 1. Average cost

The approximately stabilized values are given in Table 1.
When the number of Monte Carlo simulations is increased,
the averages converge to the theoretical values. The cost
difference with the theoretical value Jb� is ≈ 114.3, which
amounts to an expected cost improvement of ≈ 10.03%
when using our switched policy.

We observed also that at the end of the simulations the
variance of the final costs over the Monte Carlo simulations
was small forM1, slightly larger for the switched approach,
and much larger (one order of magnitude) for the system
when only M2 was used. This can be explained by the
fact that, within the same time span, the fast method has
more instances where a dropout can occur. Increasing the
number of Monte Carlo simulations or the simulation time
reduces the variance, as expected.

5. CONCLUSION

In this paper, we proposed a switching and control policy
that provides a solution to the design trade-off encountered
in applications having multiple processing methods that
provide information with different probability, depending
on the elapsed processing time. Our policy achieves an im-
provement in expected cost by switching between methods
on-line. In simulations, a simple example with only two
processing methods showed a significant 10% performance
gain. It is expected that the methods are even more ben-
eficial for more complex systems. Connections with our
previous work van Horssen et al. (2015), i.e. the interplay
between (stochastic) delay, accuracy and loss probability
are currently under investigation.
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