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a b s t r a c t

In many control contexts, such as vision-based control, data-processing methods are needed to distill
information frommeasurement data (such as images). These data-processing methods introduce several
undesirable effects such as delays, measurement inaccuracies and possible absence of information, which
limit closed-loop performance. Typically, a single processing method with an appropriate compromise
between these effects is chosen in practice. Instead of settling for a compromise using only one fixed
processing method, we propose to break the design trade-off by switching on-line between several
data-processing methods having different delay, accuracy, and data-loss characteristics. We provide a
modeling framework for sensing and data-processingmethods that is suitable for control applications and
incorporates the characteristics of the undesirable effectsmentioned above. Using themodels provided by
the framework,we provide explicit policies for switching on-line between sensingmethodswith different
characteristics based on a modified rollout strategy. Our approach formally guarantees that an LQG-type
infinite horizon performance is better than, or at least not worse than, non-switching approaches. The
advantages of the proposed methodology are further highlighted via a numerical example.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Data-processing units are an important but often unmodeled
component of many control loops. In many high-end control sys-
tems, however, large numbers and complex types of sensors pro-
vide large quantities of data, which must be processed to distill
control-relevant information. Such data-intensive control systems
arise in many robotic applications, where position and velocity
information is often obtained fromdata fromseveral sensorswhich
typically includes (a series of) camera images (Corke, 2011; Malis,
2002; Oda, Ito, & Shibata, 2009), but also arise in, e.g., visual
navigation (Chakraborty, Mehta, Curtis, & Dixon, 2016; Chaumette
& Hutchinson, 2006), medical imaging (Albers, Suijs, & de With,
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2009), and big-data applications (Chen & Zhang, 2014). An impor-
tant fact is that in most real-life applications the processing unit
is constrained in hardware cost and/or in physical space, leading
to limitations on the processing capability of the data-processing
unit.

Under classical control design without proper modeling of the
data-processing unit, i.e., assuming that the processing unit is ideal
or accounting for the worst case, the constraints on the processing
unit lead to unexpected or conservative behavior when imple-
mented in practice. Hence, this approach often leads to perfor-
mance degradation of the closed-loop system. Instead, in thiswork,
we propose to model the data-processing methods by several
characteristic properties and use those characteristics explicitly
in the control design. Based on this modeling setup, we propose
a switching control mechanism to further improve performance
beyond classical results (that use only a single processingmethod).
Nowadays, this is enabled by flexibility in software and hard-
ware, which allows us to take advantage of the fact that a data-
processing unit may deploy several different implementations of
data-processing methods with a trade-off in characteristics.

To be more precise, we introduce in this paper a general frame-
work to model a large class of sensing methods in a control loop,
which incorporates three characteristic properties of the sensing
methods; (i) the delay before the information is available; (ii) the
accuracy of the provided information; and (iii) the probability
of actually acquiring relevant information. Data-processing is a
typical core component of a sensing method. Typically, for a given
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Fig. 1. Control loop with data-processing (van Horssen et al., 2015).

data-processing unit, there is a trade-off between the sensing char-
acteristics (Chakraborty et al., 2016; Corke, 2011). For instance, a
more elaborate data-processing method can provide higher accu-
racy (or a higher probability of providing useful information), but
requires more computational time and thus incurs a larger delay
than a simple(r) method. In addition, in this case, hard deadlines
onprocessing timeoften enforce the trade-offwith respect to delay
by causing data absence due to deadline misses.

We consider a closed-loop system consisting of the intercon-
nection of a physical system with one or multiple sensors and
actuators, a data-processing unit with several available process-
ing methods, and a digital controller in a feedback structure, as
depicted in Fig. 1. Sensor data is processed in batches by the
data-processing unit before control-relevant information is ob-
tained.We consider this type of system in the context of stochastic
optimal sampled-data control (Åström, 1970; Åström & Witten-
mark, 2013; Chen& Francis, 1995) of linear continuous-time plants
with stochastic state disturbances with infinite horizon average
quadratic cost criteria (Bertsekas, 2005), i.e., the linear quadratic
Gaussian (LQG) setting. To improve performance beyond classi-
cal results, we propose to break the trade-off in data-processing
characteristics by switching on-line between multiple processing
methods with different characteristics as already mentioned. This
leads to a general switching and control co-design problem where
the (real-valued) decisions are related to the actuation input and
the (integer-valued) decisions regarding which processing algo-
rithm to use at each decision time. Because the general optimal
switching and control co-design problem is computationally hard
to solve, our approach is based on an (approximate) dynamic pro-
gramming approach. In particular, we use rollout techniques (Bert-
sekas, 2005) and derive explicit switching criteria and an LQG-type
feedback policy. This control design approach leads to novel con-
trol policies that guarantee performance improvement when com-
pared to implementations that only use one processing method.
We emphasize that the plant is considered in continuous time, as
well as the cost function to reflect the true cost. The controller
is in discrete time (with non-equidistant time intervals) in order
to reflect the actual digital implementation in which processing
delays are also taken into account.

We propose a switchingmethod that can circumvent the trade-
off between characteristics for an important general setup with
deterministic delays. Results for many cases, such as those in our
preliminaryworks (vanHorssen et al., 2015; vanHorssen, Antunes,
&Heemels, 2016), can be recovered from the results for this general
setup. As a secondary result, we show how a case with stochastic
delays can be addressed using the result for deterministic delays
by a deadline-driven approach. The framework to model data-
processing methods is presented with generality to facilitate fur-
ther studies in this appealing and relevant research area.

In our preliminary works van Horssen et al. (2015, 2016), the
trade-offs betweendelay andmeasurement accuracy, and between
delay and probability of data acquisition were investigated in iso-
lation, respectively, under the assumptions that measurements of
the full state are available and that the delays are deterministic.
Building upon these preliminary works, in this paper, we extend

these results leading to a general modeling and control approach
that simultaneously addresses the interplay between delay, mea-
surement accuracy and probability of data acquisition. We recover
the results of van Horssen et al. (2015, 2016) as special cases. To
broaden the applicability of the methods, we extend the results
to the general case of output feedback with partial information,
for which we provide solutions based on both Luenberger-type
observers and time-varying Kalman filters. Furthermore, we al-
low the delays in the loop to become stochastic, which was not
the case in preliminary works, and apply the ideas our recently
proposed self-triggered deadline-driven implementation (Prakash,
van Horssen, Antunes, & Heemels, 2017) with additional optimiza-
tion opportunities. Moreover, full details on the derivation of the
results are given, which are not available in van Horssen et al.
(2015, 2016).

The present work builds upon the seminal and classical works
(Åström, 1970; Bertsekas, 2005; Doob, 1953; de Koning, 1982),
and insights from Schenato, Sinopoli, Franceschetti, Poolla, and
Sastry (2007). The modeling of data-processing methods and the
control design ideas are, to our best knowledge, novel. LQG-type
sampled-data control is studied since the early works of Kabamba
and Hara (1993) and Khargonekar and Sivashankar (1991) and
many other approaches to delay different from this work, such
as loop-shifting (Mirkin, Shima, & Tadmor, 2014) for fixed time-
delays and Lyapunov-basedmethods such as Fridman (2014), have
been studied in recent years. The probability of data-acquisition
characteristic also appears in networked control context as data
loss, or ‘dropouts’, see, for instance, Demirel (2015), Gommans,
Heemels, Bauer, and van de Wouw (2013), Quevedo, Silva, and
Goodwin (2008) and Schenato et al. (2007) and the references
therein. Many of those works consider data loss/acquisition with
the purpose of analyzing the trade-off between control and com-
munication rate when controlling, or ‘scheduling’, when and how
often to (re-)transmit, in order to reduce or limit the communi-
cation rate (Al-Areqi, Görges, Reimann, & Liu, 2013; Antunes &
Heemels, 2014; Antunes, Heemels, Hespanha, & Silvestre, 2012;
Demirel, Aytekin, Quevedo, & Johansson, 2015; Kouchiyama &
Ohmori, 2010; Molin & Hirche, 2009; Reimann, Al-Areqi, & Liu,
2013). Other papers considering trade-offs between different char-
acteristics of data-processing and communication are (Demirel,
2015; Wu, Lou, Chen, Hirche & Kuhnlenz, 2013) and Wu, Jia, Jo-
hansson and Shi (2013). In Wu and Jia et al. (2013), a method to
balance the trade-off between communication rate and estimation
quality under energy constraints is given. An example of vision-
based control causing delay can be found in Wu and Lou et al.
(2013), where scheduling is used to reduce the communication
rate with a cloud-computing platform. The communication rate
trade-off with stochastic delays is considered in Demirel (2015).
Note that in the current work we consider communication chan-
nels to be ideal and the probability of data-acquisition characteris-
tic only models data loss due to the data-processing unit, although
such an extension can be envisioned based on the framework
presented in this paper. While reducing communication is impor-
tant, typically to preserve energy or reducing network congestion,
this is not the main concern in data-intensive applications that
are considered here. Instead, we aim to fully utilize the available
processing power to improve closed-loop performance by deciding
which processing method is most suited to be used for any newly
acquired data. This is a different problem than considered in the
papers mentioned above, where no co-design problem for con-
trol and switching of multiple data-processing methods is solved.
Recent works Bolzern, Colaneri, and Nicolao (2010, 2016) have
considered a different control and switching co-design problem
for the same class of linear systems with stochastic and deter-
ministic switches (switched Markov Jump Linear Systems) in a
discrete-time state-feedback context. The relevance of providing
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suboptimal switching policies with performance guarantees was
also underlined by works such as Geromel, Deaecto, and Daafouz
(2013), where the concept of consistency was introduced. In dif-
ferent context, Picasso, Vito, Scattolini, and Colaneri (2010) also
considered complex supervisors to switch among different time-
scales and configurations by optimization.

The organization of the remainder of the paper is as follows.
The control set-up with data-processing, the control design, and
the problem formulation are detailed in Section 2. The proposed
switching and control policy is given in Section 3. Section 4 con-
tains the main analytical results. A numerical example in Section 5
illustrates the results. Concluding remarks are given in Section 6.
The proofs of the main results can be found in the Appendix.

2. Framework and problem formulation

We discuss in Section 2.1 the plant model, in Section 2.2 the
measurement and sensing framework, and in Section 2.3 the digital
control update scheme. In Section 2.4, we state the performance
index and the main control problem that we are interested in.

2.1. Plant model

The plant model of the system that is to be controlled takes the
form of the continuous-time stochastic differential equation

dxC (t) = (ACxC (t) + BCuC (t))dt + Bωdω(t), t ∈ R≥0, (1)

where xC (t) ∈ Rnx is the state and uC (t) ∈ Rnu is the control input
at time t ∈ R≥0, and ω(t) is an nw-dimensional Wiener process
with incremental covariance Inwdt (cf. Åström (1970)). Here, AC ∈

Rnx×nx , BC ∈ Rnx×nu , and Bω ∈ Rnx×nω are constant matrices
describing the plant behavior. Wemake the standard assumptions
that (AC , BC ) is controllable and BC has full rank (which implies full
column rank if nx > nu). The initial condition xC (0) with realization
x0 ∈ Rnx is assumed to be amultivariate Gaussian random variable
with mean x̄0 and covariance Φx0 , i.e., xC (0) = x0 ∼ N (x̄0, Φx0 ).

2.2. Measurements and sensing model

For illustrative purpose, we focus on data-processing as the
main sensing element that is to be modeled. At sampling times
tk, k ∈ N, with t0 = 0, a new sample of raw data pertaining to the
plant is taken (instantaneously). At this time, one data-processing
method σk ∈ M := {1, 2, . . . ,M} is (immediately) activated to
distill information regarding the system state xC (tk) that is relevant
for feedback control. As discussed in the introduction, only one
method may be active at any given time. Next, we propose a mod-
eling framework incorporating three characteristics of sensing or
data-processing that are relevant for control. We present themod-
eling frameworkwithmathematical generality and present control
design ideas for a large subset of the cases that can be identified in
the framework. This subset encompassesmany practically relevant
cases and trade-offs that are of interest. An exhaustive analysis
of all possible cases and trade-offs between the characteristics of
data-processing is a hard problem and beyond the scope of this
paper.

After a processing delay τk ∈ R>0, which depends on the pro-
cessing method σk ∈ M that is chosen, the raw data is processed
and the output yk ∈ Rny becomes available to the controller. Each
processing method m ∈ M is characterized by three properties,
modeled by a tuple (Fm, Φν

m, γ̄m) containing a cumulative distri-
bution function (cdf) Fm : R>0 → [0, 1] for the delay, a measure-
ment noise covariance Φν

m ∈ Rny×ny modeling accuracy, and a
probability of data-acquisition γ̄m ∈ [0, 1], respectively, which are
detailed next. In this work, we assume that improving one of the
characteristics deteriorates another one.

Moreover, we assume that two realizations of data-processing
characteristics are conditionally independent of one another given
themethod σk ∈ M. In the remainder of this paper this conditional
independence is a standing assumption.

The processing delays τk, k ∈ N, are assumed to be indepen-
dent and identically distributed (i.i.d.) with cdf Fσk defined by the
probability measure µσk in the sense that Fm(τ ) := µm((0, τ )),
τ ∈ R(0,∞) for all m ∈ M. The support of µm,m ∈ M, may be
unbounded, but we assume that µm((0, ∞)) = 1. The measure µm
can be decomposed into continuous and discrete components as
in µm = µc

m + µd
m, with µc

m([0, s)) =
∫ s
0 f cm(τ )dτ , where f cm is a

measurable function, and µd
m is a discrete measure that captures

possible point masses at bi ∈ R>0, i ∈ N≥1, such that µd
m({bi}) =

wm
i ∈ R. The (Lebesgue–Stieltjes) integral of some functionW with

respect to the measure µm is defined as∫ t

0
W (s)µm(ds) :=

∫ t

0
W (s)f cm(s)ds +

∑
i∈N≥1:bi∈(0,t]

wm
i W (bi).

Sometimes, we will also use the probability distribution function
(pdf) fm, which is such that Fm(τ ) =

∫ τ

0 fm(s)ds, where fm(τ ) can be
seen as f cm(τ )+

∑
i∈N≥1

wm
i δ(τ − bi) for τ ∈ R>0 where δ(·) denotes

the Dirac delta function. The means are denoted by τ̄m, m ∈ M,
i.e., τ̄σk := E[τk] for any k ∈ N. In this work, we will focus on
control design for deterministic delays and illustrate how the case
of stochastic delays can be addressed using the insights provided
by the deterministic case.

The accuracy of the obtained output yk is modeled by additive
perturbations on the measurements CxC (tk), where the constant
matrix C ∈ Rny×nx determines the measured variables. The per-
turbations νk are assumed to be independent realizations of ny-
dimensional random variables, i.e., νk ∈ Rny . For all k ∈ N, νk has
zero-mean multivariate Gaussian distribution with covariance Φν

m
if method m ∈ M is activated at time tk, i.e., νk ∼ N (0ny , Φν

m) if
σk = m.

The possibility that the processing method does not provide
a useful result, i.e., the possibility of no information, is modeled
by the variable γk ∈ {0, 1}. If the new output information yk
is useful, we have γk = 1, otherwise γk = 0. The indica-
torsγ0, γ1, γ2, . . . , γk, . . . are independent realizations of Bernoulli
random variables with probability

γ̄m = Pr(γk = 1 | σk = m)

for any given m ∈ M. Thus, the random variables γk, k ∈ N, are
independent, and, for any given m ∈ M, identically distributed.
In the remainder of the paper we will use the term ‘switch’ for
changes in σk and ‘jump’ for changes in the data-loss parameter
γk. Note that we consider the communication channels to be ideal,
in the sense that they do not introduce data losses, and the γ
parameter purely models the data losses introduced by the data-
processing unit.

The model properties lead to the following structure for the
measurement output. The output

yk =

{
CxC (tk) + νk, γk = 1,
∅, γk = 0,

(2)

becomes available to the controller at time tk + τk, for all k ∈ N,
where the symbol ∅ denotes ‘no data available’. We assume that
the moment at which a data-processing method completes (and
provides the output) coincides with the moment at which a new
measurement starts being processed. Thus,

tk+1 = tk + τk, k ∈ N. (3)

Optimization of the actuationmomentmay be possible in some
settings and is discussed in Section 6. This presents a complemen-
tary problem that is beyond the scope of this paper.
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Remark 1. Note that we explicitly consider the delay to be
nonzero. This allows us to obtain a discrete-time representation
of the continuous-time system and formulate a decision-making
problem in discrete-time. In fact, in our framework, it is not possi-
ble to consider zero delays since this would entail zero time length
between two consecutive decisions, making the problem ill-posed.

2.3. Digital control

In this work, the plant is controlled digitally. We consider the
actuator update times to coincide with the sampling times, see
also (3). As it is standard in most digital or sampled-data control
schemes (Åström & Wittenmark, 2013; Chen & Francis, 1995), a
zero-order hold actuation strategy is implemented. Hence, uC is a
staircase signal, given by

uC (t) = uk := uC (tk), for all t ∈ [tk, tk+1), k ∈ N. (4)

By the previously mentioned assumption, the actuator update
times coincide with the sampling times, i.e., when yk−1 becomes
available at time tk, uk can be instantaneously updated.

A switching strategy determines the switching signal given by
the sequence of processing methods σ := {σk}k∈N pertaining to
which data processing method σk to use in each interval [tk, tk+1).
The main results of this work pertain to novel switching strategies
combined with optimal actuation strategies.

To simplify our analysis, we assume the computational time of
the controller to be significantly smaller than the processing delay
such that it is negligible. As we will show, the proposed control
strategy does not require a significant computational load and
therefore this assumption is reasonable in many cases. In addition,
a known computational or actuation delay may be directly taken
into account by slight adaptation of the main results.

2.4. Control problem statement

Performance is measured by an expected average cost

JaC := lim sup
T→∞

1
T

∫ T

0
E [gC (xC (t), uC (t))] dt, (5)

which depends on the control input function uC with gC (x, u) :=

x⊺QCx+u⊺RCu, whereQC ∈ Rnx×nx is a positive semi-definitematrix
with (AC ,Q

1
2 ) observable, and RC ∈ Rnu×nu is a positive definite

matrix. This performance index corresponds to that of a standard
LQG average cost problem.

A control policy π is defined as a sequence

π = (ι0, ι1, . . .)

of multivariate functions ιk := (ισk , ιuk) that determine at sampling
times tk, k ∈ N, the switching and actuation inputs in the sense
that

(σk, uk) = (ισk (Ik), ιuk(Ik)) = ιk(Ik), k ∈ N, (6)

based on the information vector

Ik := {Ik−1, σk−1, uk−1, yk−1, τk−1, γk−1} ,

available at the controller at that time, with initial information
I0 := {x̄0, Φx0}. Recall that at time tk, k ∈ N, the output yk−1 has
just arrived at the controller.

Let the cost JaC for a given policy π be denoted by Jπ . A conven-
tional design approach is to apply a non-switching control policy,
here referred to as a base policy, for which a-priori a processing
method, say b ∈ M, is fixed, such that ισk (Ik) = b (and thus σk = b)
for all k ∈ N, and use known tools (see, e.g., Åström (1970)) to find
a policy ιuk that provides the optimal control inputs uk, k ∈ N, to
the plant. Let base policies with b ∈ M also be indicated by b ∈ M

(such that M also represents the set of base policies). For cost (5),
the best achievable performance Jb of a base policy, with b ∈ M, is
given by

Jb := min
ιuk for all k∈N

JaC |σk=b for all k∈N, b ∈ M.

For such non-switching base policies b ∈ M, the optimal control
inputs uk, k ∈ N, are provided by LQG-type control policies
(see, e.g., Åström (1970)) and the optimal value Jb is known to be
independent of the initial state. Let one optimal choice of policy
b ∈ M be denoted by b⋆, such that Jb⋆ ≤ Jb for all b ∈ M, i.e.,

b⋆
:= arg min

b∈M
Jb. (7)

The control problem considered in this paper is to determine,
for system (1),(2),(3), a control policy π that provides both an
actuation signal uC and a switching signal σ , to obtain for cost (5) a
smaller value Jπ than can be achieved for any non-switching base
policy, in the sense that

Jπ ≤ Jb⋆ ≤ Jb, for all b ∈ M. (8)

Note that finding optimal switching and actuation policies, i.e.,
finding π ⋆

= argminπ Jπ , is a hard problem in general (see, e.g.,
Antunes and Heemels (2014) and Zhang, Hu, and Abate (2012)) for
which paths-on-graphs-type approaches as in Lee (2009) and Lee
and Dullerud (2011) become computationally intractable. There-
fore, we propose a suboptimal switching policy design approach,
explained in Section 3, which leads to computationally efficient
control policies that provide performance guarantee (8) and often
outperform all base policies. By this we mean that guaranteeing (8)
in itself is not the main goal of the paper, but the goal is also to
show that in practice we can obtain strict performance improve-
ment for Jπ in practical settings. The performance guarantee (8) is
formally proven and performance improvement is illustrated by a
numerical example in Section 5. The proposed actuation policies
are based on the time-varying LQG design and we mainly present
novel switching policies. Existing results do not provide a solution
for this problem.

In the framework presented in Section 2.2, many special cases
of interest can be identified. In this work, first, we derive our first
main result for the most general case with deterministic delays,
i.e., when fm(τ ) = δ(τ − τ̄m), τ ∈ R>0. The derivation of the
explicit switching condition is detailed in Section 4. The (proof
of) the main result also applies to van Horssen et al. (2015, 2016)
and their generalizations, which are recovered as special cases. For
reasons of space, the explicit derivation of those special cases is
omitted. Subsequently, we show in our second main result that
the first main result can also be used to tackle stochastic delays
by a deadline-driven approach, which uses a reformulation of the
problem set-up to one in which the delays are again deterministic.

3. Proposed control policy

In this section, the control policy is proposed. First, the policy
structure is given. Subsequently, a discrete-time system formula-
tion is introduced and the state estimation and actuation problems
are addressed. These preliminaries are then used to derive explicit
switching and control solutions in Section 4. As mentioned, we
present the technical parts of our control policy for the cases with
deterministic delays, i.e., fm(τ ) = δ(τ − τ̄m) for each m ∈ M.

3.1. Proposed switching and actuation policy

The control policy that we propose is based on stochastic
approximate dynamic programming and is known as a rollout
method (see Bertsekas (2005)). Note that the classical roll-out
method, which has an infinite horizon lookahead, only applies to
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switched systems where the sampling interval τk is equal to the
same fixed constant for any method σk ∈ M in order to have the
same cost-to-go, which is not the case in our setting. We use the
ideas behind the classical rollout approach to establish our new
results, which extend the rollout methods to systems with time-
varying sampling intervals.

We propose to use the following policy for the decisions. A
switching decision is made at time tk on which processing method
σk ∈ M to choose next, assuming that it would be chosen in
several subsequent instants as well and assuming that after those
instants the optimal base policy b⋆ method is always selected.
The number of instants is given by a discrete-time horizon of size
Hk ∈ N>0 for all k ∈ N. Thus, the policy assumes the use of
σk for tk, tk+1, tk+2, . . . , tk+(Hk−1), while supposing that after the
horizon, i.e., at times tk+Hk , tk+(Hk+1), . . . , the optimal base policy b⋆

method is selected. This is schematically depicted in the following
diagram, where Hk = 3 and where instants t̂k+h, h ∈ N, indicate
the (expected) future sampling times.

t
tk

σk

t̂k+1

σk

t̂k+2

σk

t̂k+3

b⋆

t̂k+4

b⋆

t̂k+5

b⋆

Then the decision-making procedure is then repeated in a re-
ceding horizon fashion, i.e., the same procedure is repeated at
times tk+1, tk+2, . . . .

Note that typically in the classical rollout methods the horizon
Hk is a fixed constant for all k ∈ N. We further extend the classical
results by allowing the horizon Hk to change on-line, i.e., it can
change with k ∈ N. In particular, we will include the horizon
in the optimization of the switching decision. A larger switching
horizon can createmore or better switching options,which can im-
prove the obtained performance. To accommodate this additional
optimization variable in view of guaranteeing (8), we restrict our
updating procedure with the following condition.

If Hk > 1, then σk+1 = σk and Hk+1 = Hk − 1, (9)

which means that switching whilst being on a previously selected
horizon is not allowed. We define Hm := {1, 2 . . . , H̄m}, with
H̄m ∈ N>0 as the set of admissible horizons H for each m ∈ M,
and, for all k ∈ N.

Clearly, restriction (9) is not needed if Hm := {1} for each
m ∈ M, i.e., if Hk = 1 for all k ∈ N.

As mentioned in Section 2.4, the proposed actuation policy
is based on the standard optimal LQG controller design (see e.g.
Åström (1970)), as detailed in Section 3.4.

For somepolicyπ , let the cost incurred on the interval [tk, tk+T )
be denoted

JaC,[tk,tk+T ]
:=

1
T

∫ tk+T

tk

E [gC (xC (t), uC (t)) | π ] dt. (10)

In accordance with the proposed control policy, we define the
switching criterion as the choice of themethodm ∈ M andhorizon
H ∈ Hm that minimizes (10) when that method is selected on the
horizon of length H assuming that afterwards method b⋆ is always
selected, while the actuation policy is given by the (time-varying)
LQG regulator, denoted ιu = LQG. Formally, for all k ∈ N subject to
(9),

ισk : (σk,Hk) := arg min
m∈M,H∈Hm

Jm,H
k (11)

where, for all k ∈ N,

Jm,H
k := {JaC,[tk,tk+T ]

| Ik, ι
u

= LQG,

σl = m for all l ∈ N[k,k+H),

σl = b⋆ for all l ∈ N≥k+H }. (12)

While (11) defines a family of policies since Jm,H
k is parameterized

by T , later, we will let T → ∞ and consider only the specific
resulting policy. It is important to realize that taking the limit in
(12) directly, would leave (11) ill-defined since Jm,H

k would be equal
for each switching option. To provide insights under well-defined
policies, we first assume that T is a large number. Finally, using the
insights, we can let T → ∞ whilst keeping (11) well-defined.

Themain result of this paper is that the switching and actuation
policy as described in this section (for T → ∞) improves upon
non-switching policies b ∈ M in the sense of (8) for the cases
described in Section 2.4. The derivation of Jm,H

k for those special
cases leads to explicit switching conditions and is detailed in
Section 4. The analysis uses the assumption that the time needed
to evaluate the control policy, i.e., the computation time needed
to compute values for σk and uk, is significantly less than the time
needed for data-processing, such that the computation time can be
neglected. The established policies allow this assumption since the
computational complexity can be kept small, as will be shown.

Remark 2. We consider the restriction (9) for ease of exposition in
the current paper. We believe that it is possible to find additional
conditions on the switching rules in this paper that will allow
switching whilst being on the horizon. Establishing such condi-
tions is beyond the scope of this paper and left as future work. The
limitation of having only one method on the horizon can be lifted,
but such an approach may quickly become computationally prob-
lematic due to the increasing number of possible combinations of
methods.

3.2. Discrete-time formulation

To establish the envisioned results, the system behavior is de-
scribed in discrete time at the sampling instants.

The state andmeasurements at instants tk, k ∈ N, are described
by

xk+1 = Akxk + Bkuk + ωk, (13)

yk =

{
Cxk + νk, γk = 1,
∅, γk = 0.

(14)

where xk := xC (tk) ∈ Rnx and uk := uC (tk) ∈ Rnu are the state and
control input in discrete time for k ∈ N, respectively. The matrices
corresponding to the discrete time dynamics depend on realiza-
tions of the intersampling intervals, i.e., by exact discretization (see
e.g. Åström (1970) and Åström and Wittenmark (2013))

Ak := A(τk), where A(τ ) := eAC τ ,

Bk := B(τk), where B(τ ) :=

∫ τ

0
eAC sBCds.

The disturbancesω and ν are sequences of zero-mean independent
random vectors, ωk ∈ Rnω and νk ∈ Rnν , respectively, with
covariances E[ωk(ωk)⊺] = Φω

k and E[νk(νk)⊺] = Φν
σk
, for all k ∈ N,

with

Φω
k := Φω(τk), where Φω(τ ) :=

∫ τ

0
eAC sBωB⊺

ωe
A⊺C sds.

The cost function (5) can be written in terms of the discrete-
time system, for N(T ) := {min L |

∑L
k=0 τk > T } the number of

sampling intervals up to time T , as

JaC = lim sup
T→∞

1
T
E

[N(T )−1∑
k=0

g(xk, uk, τk)

]
, (15)

where g(x, u, τ ) := x⊺Q (τ )x + 2x⊺S(τ )u + u⊺R(τ )u + α(τ ), for[
Q (τ ) S(τ )
(⋆)⊺ R(τ )

]
:=

∫ τ

0
e
[
AC BC
0 0

]⊺
s
[
QC 0
0 RC

]
e
[
AC BC
0 0

]
sds.
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and, for tr(·) the trace of a matrix,

α(τ ) := tr(QC

∫ τ

0

∫ t

0
eAc sBωB⊺

ωe
A⊺c sdsdt),

which is the cost associated with the continuous-time behav-
ior of the Wiener process between update instances. Let Qk :=

Q (τk), Sk := S(τk), Rk := R(τk) and αk := α(τk).
Note that we consider deterministic delays such that thematri-

ces take deterministic values, but for stochastic delays thematrices
would be random variables. We will show in Section 4.6 that
for the deadline-driven approach to deal with stochastic delays,
the problem can be converted into an equivalent problem where
the matrices take deterministic values as well. In the remainder
of the paper we present equations for the deterministic case. To
accommodate further study, the chosen formulation often also
applies to the stochastic delay case.

3.3. Estimation of the current state

As in standard LQG control, we will use a state estimate to
determine the control input. Recall that the separation principle
holds (Schenato et al., 2007) when the switching signal {σk}k∈N
is known. Since measurements are delayed, may be absent, and
provide only partial and/or noisy information, the current state is
estimated. At time tk, the realizations of τl and γl, for all l ∈ N<k are
known. Hence, an estimate x̄k of the state xk from the information
Ik can be obtained by the linear estimator–predictor

x̄k = Ak−1x̄k−1 + Bk−1uk−1 (16)
+ γk−1Lk−1(yk−1 − Cx̄k−1), k ∈ N>0,

with initial condition x̄0 := E [x0 | I0]. The gain matrices Lk ∈

Rnx×ny , k ∈ N will be given by a chosen estimation policy that can
be either a time-varying Kalman filter or a Luenberger observer,
leading to two types of control policies. In alignment with the
policy notation in Section 2.4, we denote the non-switching and
switching control policies that use a time-varying Kalman filter
by bK and πK , respectively, and we denote control policies with a
Luenberger observer analogously by bL or πL. Expressions for the
gains Lk, k ∈ N, are given next.

The time-varying Kalman filter (see, e.g., Åström (1970)) pro-
vides the best estimates x̄k of xk in the least-squares sense. It is
given by (16) with time-varying gain

Lk = AkΘkC⊺(CΘkC⊺
+ Φν

σk
)−1 for all k ∈ N, (17)

that depends on the error covariance Θk = E[(xk − x̄k)(xk −

x̄k)⊺ | Ik]. For the Kalman filter, Θk is equal to the covariance of
xk − E [xk | Ik] since x̄k = E [xk | Ik]. The realizations of the error
covariance are given by

Θk = (Ak−1 − γk−1Lk−1C)Θk−1(Ak−1 − γk−1Lk−1C)⊺

+ γk−1Lk−1Φ
ν
σk−1

(Lk−1)⊺ + Φω
k−1, (18)

=

⎧⎪⎨⎪⎩
(Ak−1 − Lk−1C)Θk−1(Ak−1 − Lk−1C)⊺

+ Lk−1Φ
ν
σk−1

(Lk−1)⊺ + Φω
k−1,

if γk−1 = 1,
Ak−1Θk−1(Ak−1)⊺ + Φω

k−1, if γk−1 = 0,

where the initial condition Θ0 = Φx0 is equal to the covariance
matrix of the initial estimate. Note that innovation of the estimates
only occurs if γk−1 = 1, otherwise (16) is a pure prediction step.

Instead of the Kalman filter, we can select a fixed-structure
Luenberger observer for which the gain is constant for each chosen
method m ∈ M. Let L̃m ∈ Rnx×ny denote the value of the gain for
eachmethodm ∈ M, then the gain of the estimator–predictor (16)
is given by

Lk = L̃σk for all k ∈ N. (19)

While for the most general case with data loss this does not
provide the best linear estimator when the choice of method is
fixed (Schenato et al., 2007), a value of the gain can be derived for
the policies bL that is optimal (in the least-squares sense) in the
class of fixed-structure observers (see Costa, Fragoso, andMarques
(2006), Schenato (2008) and Silva and Solis (2013)). Furthermore,
there are many cases where an optimal Luenberger observer per-
forms equally well as a Kalman filter, as is the case in the standard
LQG solution. The computation of the ‘optimal’ gains L̃m ∈ Rnx×ny

will be detailed in Section 4. Note that the covariance is computed
using the Joseph form (18) for the Luenberger observer, which
reduces to the Riccati equation only for the Kalman filter (17).

The estimation mechanisms proposed in this section will also
be considered when predicting future realizations of the state
estimate. While future realizations of the state estimate depend
on the future realizations of τk and γk, which are not known at
time tk, we can use the rollout scheme discussed before to fix
their probabilities and compute predictions of the future state esti-
mates and error covariances. While the time-varying Kalman filter
provides the best estimate in the least-squares sense, predicting
future error covariances is not always possible (Sinopoli, Schenato,
Franceschetti, Poolla, Jordan, & Sastry, 2003). Therefore, the Luen-
berger observer is a useful alternative, as will be shown. In partic-
ular, for policies bK with γk = 1 for all k ∈ N and deterministic
delay, there exists a stationary Kalman filter gain, i.e., there exists
a cost-equivalent Luenberger observer, that is optimal. However, if,
for example, γk ̸= 1 but random, then predicting covariances is not
possible due to the nonlinear dependency on previous covariances.
For the policies bL, this relationship remains linear. Therefore, for
mean-square stabilizing Luenberger observer gains, the expected
covariance of the future state estimates converges to a constant
value Θ̄b := limN→∞ E[ΘN | I0, b] if b = bL, as we show in the
next sections.

3.4. Actuation policy

The proposed switching policy (11) compares, at time tk, k ∈ N,
the expected future cost for different scheduling options whilst
assuming that the future choices of the sequence {σl}l∈N≥k are
known. Recall that we consider fm(τ ) = δ(τ − τ̄m) for eachm ∈ M.
For any arbitrary known switching sequence {σl}l∈N≥k , for T → ∞

in (12), and given a state estimate based on the information Ik,
the optimal actuation policy ιu is given by the time-varying LQR
controller (see, e.g., Åström (1970)) where the state is replaced by
its estimate, i.e., the LQR part of the LQG regulator.

Theproposed actuationpolicy ιu is to implement, on thehorizon
after tk, the control inputs corresponding to the optimal actuation
policy ιu for the switching option and horizon (11) selected at tk.
Define, for allm ∈ M, the realizations of the systemmatrices for a
given τ̄m, as

Ām := A(τ̄m), B̄m := B(τ̄m), Φ̄ω
m := Φω(τ̄m),

Q̄m := Q (τ̄m), R̄m := R(τ̄m), S̄m := S(τ̄m),
ᾱm := α(τ̄m).

Formally, at times tk+h for h = 0, 1, . . . ,Hk − 1, actuation updates
take place according to

ιuk : uk+h = −Kσk,hx̄k+h, h = {0, 1, . . . ,Hk − 1}, (20)

where the control gainsKm,h ∈ Rnu×nx ,m ∈ M, can be derived from
the Riccati equation

Gm,h = R̄m + B̄⊺
mPm,h+1B̄m,

Km,h = (Gm,h)−1((B̄m)⊺Pm,h+1Ām + (S̄m)⊺),

Pm,h = Ā⊺
mPm,h+1Ām + Q̄m − K ⊺

m,hGm,hKm,h, (21)
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solved recursively with Pm,H = P̄ with P̄ := Pb⋆ the stationary
solution to (21) for m = b⋆, i.e., Pb⋆ = Pb⋆,0 when H → ∞

under policy b⋆ (i.e., when T → ∞ in (12) and m = b⋆). Let
Gm,H = Ḡ := Gb⋆ and Km,H = K̄ := Kb⋆ be computed analogously.
For the case where H = 1, we drop the additional subscript h in
Pm,h.

Now, we have provided the mechanics needed to evaluate (12)
in a meaningful way. In Section 4, we derive from (12) explicit
switching conditions and themain results. For comparison, the cost
of the base policies can be computed as shown next.

3.5. Cost of base policies and selecting b⋆

To establish the best base policy b⋆ a-priori, we require an
analytic expression of the performance of the base policies. As ex-
plained in Section 3.3, for our general framework, which includes
probabilistic data loss, it is possible to derive an optimal control
scheme with the Kalman filter, but predicting covariances is not
possible. Therefore, an analytic expression for the performance,
in terms of index (5), is not available for the general model (see,
e.g., Schenato et al. (2007)). As a result, our main results build on
the predictions using a Luenberger-type observer with an LQR-
type controller. For the general case with Luenberger observer
under deterministic delays,we can establish an analytic expression
for the performance which has the same form as the classical
expression for LQG performance. For several special cases, such as
the case without data loss and the cases discussed in Remark 8, an
expression can also be established for the Kalman filter, e.g., if a
cost-equivalent fixed-gain observer exists.

For measurements with deterministic delay, i.e., fm(τ ) = δ(τ −

τ̄m),wehave the following known result (Åström, 1970; Costa et al.,
2006; Schenato et al., 2007) for the LQG-type policieswhen σk = b,
b ∈ M, for all k ∈ N. If the expected covariance of the state
limN→∞ E[ΘN | I0, b] converges to a constant value Θ̄b, which is
the case for the observers considered in the base policies in this
paper (as discussed in Section 3.3), then the cost of a base policy b
is given by

Jb := JaC (b) = lim sup
N→∞

E

[
1

N τ̄b

N−1∑
k=0

g(xk, uk, τk)

]

=
1
τ̄b

cb, where cb := tr(Φ̄ω
b P̄b + Θ̄bK̄

⊺
b ḠbK̄b) + ᾱb (22)

where the matrices P̄b, K̄b, Ḡb follow from the stationary solution
to (21). For the base policies considered in this paper we will make
an assumption (Assumption 1) to guarantee that the limit Θ̄b :=

limN→∞ E[ΘN | I0, b] of the expected future covariance exists. The
value of limN→∞ E[ΘN | I0, b] can, e.g., be computed using the
procedure in Section 4.2 for the Luenberger observer (computing
the stationary solution to (25), e.g., via the expression after (26))
or, for the LQG problem without data loss, by solving the standard
algebraic Riccati equations. From the base policy costs, b⋆ can be
computed according to (7).

4. Main results

The main results are in the form of explicit switching and con-
trol solutionswith performance guarantees. This section details for
two cases the derivation of Jm,H

k , described by (12), such that (30) is
well-posed. The first case considers the trade-off between the three
modeling parameters when delays are different but deterministic
for each case. It is a mixture and generalization of the cases in van
Horssen et al. (2015, 2016). Specifically, we consider the set of
characteristics with trade-off between deterministic delays, con-
stant (non-zero) accuracy and constant loss probability for each

m ∈ M, i.e., fm(τ ) = δ(τ − τ̄m) for τ ∈ R≥0,Φν
m ⪰ 0, and γ̄m ≤ 1 for

each m ∈ M. This model represents a large class of systems with
data-processing. The second case details how a deadline-driven
approach together with the results for the first case can be used
to address the case of stochastic delays.

4.1. Cost prediction

In order to evaluate the switching condition (11) at time tk,
an expression for the expected future cost (12) is needed. For a
given choice of m ∈ M, the future choices of σk are assumed to
be known in accordance with the policy proposed in Section 3.
Since the values of τk are assumed to be deterministic in this case,
all future instances of system matrices (Al, Bl, etc. for l ∈ N>k)
are known. Let the predictions of the future state estimates for
π ∈ {πK , πL} be denoted x̂k,h := E [x̄k+h | Ik], with initial condition
x̂k,0 = x̄k. Additionally, let Θ̂k,h := E[(xk+h − x̄k+h)(xk+h − x̄k+h)⊺ |

Ik] denote the predictions of the future covariance of the state at
time k + h, computed at time k, with Θ̂k,0 := Θk. In accordance
with our switching policy as described in Section 3.1, the expected
future cost (12) up to time tk + T , for T = N τ̄b⋆ + H τ̄m, N ∈ N
can be determined for each m ∈ M. Following optimal control
arguments which can be found in Åström (1970) and Schenato
et al. (2007), we find that, for N → ∞ which implies T → ∞

in (12),

Jm,H
k = lim sup

N→∞

[
x̄⊺kPm,0x̄k + χH

m (Θk,N) + Hᾱm + Nᾱb⋆

]
H τ̄m + N τ̄b⋆

(23)

where

χH
m (Θk,N) := tr(Θ̂k,0Pm,0 + Θ̂k,0K

⊺
m,0Gm,0Km,0)

+

H−1∑
h=1

tr(Φ̄ω
mPm,h + Θ̂k,hK

⊺
m,hGm,hKm,h)

+ tr(Φ̄ω
mP̄ + Θ̂k,H K̄ ⊺ḠK̄ )

+

H+N−1∑
h=H+1

tr(Φ̄ω
b⋆ P̄ + Θ̂k,hK̄ ⊺ḠK̄ ), (24)

and where Θ̂k,h are forward predictions of the covariance, starting
with Θ̂k,0 = Θk, while assuming that σk+h = m, for h =

0, 1, . . . ,H − 1, and σl = b⋆ for all l ∈ N>k+H .
For the most general case with data loss, evaluating (11) is still

not possible because, for the Kalman filter (17), (18) is a nonlinear
function of previous values of γk, hence the predictions Θ̂k,h cannot
be easily computed since γl, l ∈ N>k, are unknown. Furthermore,
for N → ∞, (24) is unbounded, leaving (11) ill-defined. We show
next that, for the Luenberger-type observer, these issues can be
resolved, leading to our main result.

4.2. Predictions with Luenberger observer

Here, using the Luenberger observer,we establish an alternative
expression for (24) such that an equivalent form of (11) is well-
defined. To compute values of Θ̂k,h, the observer gain can be fixed
to a constant value for each h ∈ N depending on the value of σk+h,
k ∈ N, i.e., assume that Lk+h = L̃σk+h as in (19) for all h ≥ 0. Then,
the dependence on γk+h becomes linear and exact values of Θ̂k,h
can be computed as follows.

Define the expectation over the right-hand side of (18) with
respect to γk as

Fm(Θ) := γ̄mÃmΘ(Ãm)⊺ + (1 − γ̄m)ĀmΘ(Ām)⊺ + Ψm,
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where Ãm := Ām − L̃mC and Ψm := γ̄mL̃mΦν
m(L̃m)

⊺
+ Φ̄ω

m. Then, for
all h ∈ Nwith initial condition Θ̂k,0,1

Θ̂k,h+1 = Fσk+h (Θ̂k,h), (25)

= vec−1
(
Tσk+hvec(Θ̂k,h)

)
+ Ψσk+h ,

where, using the Kronecker product ⊗,

Tm := γ̄mÃm ⊗ Ãm + (1 − γ̄m)Ām ⊗ Ām.

The following assumption guarantees that the covariance is
bounded for any non-switching policy using only method m ∈ M
with a chosen observer gain L̃m, and therefore the corresponding
non-switching estimator is stable. The assumption can easily be
checked by computing the eigenvalues of Tm for allm ∈ M.

Assumption 1. Tm is Schur for allm ∈ M.

Asmentioned in Section 3.3, gains that satisfy Assumption 1 can
be obtained, for example, by the methods in Costa et al. (2006),
Schenato (2008) and Silva and Solis (2013).

If Tb⋆ is Schur, then for h ∈ N>H ,

Θ̂k,h = vec−1
(
(I − Tb⋆ )−1(I − T (h−H)

b⋆ )vec(Ψb⋆ )

+T (h−H)
b⋆ vec(Θ̂k,H )

)
, (26)

which converges when N → ∞ to

lim sup
N→∞

Θ̂k,N = vec−1 ((I − Tb⋆ )−1vec(Ψb⋆ )
)

=: Θ̃b⋆ .

In the sequel, when deriving switching conditions, we will use the
fact that this limit Θ̃b⋆ is independent of the value of the expected
covariance at the end of the horizon Θ̂k,H , which follows from (26).

Observe in (26) that the contributions of Ψb⋆ to Θ̂k,h for h ∈

N>H , i.e., after the horizon, are independent of the choice of σk.
Thus, in the last summation in (24), i.e., for h ∈ NH+1,H+N−1,
the contributions of Ψb⋆ are equal for each choice in (11) and can
therefore be neglected as they do not play a role in evaluating
(11). Furthermore, the summation of T (h−H)

b⋆ vec(Θ̂k,H ) for all h ∈

{H,H+1, . . . ,H+N} has an analytic solution forN → ∞, namely
vec−1

(
(I − Tb⋆ )−1vec(Θ̂k,H )

)
. This allows us to define themethod-

dependent part (the terms that depend on a particular choice ofm)
of limN→∞ χH

m (Θk,N) as

η̃H
m(Θk) := tr(ΘkPm,0 + ΘkK

⊺
m,0Gm,0Km,0)

+

H−1∑
h=1

tr(Φ̄ω
mPm,h + Θ̂k,hK

⊺
m,hGm,hKm,h)

+ tr(Φ̄ω
mP̄) + tr(Zb⋆ (Θ̂k,H )K̄ ⊺ḠK̄ ), (27)

where Zb⋆ (Θ̂k,H ) = vec−1
(
(I − Tb⋆ )−1vec

(
Θ̂k,H

))
.

4.3. Luenberger gain selection

Note that the choice of L̃m is free. As discussed in Sinopoli
et al. (2003), the steady-state Kalman gain for the case without
information loss, i.e., when γ̄b⋆ = 1, is a natural choice. However,
the non-switching system with data loss can be interpreted as a
Markov jump linear system (MJLS) (Costa et al., 2006) with two
modes. Using MJLS theory (Costa et al., 2006, Def. 5.7), a mean
expected value of the covariance Θ̃b can be determined as the

1 Define vec(·) as the stack operator transforming a matrix to a column vector
and consider the identity APB = vec−1

[(B⊺
⊗ A)vec(P)].

solution toΘ = Fb(Θ) for given L̃b, by either an iterative procedure
or by solving a semidefinite program, as the solution to

Θ̃b = ĀbΘ̃b(Āb)⊺ + Φ̄ω
b

− γ̄bĀbΘ̃bC⊺(CΘ̃bC⊺
+ Φν

b )
−1CΘ̃bĀ

⊺
b, (28)

obtained when using the Luenberger-type gain

L̃b := ĀbΘ̃bC⊺(CΘ̃bC⊺
+ Φν

b )
−1, (29)

which is optimal in the class bL in the sense that Θ̃b(L̃b) ⪯ Θ̃b(L) for
any L ∈ Rnx×ny , such that Θ̃b⋆ is given by Θ̃b(L̃b⋆ ). The expression
for the cost of the base policies with Luenberger observer, which
we denote JbL , is given by (22) for Θ̄b replaced by Θ̃b.

4.4. Switching condition and performance guarantee

To present the first main result, we use the next proposition,
which provides the proposed switching policy (11) for T → ∞

(i.e., when N → ∞) when the expected covariances in (23) evolve
according to (25) for the optimal Luenberger gains.

Proposition 1. Suppose that Assumption 1 holds and that states are
estimated using (16)with (19)where Lk+h = L̃m for h ∈ N[0,H−1] and
Lk+h = L̃b⋆ for h ∈ N≥H . Then, for T → ∞, the switching condition
(11) is equivalent to

(σk,Hk) :=

arg min
m∈M,H∈Hm

x̄⊺kPm,0x̄k + η̃H
m(Θk) − H

τ̄m

τ̄b⋆
c̃b⋆ + Hᾱm (30)

where c̃b⋆ := tr(Φ̄ω
b⋆ P̄ + Θ̃b⋆ K̄ ⊺ḠK̄ ) + ᾱb⋆ . □

The proof is provided in Appendix A.

Remark 3. The last term in (30) corrects for the misalignment of
the expected sampling times such that the term 1

H τ̄m+N τ̄b⋆
in (23)

equals to the same value of T in (12) for each m ∈ M. Hence, the
divisor T can be eliminated from the argmin in (11) and the case
T → ∞ becomes well-defined.

We can compute the right-hand side of (30) explicitly for each
m ∈ M,H ∈ Hm and thus our switching condition has become
explicit. We can now state our first main result.

Theorem1. If the assumptions of Proposition 1 are satisfied and if for
πL the control policy functions (6) are defined by (20) and (30) with
restriction (9), it holds that

JπL ≤ Jb⋆
L

≤ JbL , for all b ∈ M, (31)

where b⋆
L = argminb∈M JbL , and JbL given by (22)with Θ̄b = Θ̃b, and

Θ̃b the solution to (28). □

Theorem 1 means that our proposed policy achieves the im-
provement (8) with respect to its non-switching counterparts for
the Luenberger observer. The switching policy (30) is restricted to
allow switching only after each chosen horizon.

Remark 4. While (30) can be evaluated after each sample, i.e., lift-
ing restriction (9) and allowing switching on the horizon, an analo-
gous result to Theorem 1 for this case has not yet been established
(see also Remark 4).

Observe that the switching condition (30) requires little com-
putational effort compared to other scheduling approaches. In
particular, many switching variables can be precomputed to limit
computations and the number of switching options can easily be
adapted to the amount of available resources. Hence, the policy
is fast from a computational viewpoint and therefore especially
useful in resource-constrained implementations of data-intensive
systems.
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Remark 5. Although of interest, it is beyond the scope of the
present paper to establish a guarantee of strict performance im-
provement of the proposed strategies. However, we do prove Jπ ≤

Jb and show the strict improvements via a numerical example. In
addition, note that we believe that strict performance improve-
ment guarantees could be derived by following a similar approach
to the one in Antunes and Heemels (2014) where a switched
system derived in a different context was studied. Such an ap-
proach entails rather long arguments, requiring concepts such as
ergodicity, and it is therefore not pursued here.

Remark 6. Note that in the context of the rollout method, we
explicitly compute infinite horizon cost differences such that ap-
proximations orMonte-Carlomethods are not needed. The general
idea is that the use of a base policy creates a separation in the cost
differences between switching options. One part, which is infinite
over the infinite horizon, is equal for each switching option and is
therefore not relevant in (30), and another part, which is finite over
the infinite horizon, is different for each option and can be used for
switching.

4.5. Kalman filter approach

While our policywith Luenberger observer already achieves im-
provement over JbL , it is useful to introduce a time-varying Kalman
filter solutionwhich can attain additional improvement. The use of
the Kalman filter is two-fold, namely to estimate x̄k and Θk and to
predict the future values of the covariance Θk+h. Note that we can
use the Kalman filter for the estimation problem directly. For the
predictions, consider the case where Θ̂k,h is the future expectation
taken over (18) with the Kalman gain (17). The dependence of
Θ̂k,h on γk+h is nonlinear (cf. Schenato et al. (2007)) for the time-
varying Kalman filter, preventing the computation of future cost
predictions. However, note that Θ̂k,1 only takes expectation over
γk, with linear dependence. Thus, Θ̂k,1 has an exact solution

Θ̂k,1 = ĀmΘk(Ām)⊺ + Φ̄ω
m

− γ̄mLk(CΘkC⊺
+ Φν

m)L
⊺
k, (32)

where

Lk = ĀmΘkC⊺(CΘkC⊺
+ Φν

m)
−1. (33)

Let the policies that use a Kalman filter for estimation and for predic-
tion on the switching horizon and a Luenberger observer for prediction
after the switching horizon be denoted by πK+L. Potentially, using
the Kalman filter improves upon πL in Theorem 1. While one may
expect that JπK+L ≤ JπL , it is not proven here as a relation between
switched policies is nontrivial to establish. Instead, we establish
that a result analogous to Theorem 1 can still be derived, i.e., that
JπK+L ≤ Jb⋆

L
. In fact, when the switching horizon is restricted to

H̄m = 1, we obtain the following corollary.

Corollary 1. If H̄m = 1 for all m ∈ M, and if the conditions of
Proposition 1 are satisfied, with the difference that the observer gain
Lk is chosen equal to (33), instead of Lk = L̃m, such that Θ̂k,1 is given
by (32), then it holds that JπK+L ≤ Jb⋆

L
.

Recall that L̃m in Theorem 1 can be chosen freely. The proof
follows from the fact that (33) is the optimal estimation gain in
the least-squares sense, which is at least as good as L̃b⋆ . Therefore,
the covariance Θk and predicted cost Jσk=b,Hk=1

k are smaller, in cost
sense, when the Kalman filter is used rather than their respective
counterparts for the Luenberger observer.

Remark 7. Note that the cost of a base policywith Kalman filter for
estimation is less than the cost of the base policy considered in The-
orem 1. Then considering our rollout method, with a Kalman filter

Fig. 2. Example of a delay probability distribution f and the connection between
parameters of data-processing (delay τ , probability of data acquisition γ and
accuracy modeled by Φν ) and a deadline T d .

for estimation and for prediction on the switching horizon and a
Luenberger observer for prediction after the switching horizon, can
very well lead to a better cost than such a base policy with Kalman
filter for estimation in the sense that JπK+L ≤ Jb⋆

K
. Establishing

conditions to formally guarantee this property is nontrivial. This
is not further pursued in the present paper, but only illustrated by
the numerical example in Section 5.

Remark 8. For the special cases in van Horssen et al. (2015,
2016) and the generalization of van Horssen et al. (2015), it is also
possible to guarantee improvement in the sense JπK ≤ JbK . In those
cases, the base policies bK have a time-invariant control policywith
Luenberger observer, i.e., with a fixed observer gain, which attains
the same cost as the time-varying LQG with Kalman filter, in the
sense that JbK = JbL .

Remark 9. The restriction H̄m = 1 in Corollary 1 may be lifted, but
then Θ̂k,h is predicted with Lk+h = L̃m for h ∈ N[2,H] and (9) should
be imposed.

4.6. Stochastic delay

The class of systems with random measurement delay intro-
duces uncertainty in the arrival time of new information. One
additional challenge that needs to be considered is when new
information is required or should be used, which was studied
in Prakash et al. (2017) for stochastic actuation delays by using
the insights in de Koning (1982). Here, we discuss how a deadline-
driven approach in Prakash et al. (2017) can be captured in the
framework of Theorem 1.

Consider, for example, a data-processing method that uses a
fixed accuracy threshold on the information, i.e., a minimum ac-
curacy has to be achieved for the processing to complete. Since it
may not be exactly unknown howmuch time is needed to achieve
this accuracy, the completion timemay be (at least approximately)
modeled by a stochastic probability distribution. To limit process-
ing duration, the processing task can be interruptedwhen a certain
maximum processing time threshold is exceeded, i.e., when the
delay is larger than a deadline T d

k ∈ R>0. The probability of data
loss then depends on the value of the deadline. Mathematically,
this case with stochastic delay has a known distribution fm, a fixed
accuracy Φν

m ⪰ 0, and loss probability linked to a chosen deadline
γ̄m = Fm(T d), for each method m ∈ M, where Fm follows from fm.
The inclusion of stochastic delay and a deadline allows to model
many cases that are relevant in practice. The relation between the
deadline and the probability of obtaining information, given by the
integral of the delay distribution, is schematically depicted in Fig. 2.
Note that if the accuracy is delay-dependent, i.e., to considerΦν

m(τ ),
a more extensive analysis is required that is beyond the scope of
this paper.
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Table 1
Average cost.
Policy Cost (numerical) Theoretical

OnlyM1 for bL (b⋆) 206.7122 206.8321
OnlyM2 for bL 209.0117 209.4537
OnlyM1 for bK 206.6253 not obtainable
OnlyM2 for bK a 197.5367 not obtainable
Switched πK+L 187.9246 not obtainable

aIndicates the optimal non-switching policy.

We take a deadline-driven (or self-triggered) approach, in the
sense that the system waits until the set deadline before (instan-
taneously) taking a new sample, i.e., tk+1 = tk + T d

k . The data-loss
mechanism is given by

γk :=

{
1 if τk ≤ T d

k
0 if τk > T d

k ,
(34)

for a given value of the kth deadline T d
k and realization τk of fσk .

The data-loss mechanism (34) converts the stochastic delay τk to
a Bernoulli variable γk and a deterministic delay T d

k . The main
problem is the selection of method σk = m and a processing
deadline T d

k at each decision instant tk, k ∈ N.
We assume that the deadline is taken from a finite setD ⊂ R>0

which may be arbitrarily large. This set-up can be interpreted as
having an extended set of processing methodsM×D from which
a given choice of m and T d defines the loss probability as Pr(γk =

1|σk = m) = Fm(T d). For each method b ∈ M, one optimal
constant value for the deadline T̄ d

b ∈ D (that attains the minimal
cost) can be found off-line by, e.g., nonlinear optimization or visual
inspection as done in our preliminary work (Prakash et al., 2017).
Subsequently, we can use Proposition 1 with each combination
(m, T d) ∈ M × D as a switching option, assuming that T d

k+h = T̄ d
b⋆

and σk+h = b⋆ for h ∈ N≥1. For reasons of space, the explicit
derivation is omitted. Note that all variables become dependent of
the chosen deadline. We obtain the second main result.

Theorem 2. Under the assumptions of Theorem 1, for a set of
non-deterministic distributions fm, m ∈ M, and for Hm = 1, the
same guarantee as in Theorem 1 can be obtained if the control policy
functions (6) are given by (20) and (30)where m ∈ M×D such that
τ̄m and τ̄b⋆ are replaced by T d and T̄ d

b⋆ , respectively. □

The proof follows directly from Theorem 1. This result is illus-
trated in the next section.

Remark10. If a loss probability is present aside from the loss prob-
ability due to the deadline, such an additional probability can be
taken into account by a simple multiplication of the probabilities.

5. Numerical example

Numerical examples for the trade-offs between delay and ac-
curacy and probability of data acquisition can be found in van
Horssen et al. (2015, 2016), respectively. Here, we consider the
trade-off between all three parameters, where the probability of
data acquisition is governed by a deadline that can be selected on-
line, i.e., the case in Section 4.6. We consider a numerical system

(1) given by AC =

[
0 1

−1 0.8

]
, BC =

[
0
1

]
, Bω =

[
0.8
0.1

]
, C = I ,

with cost QC =

[
1 0
0 0.5

]
, RC = 10. Furthermore, the initial state

distribution is given with the origin x0 = [ 0 , 0 ]
⊺ as mean with

small initial covariance Φx0 = 10−2 Inx×nx .
The data-processing methods that are available are indicated

by M1 and M2 and are modeled by a uniform distribution f1 with

support between 0.2 and 1.2 andΦν
1 = I and by a Gamma distribu-

tion f2 with shape 10 and scale 0.06 and Φν
2 = 2.2 I , respectively.

We allow the deadline only to be chosen between 0.1 and 1.5 with
0.01 step increments. We compute, for each method and for each
choice of the deadline, the optimal Luenberger estimator gains
and the associated expected covariance limit Θ̃b, the optimal LQR
controllers and the resulting performance Jb. This theoretical cost
is given in Table 1 which leads to b⋆

= 1. The optimal deadlines
are found to be T̄ d

1 = 1.2 and T̄ d
2 = 0.78. We find that the base

policies only have a stable Luenberger solution for Td ∈ [0.84, 1.5]
for M1 and Td ∈ [0.63, 1.5] for M2. For this system and these
processingmethods, the cost is a convex function of the deadline in
these intervals and the optimal deadlines within these regions. To
illustrate that the contribution of α to the cost is typically small,
we compute α1/T̄ d

1 = 0.375 and α2/T̄ d
2 = 0.248. Since the

optimal switched policy is unknown, we compare to the classical
continuous-time LQG control policy without delay or data-loss,
which is a theoretical lower bound on the achievable performance
that is not attainable in our digital control setting. Note that only
the measurement covariance is different for the two modes in this
case.We find a lower bound on the cost of 46.7346 and 81.0930 for
M1 and M2, respectively. Clearly, the undesirable effects of data-
processing incur a significant performance loss.

We allow switching between all methods that have stable base
policies. We restrict the switching options to allow only the next
instant to be selected, i.e., H = 1, and use a time-varying Kalman
filter for estimation and a deadline-dependent gain for the first
prediction step (see Corollary 1). To verify the performance gain
for the system with random disturbances for an infinite horizon,
we resort to the typical approach of Monte-Carlo simulations with
a large simulation time. To reduce computational complexity, we
precompute all system variables for each deadline value. To nu-
merically illustrate the achievable performance gain, we run 100
Monte-Carlo simulations with randomly generated disturbances
and delays for a simulation time of 4800s. After this time, the
average cost has approximately converged to a constant for all
control policies and the switched performance can be compared
to the theoretical performance and to simulated performance for
the base policies, as presented in Table 1.

We obtain a 9% gain compared to our base policy and the
switched policy is shown to be better than both non-switching
policies under a Kalman filtering policy (which is the optimal
control policy in the non-switching case). It should be noted that
M2 with Kalman filter would have been a better base policy, but
this cannot be computed a priori without numerical simulation.
Nevertheless, our switching solution performs better. We see that,
for this example, the loss due to data-processing (compared to the
unapplicable continuous-time LQG controller) can be significantly
reduced by switching. We observed recurrent switching between
themethodswith varying deadlines. Near the origin,M1 is typically
selected whereas M2 (with a shorter deadline) is usually chosen
when the state is further away from the origin. This phenomenon
was also observed in van Horssen et al. (2015).

6. Conclusions

The proposed framework to model data-processing units with
different characteristics in terms of delay, measurement accuracy,
and probability of data acquisition is shown to enable new control
designs for systemwith multiple sensing methods (such as vision-
based control of robotic systems, medical imaging, big-data con-
trol, etc.). While the authors’ mainmotivation came from the data-
processing case, the results are also applicable to other sensing
methods and many networked control applications with limita-
tions on computational resources and communication, as similar
characteristics can be identified. The explicit switching conditions,
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that are derived based on a generalization of the rollout tech-
nique, allow to combine the benefits of more than one processing
method in a switched control policy that guarantees improvement
over non-switching policies. A numerical example shows that this
policy can achieve significant improvement over non-switching
policies. Several special trade-offs of interest are detailed and
discussed and the main results are supported by complete proofs.
Making the outputmatrix C method-dependent could be a starting
point for a combination with sensor selection/management (Hero
& Cochran, 2011) and sensor fusion methods. Adaptions are envi-
sioned to allow switching on the horizon as in classical rollout, for
time-scale separation (Picasso et al., 2010) of actuation moments,
for multirate control, for using fixed switching sequences as base
policies and to take into account model uncertainty. As can be
observed from the above potential extensions, the framework laid
down in this paper does not only already address several cases
of interest for the control of systems with multiple sensing or
processing methods, but can also be used as a starting point for
considering relevant problems in a much broader scope.

Appendix A. Proof of Proposition 1

First, we start by justifying the correction term −H τ̄m
τ̄b⋆

c̃b⋆ . From
the assumption that Lk+h = L̃b⋆ for h ≥ H , it follows that
limN→∞ Θ̂k,N = Θ̃b⋆ . Then, for (increasingly) large N , ∥Θ̂k,N −

Θ̃b⋆∥ < ϵ for an arbitrarily small ϵ. Hence, the last term in the
summation in (24) becomes arbitrarily close to c̃b⋆ −ᾱb⋆ for largeN .
Therefore we have that, independent of the choice ofm, increasing
N to N + 1 in (24) for sufficiently large N adds c̃b⋆ − ᾱb⋆ . Hence,
with an increment in the factor Nᾱb⋆ , c̃b⋆ is added in one additional
interval τb⋆ . Recall that, for T → ∞,N → ∞. Consider (12) for T =

N τ̄b⋆ + τ̄b⋆ which coincides with (23) form = b⋆ and H = 1, which
is the base policy. Then (12) for T = N τ̄b⋆ +H τ̄b⋆ form ̸= b⋆ is given
by (23) plus the difference (N τ̄b⋆ +τ̄b⋆ )−(N τ̄b⋆ +H τ̄m) = (τ̄b⋆ −H τ̄m)
times the cost per time unit afterN , which is equal to 1

τ̄b⋆
c̃b⋆ . Taking

then the division of (τ̄b⋆ − H τ̄m) by τ̄b⋆ leads to the difference term
(c̃b⋆ −H τ̄m

τ̄b⋆
c̃b⋆ ). Note that the term c̃b⋆ gives a constant which does

not depend on m and can be removed giving −H τ̄m
τ̄b⋆

c̃b⋆ . Now, the
divisor 1

T is equal for each m ∈ M and can thus be removed from
the argmin.

Second, observe that the term tr(Φω
b⋆ P̄b⋆ ) in the summation in

(24) does not depend onm and can be eliminated. The factor Nᾱb⋆

does not depend on m and can also be removed. This allows the
switching condition (11), for N → ∞, to be defined as

(σk,Hk) := arg min
m∈M
H∈Hm

x̄⊺kPm,0x̄k + ηH
m(Θk) − H

τ̄m

τ̄b⋆
c̃b⋆ + Hᾱm

with

ηH
m(Θk) := tr(ΘkPm,0 + ΘkK

⊺
m,0Gm,0Km,0) (A.1)

+
∑H−1

h=1 tr(Φ̄ω
mPm,h + Θ̂k,hK

⊺
m,hGm,hKm,h)

+ tr(Φ̄ω
mP̄) +

∑H+N−1
h=H tr(Θ̂k,hK̄ ⊺ḠK̄ ),

where Θ̂k,h is given by (25) with initial condition Θk.
Finally, we show that the differences limN→∞ η1

b⋆ (Θk)−ηH
m(Θk)

= η̃1
b⋆ (Θk) − η̃H

m(Θk) coincide. Note that, by the chosen switching
schemeand the assumption that Lk+h = L̃b⋆ for h ≥ 1, the evolution
of Θ̂k,h according to (25) is equivalent for all h ≥ H . Furthermore,
Fm is a linear function of Θk for which the contributions of Ψb⋆ in
(25) do not depend on m as can be seen in (26). Let Xα+l and YH+l
represent the value of Θ̂k,H+l for σk = β and H = α (e.g. α = 1
and β = b⋆) and σk = m (e.g. m ̸= b⋆) with H ∈ Hm, respectively.
The difference of the summations in (A.1) can then be represented

by

vec

(
N∑
l=0

Xα+l − YH+l

)
=

N∑
l=0

(Tb⋆ )l[vec(Xα) − vec(YH )]

= (I − Tb⋆ )−1
[vec(Xα) − vec(YH )]

where the limit for N → ∞ is taken and it is used that Tb⋆ is Schur.
Observing that

Zb⋆ (YH ) = vec−1 ((I − Tb⋆ )−1vec(YH )
)

is the part related to the choice (m,H) where YH is given by Θ̂k,H
according to (25) completes the proof.

Appendix B. Proof of Theorem 1

Define the function

VN (x̄, Θ) := x̄⊺P̄ x̄ + tr(Θ P̄) + tr(ΘK̄ ⊺ḠK̄ )

+
∑N

h=1 tr((Θ̂k,h − Θ̃b⋆ )K̄ ⊺ḠK̄ ),

where Θ̂k,h are forward predictions according to (25) for σk+h = b⋆

starting from Θ̂k,0 = Θ . Note that, under Assumption 1, Θ̂k,N
converges to Θ̃b⋆ exponentially fast for N → ∞, hence VN (x̄, Θ)
is bounded for any bounded arguments. Consider, at time tk, the
function (cf. (A.1))

VN (x̄k, Θk) = x̄⊺kP̄ x̄k + η1
b⋆ (Θk)

− tr(Φ̄ω
b⋆ P̄) − Ntr(Θ̃b⋆ K̄ ⊺ḠK̄ )

and, for (σk,Hk) = (m,H), the function

E
[
VN (x̄k+H , Θk+H ) +

∑k+H−1
l=k g(xl, ul, τ̄m) | Ik

]
= x̄⊺kPm,0x̄k + tr(Θk(Pm,0 + K ⊺

m,0Gm,0Km,0))

+
∑H−1

h=1 [tr(Φω
mPm,h) + tr(Θk+hK

⊺
m,hGm,hKm,h)]

+ Hᾱm +
∑H+N−1

h=H tr(Θ̂k,hK̄ ⊺ḠK̄ )

+ tr(Θ̂k,H+N K̄ ⊺ḠK̄ ) − Ntr(Θ̃b⋆ K̄ ⊺ḠK̄ )

= x̄⊺kPmx̄k + ηH
m(Θk) + Hᾱm

+ tr(Θ̂k,H+N K̄ ⊺ḠK̄ ) − Ntr(Θ̃b⋆ K̄ ⊺ḠK̄ )

= x̄⊺kPm,0x̄k + ηH
m(Θk) + Hᾱm

+ c̃b⋆ − ᾱb⋆ + ϵk − tr(Φ̄ω
b⋆ P̄) − Ntr(Θ̃b⋆ K̄ ⊺ḠK̄ ),

where ϵk := tr((Θ̂k,H+N − Θ̃b⋆ )K̄ ⊺ḠK̄ ), with ϵk → 0 for any k ∈ N
for N → ∞. The difference is then, for any large N , given by

E
[
VN (x̄k+H , Θk+H ) +

∑k+H−1
l=k g(xl, ul, τ̄m) | Ik

]
− VN (x̄k, Θk) − ϵk

= c̃b⋆ + x̄⊺k(Pm,0 − P̄)x̄k + ηH
m(Θk) − η1

b⋆ (Θk)
+ Hᾱm − ᾱb⋆

= c̃b⋆ + x̄⊺k(Pm,0 − P̄)x̄k + η̃H
m(Θk) − η̃1

b⋆ (Θk)
+ Hᾱm − ᾱb⋆

= c̃b⋆ − dHm(x̄k, Θk) − (1 − H
τ̄m

τ̄b⋆
)c̃b⋆

= H
τ̄m

τ̄b⋆
c̃b⋆ − dHm(x̄k, Θk), (B.1)

where dHm(x, Θ) := x⊺(P̄ − Pm,0)x+η̃1
b⋆ (Θ) − η̃H

m(Θ)−(1 − H τ̄m
τ̄b⋆

)c̃b⋆

+ ᾱb⋆ − Hᾱm. Notice that dHm(x, Θ) ≥ 0 when (σk,Hk) = (m,H) by
construction of (30).

Let all instants tk at which (30) is evaluated be indexes k in the
set Σ ⊆ N. Then, we can write the cost sum in function (15) as
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GN(T ) where

GN :=
∑

k∈Σ≤N

∑k+Hk−1
l=k g(xl, ul, τl)

for which E
[
GN(T )

]
= E

[
EN(T )

]
with

EN :=
∑

k∈Σ≤N
E
[∑k+Hk−1

l=k g(xl, ul, τ̄σk ) | Ik

]
.

The equivalence of the expectations holds by the fact that the
process X := (Xk)k∈N with Xk := Gk − Ek is a martingale with
respect to the filtration associated with Ik+1 for which Doob’s op-
tional sampling theorem (see, e.g., Grimmett and Stirzaker (2001,
Th. 9, Sec. 12.5) or Doob (1953, Th. 2.2, Ch. VII)) holds.

The optional sampling theorem holds by the fact that N(T ) is a
stopping timewith finite expectation for given T , i.e.,E[N(T )] < ∞

since τk > 0 for all k ∈ N, and that N(T ) → ∞ as T → ∞,
and the fact that there exists some constant c ∈ R such that
E [|Xk+1 − Xk|| Ik+1] ≤ c , which corresponds to a bound on the
expected cost per stage, which follows frommean-square stability
of xk. Let gk :=

∑k+Hk−1
l=k g(xl, ul, τ̄σk ) and observe that gk ≥ 0. We

have that

E
[⏐⏐⏐Xk+1 − Xk

⏐⏐⏐ | Ik+1

]
=

= E
[⏐⏐⏐gk+1 − E [gk+1 | Ik+1]

⏐⏐⏐ | Ik+1

]
≤ E[

⏐⏐⏐gk+1

⏐⏐⏐+ ⏐⏐⏐E [gk+1 | Ik+1]
⏐⏐⏐ | Ik+1]

= 2E [gk+1 | Ik+1] .

From (B.1), we have, for all k ∈ N, that

E [gk | Ik] ≤ 2
(
Hk

τ̄σk

τ̄b⋆
c̃b⋆ − VN (x̄k, Θk)

+ E
[
VN (x̄k+Hk , Θk+Hk ) | Ik

]
+ ϵk

)
,

and we are only interested in the case N → ∞. The first term is
bounded by the fact that all sampling intervals and horizons are
limited. Recall that ϵk → 0 for any k ∈ N for N → ∞. The
functions VN are bounded for bounded arguments. The fact that
E [|Xk+1 − Xk|| Ik+1] ≤ c follows then from boundedness of the
arguments of E[VN (x̄k, Θk) | I0] for all k ∈ N as k → ∞, which is
proven below.

For ∆k := E
[
dHk

σk (x̄k, Θk) | Ik

]
, by adding (B.1) for k ∈ Σ≤N(T ),

we can write

EN(T ) :=
∑

k∈Σ<N(T )
Hk

τ̄σk
τ̄b⋆

c̃b⋆ − ∆k + ϵk + νk

+ VN (x̄0, Θ0) − VN (x̄N(T ), ΘN(T )), (B.2)

where

νk := VN (x̄k+Hk , Θk+Hk ) − E[VN (x̄k+Hk , Θk+Hk )|Ik].

To compute Jπ , we take lim supT→∞
1
T E
[
EN(T )

]
where conditioning

on I0 is implied. Taking the expectation, we have by the tower
property that E[νk] = 0 for all k ∈ N. The first part then equals
Jb⋆

L
, since

lim supT→∞
1
T E
[∑N(T )−1

k=0 τ̄σk

]
= 1. (B.3)

The equivalence in (B.3) holds by the facts that (H̃k)k∈N, with H̃N :=∑N
k=0 τk − τ̄σk is also a martingale with respect to the filtration

associated with Ik+1 for which Doob’s optional sampling theo-
rem (Doob, 1953) holds and that the discretization error vanishes
in the limit. Notice that if the expectations of the last two terms in
(B.2) are bounded for any N ∈ N∞ as T → ∞ and any I0, then, in

the limit, we have

Jπ =
1
τ̄b⋆

c̃b⋆ − lim sup
T→∞

1
T
E
[∑N(T )−1

k=0 ∆k + ϵk

]
≤ Jb⋆

L
≤ JbL for all b ∈ M,

where we take the limit N → ∞ such that ϵk = 0 for all k ∈ N and
where ∆k ≥ 0 by (30) and ∆k = 0 for the choice (σk,Hk) = (b⋆, 1),
completing the proof.

We consider the limit case N → ∞. To show that the last
two terms in (B.2) are bounded under expectation with respect to
I0, we first notice that E[VN (x̄0, Θ0) | I0] is bounded by bound-
edness of the arguments x̄0 and Θ0 (Recall that Θ̂k,N converges
to Θ̃b⋆ exponentially fast for increasing N). Next, we prove that
E[VN (x̄L, ΘL) | I0] remains bounded as L → ∞. By the positive
semi-definite assumption on QC , the assumption that the pair

(AC ,Q
1
2
C ) is observable, and the assumption that RC is positive

definite, we have that

E
[∑k+Hk−1

l=k g(xl, ul, τ̄σk ) | Ik

]
≥ αE

[
x⊺kxk | Ik

]
(B.4)

for some sufficiently small α > 0. Note that E
[
x⊺kxk | Ik

]
=

x̄⊺kx̄k + tr(Θk). Considering the definition of VN (x̄, Θ), there exists
β , β > α > 0, for which

VN (x̄k, Θk) ≤ βE
[
x⊺kxk | Ik

]
. (B.5)

We conclude using (B.1) that for k ∈ N,

E[VN (x̄k+H , Θk+H ) | Ik] ≤ c1VN (x̄k, Θk) + c2,

where c1 := 1 −
α
β

< 1 and c2 := maxm,H H τ̄m
τ̄b⋆

c̃b⋆ , which in turn

implies that for L ∈ N and c3(L) :=
∑L−1

s=0(c1)
sc2,

E[VN (x̄L, ΘL) | I0] ≤ (c1)LE[VN (x̄0, Θ0) | I0] + c3(L),

leading to the conclusion thatE[VN (x̄L, ΘL) | I0] is bounded as L →

∞, since (c1)L → 0 and c3 converges to a constant.
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