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Abstract: In this paper we consider hybrid systems, consisting of an infinite number of inter-
connected spatially invariant (identical) hybrid subsystems described using the hybrid inclusions
framework. It can be shown that such interconnections can be very useful in, e.g., the modeling
of interconnected networked subsystems that use packet-based communication for the exchange
of information, including autonomously driving platoons of vehicles. Interestingly however, due
to the infinite-dimensionality of the overall interconnected hybrid system, establishing proper
definitions of solutions becomes a difficult task as standard solution concepts do not apply to
the systems under study since Zeno behavior (an infinite number of jumps in a bounded time
interval) is inevitable. Therefore, we introduce an alternative and natural solution concept for
this class of systems, allowing solutions to be defined beyond Zeno points. In addition, based
on this novel solution concept, we derive Lyapunov-based conditions for a specific, but relevant
class of infinite-dimensional hybrid systems, as used for modeling, for instance, networked control
systems, that guarantee UGAS (or UGES) or Lp-stability of the overall interconnected system.
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1. INTRODUCTION

Hybrid systems theory studies the behavior of dynamical
systems that exhibit characteristics of both continuous-
and discrete-time dynamical systems. A specific class of
hybrid systems that is often considered consists of so-called
hybrid inclusions as described in Goebel et al. (2012), as
they naturally apply to many dynamical systems, such
as certain biological and medical systems, see Aihara
and Suzuki (2010), and networked control systems where
packet-based communication networks are used for the
exchange of information, see Walsh et al. (2002) or Nešić
and Teel (2004). The latter ones are often even modeled
as an interconnection of such hybrid inclusions based
on their large-scale interconnection structure. Such an
approach has already been proven to be very effective for
the stability and performance analysis, see e.g., Borgers
and Heemels (2014) or Dolk et al. (2017).

However, any stability or performance analysis requires
the establishment of a proper definition of solutions for
the considered interconnections of hybrid systems, which
has been proven to be not an easy task, as evidenced by
the studies in Sanfelice (2011) and Dashkovskiy and Kos-
mykov (2013). This becomes even more complicated when
the interconnection is composed of an infinite number of
(identical) hybrid subsystems as was the case in Heijmans
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et al. (2015) in which it was studied how the stability
analysis of the infinite interconnections of spatially invari-
ant systems considered in D’Andrea and Dullerud (2003)
could be extended from ideal (continuous) communication
towards non-ideal packet-based communication. As shown
in D’Andrea and Dullerud (2003), Langbort and D’Andrea
(2005), and Heijmans et al. (2015), such infinite approx-
imations are very useful for the analysis of large-scale
systems. In particular, based on this infinite-dimensional
framework, instead of using global monolitical models,
local conditions can be obtained based only on the infor-
mation of one of the subsystems in the interconnection to
analyze stability or performance. In addition, as shown in
Langbort and D’Andrea (2005), an infinite approximation
may be adequate to analyze interconnections with a large
number of subsystems, while its properties are also inher-
ited by periodic or finite interconnections with boundary
conditions. An example of an infinite-dimensional system
with non-ideal communication is the autonomously driving
platoon of vehicles as in Fig. 1, where packet-based com-
munication networks are used for the exchange of velocity,
acceleration, and jerk data.
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Fig. 1. An infinite string of vehicles interconnected through
packet-based communication networks N(s), s ∈ Z.
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(2005), and Heijmans et al. (2015), such infinite approx-
imations are very useful for the analysis of large-scale
systems. In particular, based on this infinite-dimensional
framework, instead of using global monolitical models,
local conditions can be obtained based only on the infor-
mation of one of the subsystems in the interconnection to
analyze stability or performance. In addition, as shown in
Langbort and D’Andrea (2005), an infinite approximation
may be adequate to analyze interconnections with a large
number of subsystems, while its properties are also inher-
ited by periodic or finite interconnections with boundary
conditions. An example of an infinite-dimensional system
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platoon of vehicles as in Fig. 1, where packet-based com-
munication networks are used for the exchange of velocity,
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In these infinite-dimensional “networked” systems, it is
often assumed that all communication networks operate
independently and asynchronously of each other as each
of them has its own set of transmission times at which
an update of the networked values occurs. Moreover, the
transmission interval (the time elapse between two consec-
utive transmission times) is in many cases upperbounded
by a maximally allowable transmission interval (MATI),
see also Walsh et al. (2002) and Nešić and Teel (2004).
As a result of this setup, each combination of a subsystem
P(s) and its network N(s) as in Fig. 1 can be modeled as
a hybrid system H(s), s ∈ Z, resulting in the infinite in-
terconnection of hybrid subsystems for the overall system,
where each update of the networked values corresponds to
a jump of a hybrid subsystemH(s) in this interconnection,
see Heijmans et al. (2015) for more details.

Other examples that can (possible) be modeled as infinite
interconnection of hybrid systems can been found in, e.g.,
the medical and biological applications. In particular,
one can for instance use the modeling framework to
approximate the classical example of the synchronization
of an enormous number of fireflies or for the modeling
of cellular processes and biological signalling networks, to
overcome the various difficulties that the large amount of
subsystems introduce, see, e.g. Machado et al. (2011) and
Ghosh and Tomlin (2004).

Interestingly however, when we want to define solutions for
interconnections of hybrid systems for all times t ∈ [0,∞),
in general, hybrid solution concepts as in the literature do
not apply to many infinite-dimensional systems, including
the ones described in Heijmans et al. (2015) or as in the
setup above. This is because Zeno behavior (an infinite
number of jumps in a finite time interval) is inevitable for
these infinite interconnections due to the infinite number
of subsystems with an upper bound on the time elapse in
between two consecutive jumps. Clearly, as many analysis
techniques (including Lyapunov) rely on arguments about
the system behavior along an execution, we would like
to define the solutions beyond such Zeno points, which is
not directly possible for many available classical solution
concepts, including the ones proposed in Lygeros et al.
(2003) or Goebel et al. (2012). As a result, appropriate
extensions are needed. In, for instance, Johansson et al.
(1999) and Zheng et al. (2006), such extensions of the
solutions beyond Zeno points have already been inves-
tigated for finite-dimensional (hybrid) systems by using
regularization techniques. Unfortunately, such techniques
require physical knowledge of the systems under study as
the solutions depend on the choices of regularizations and
are primarily only for the purpose of simulation.

Therefore, inspired by Heemels et al. (2000), in this paper
we will introduce a new solution concept in this context,
allowing solutions to be defined beyond Zeno points in
the sense that solutions can be defined globally on R≥0,
i.e., for all times t ∈ [0,∞). In addition, we will show
how this solution concept can be used to analyze UGAS
or Lp-stability for the overall system and we will provide
Lyapunov-based conditions to guarantee both properties
for a specific class of interconnected hybrid systems that
is used for modeling, for instance, the above described
“networked” systems including the platoon of vehicles of
Fig. 1.

2. PRELIMINARIES

The set of non-negative real numbers is denoted by R≥0.
For vectors v1, v2, . . . , vn ∈ Rn, we denote by (v1, v2, . . . , vn)
the vector [v⊺1 , v⊺2 , . . . , v⊺n]⊺. By ∣ ⋅ ∣ and ⟨⋅, ⋅⟩ the Euclidean
norm and the usual inner product are denoted in Rn.

A function α ∶ R≥0 → R≥0 is of class K if it is continuous,
strictly increasing and α(0) = 0. It is of class K∞ if it is
of class K and, in addition, it is unbounded. A function
β ∶ R≥0 × R≥0 → R≥0 is of class KL if for each fixed
s, the mapping r ↦ β(r, s) belongs to class K and for
each fixed r, the mapping s ↦ β(r, s) is decreasing and
β(r, s) → 0 when s → ∞. Moreover, the function β is
said to be of class exp-KL if there exist K,c > 0, such
that β(r, s) = Kr exp (−cs) for all r, s ∈ R≥0. Given a
Banach space X, a function f ∶ X → X is said to be
locally Lipschitz continuous if for each x0 ∈X there exists
constants δ,L > 0 such that for all x ∈ X we have that
∥x − x0∥X ≤ δ ⇒ ∥f(x) − f(x0)∥X ≤ L ∥x − x0∥X , where

∥⋅∥X denotes the norm in X, see also Robinson (2001).

In this paper, the state-space of the considered systems
is infinite-dimensional, as we will see below. Therefore,
we recall some definitions from D’Andrea and Dullerud
(2003). Since the signals are often considered at a fixed
time, it is convenient to separate the spatial and the
temporal parts of a signal.

Definition 1. The space �L,n is the set of functions map-

ping ZL to Rn. The space �L,n
2 is the set of functions

x ∈ �L,n for which

∑
s1∈Z
⋯ ∑

sL∈Z
x(s)⊺x(s) < ∞

holds equipped with the inner product ⟨⋅, ⋅⟩�2 for x, y ∈ �L,n
2

defined as
⟨x, y⟩�2 ∶= ∑

s1∈Z
⋯ ∑

sL∈Z
x(s)⊺y(s),

and the corresponding norm as ∥x∥�2 ∶=
√
⟨x,x⟩�2 .

When the dimensions L and n are clear from context or
not relevant, we sometimes write �L,n

2 as �2.

Definition 2. The space Lp for 1 ≤ p < ∞ is the set of
functions mapping R≥0 to �2 with its norm is given by

∥φ∥
Lp
∶= (∫

∞

0
∥φ(t)∥p�2dt)

1/p

< ∞.

We will consider variables d ∈ Lp that are vector-valued
functions indexed by L + 1 independent variables, i.e.,
d = d(t, s1, . . . , sL), where t ∈ R≥0 is the (continuous) time
and s1, s2, . . . , sL ∈ Z are the spatial variables. The L-
tuple (s1, s2, . . . , sL) is denoted by s. For fixed t ∈ R≥0 and
s ∈ ZL, a variable d(t) can be considered as an element of

�L,n or �L,n
2 and d(t, s) as an element of Rn, i.e., a real-

valued vector. For ease of notation, t is often omitted when
considering such variables, however, from the context it
will be clear which space is considered. In the case that
L = 1, which we consider mainly in this paper, we denote
s1 also as s.

3. SYSTEM DESCRIPTION & SOLUTION CONCEPT

In this section, the considered class of systems is motivated
and a general modeling framework is introduced. In addi-
tion, we will define the notion of solutions for this class of
systems under study.
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3.1 An infinite interconnection of hybrid systems

As indicated by the studies of D’Andrea and Dullerud
(2003), Langbort and D’Andrea (2005), and Heijmans
et al. (2015), many large-scale systems can be modeled as
an infinite interconnection of identical subsystems or “ba-
sic building blocks”. Examples include flocks of systems as
described in Brockett (2010) and vehicle platooning, see,
e.g., Ploeg et al. (2014) and the references therein. In ad-
dition, each individual subsystem is being more and more
often modeled as a hybrid system. An example for this are
interconnected systems using packet-based communication
networks instead of dedicated point-to-point wired links.
These control systems with packet-based communication
networks can be easily captured in a hybrid modeling
framework as shown in the studies of Nešić and Teel (2004)
and Carnevale et al. (2007). If now the overall system
consists of an infinite number of these subsystems, we
obtain interconnections of an infinite number of (some-
times identical) hybrid systems. As a result, there is an
increasing interest in modeling and analyzing techniques
concerning (infinite) interconnections of hybrid systems.

In this paper, we are particulary interested in systems that
consist of an infinite number of identical hybrid subsystems
H(s), s ∈ Z, which are interconnected according to a
particular structure as indicated in Fig. 2. An example
of a system that can be captured by this structure is
the platoon of vehicles with packet-based communication
networks of Fig. 1, see Heijmans et al. (2015).

H(s)

v+(s)

ŵ−(s)

ŵ+(s)

v−(s)

=

H(s-1)

ŵ+(s-1)

v−(s-1)
H(s+1)

v+(s+1)

ŵ−(s+1)= =

=

z(s-1)
d(s-1)

z(s+1)
d(s+1)d(s)

z(s)

Fig. 2. An infinite interconnection of hybrid dynamical
(sub)systems H(s), s ∈ Z, where each (sub)system
H(s) has its own external input and output vari-
ables d(s) and z(s), respectively. The interconnec-
tion for each subsystem is defined by the intercon-
nection variables v(s) = (v+(s), v−(s)) and ŵ(s) =
(ŵ+(s), ŵ−(s)).

For the interconnection structure of Fig. 2, we consider
that each (general) hybrid subsystem H(s), s ∈ Z, is
described by

H(s) ∶ { ξ̇(s) = F (ξ, d)(s), ξ(s) ∈ C
ξ+(s) ∈ G(ξ(s)) , ξ(s) ∈ D

(1)

with ξ = (ξc, ξd) the state of the overall system where

ξc ∈ �1,m1

2 comprises the (internal) dynamical states of
the system while ξd ∈ �1,m2 comprises (auxilary) states

like timers and counters, and where d ∈ �1,md

2 denotes an
external (disturbance) input. Note that ξd is typically not
contained in �2 and therefore these states are separated
from ξc ∈ �1,m1

2 . In (1) it is assumed that G ∶ Rm1+m2 ⇉
Rm1+m2 is a set-valued function with corresponding (diag-

onal) operator G̃ ∶ �1,m1

2 × �1,m2 ⇉ �1,m1

2 × �1,m2 defined as

G̃(ξ)(s) = G(ξ(s)), s ∈ Z, C and D are closed subsets
of Rm1+m2 , and that the function F ∶= (Fc, Fd) with

Fc ∶ �1,m1+md

2 → �1,m1

2 and Fd ∶ �1,m2 → �1,m2 is sufficiently

smooth such that the dynamical system ξ̇c = Fc(ξc, d)
gives rise to solutions ξc with values in the space �1,m1

2 .
In particular, it is assumed that the function Fc is locally

Lipschitz in its first argument and continuous in its sec-
ond argument such that the existence and uniqueness of
the solutions ξc is guaranteed for a given internal state
ξc ∈ �1,m1

2 and disturbance signals d ∈ Lp, see also Kato
(1970) or Robinson (2001). The overall system H is now
composed of the infinite number of subsystems H(s), all
given by (1).

3.2 Solution concept

In order to perform a stability or performance analysis
using, for instance, Lyapunov-based arguments, solutions
need to be defined globally, i.e., for all times t ∈ R≥0, see
also Section 4. Unfortunately however, for the analysis of
the overall interconnected system H as in Fig. 2, standard
solution concepts for hybrid systems, see, e.g., Lygeros
et al. (2003) or Goebel et al. (2012), are not always
applicable as they define solutions only up to Zeno points,
but not beyond. For the class of infinite interconnections
of hybrid systems considered in this paper, it is highly
relevant to have such solution concepts as Zeno behavior
is often inevitable due to the infinite number of hybrid
subsystems H(s) as in (1), see also Remark 1 below. As
such, inspired by Heemels et al. (2000), in this subsection
we introduce a novel, but natural solution concept which
allows us to define solutions beyond these Zeno points,
i.e., solutions can be defined for all times t ∈ R≥0. Consider
hereto the following definitions.

Definition 3. A point τ ∈ R ⊂ R is called a right-accu-
mulation point of R if there exists a sequence {τi}i∈N such
that τi ∈ R and τi < τ for all i ∈ N and, furthermore,
limi→∞ τi = τ . A left-accumulation point is defined simi-
larly by interchanging “<” with “>”. A set R ⊂ R is called
right-isolated if it contains no left-accumulation points.
Hence, we say that R is right-isolated if for all τ ∈ R it
holds that there is an ε > 0 such that (τ, τ + ε) ∩R = ∅.
Definition 4. A pair (R, ξ), where R is a right-isolated
closed subset of [0, T ),

ξ ∶ [0, T )/R → �1,m1

2 × �1,m2 ,

is a solution to the overall system H composed of the
identical subsystems H(s) given by (1), s ∈ Z, on [0, T )
with T > 0 or T = ∞ for initial state ξ0 ∈ �1,m1

2 × �1,m2 and
external (disturbance) inputs d ∈ Lp if the following are
satisfied:

(1) 0 ∈ R
(2) For all τ ∈ R and s ∈ Z, the right-limit ξ(τ+, s) ∶=

limt↓τ, t∉R ξ(t, s) exists and for all τ ∈ R/{0} and s ∈ Z
the left-limit ξ(τ−, s) ∶= limt↑τ, t∉R ξ(t, s) exists.
Moreover, for all τ ∈ R and s ∈ Z it holds that

ξ(τ+, s) ∈ G (ξ (τ−, s)) or ξ(τ+, s) = ξ (τ−, s)
when ξ(τ−, s) ∈ D, while for ξ(τ−, s) ∉ D it holds that

ξ(τ+, s) = ξ (τ−, s) ,
where ξ (τ−, s) ∶= ξ0(s), s ∈ Z, when τ = 0.

(3) For all intervals (τ, τ∗) with τ ∈ R and

τ∗ ∶= inf {θ > τ ∣ θ ∈ R ∪ {T}} ,
it holds that ξ ∶ (τ, τ∗) → �1,m1

2 × �1,m2 is absolutely

continuous, ξ̇(t) = F (ξ(t), d(t)) for almost all t ∈
(τ, τ∗), and that ξ(t, s) ∈ C for all t ∈ (τ, τ∗) and
s ∈ Z.
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(ŵ+(s), ŵ−(s)).

For the interconnection structure of Fig. 2, we consider
that each (general) hybrid subsystem H(s), s ∈ Z, is
described by

H(s) ∶ { ξ̇(s) = F (ξ, d)(s), ξ(s) ∈ C
ξ+(s) ∈ G(ξ(s)) , ξ(s) ∈ D

(1)

with ξ = (ξc, ξd) the state of the overall system where

ξc ∈ �1,m1

2 comprises the (internal) dynamical states of
the system while ξd ∈ �1,m2 comprises (auxilary) states

like timers and counters, and where d ∈ �1,md

2 denotes an
external (disturbance) input. Note that ξd is typically not
contained in �2 and therefore these states are separated
from ξc ∈ �1,m1

2 . In (1) it is assumed that G ∶ Rm1+m2 ⇉
Rm1+m2 is a set-valued function with corresponding (diag-

onal) operator G̃ ∶ �1,m1

2 × �1,m2 ⇉ �1,m1

2 × �1,m2 defined as

G̃(ξ)(s) = G(ξ(s)), s ∈ Z, C and D are closed subsets
of Rm1+m2 , and that the function F ∶= (Fc, Fd) with

Fc ∶ �1,m1+md

2 → �1,m1

2 and Fd ∶ �1,m2 → �1,m2 is sufficiently

smooth such that the dynamical system ξ̇c = Fc(ξc, d)
gives rise to solutions ξc with values in the space �1,m1

2 .
In particular, it is assumed that the function Fc is locally

Lipschitz in its first argument and continuous in its sec-
ond argument such that the existence and uniqueness of
the solutions ξc is guaranteed for a given internal state
ξc ∈ �1,m1

2 and disturbance signals d ∈ Lp, see also Kato
(1970) or Robinson (2001). The overall system H is now
composed of the infinite number of subsystems H(s), all
given by (1).

3.2 Solution concept

In order to perform a stability or performance analysis
using, for instance, Lyapunov-based arguments, solutions
need to be defined globally, i.e., for all times t ∈ R≥0, see
also Section 4. Unfortunately however, for the analysis of
the overall interconnected system H as in Fig. 2, standard
solution concepts for hybrid systems, see, e.g., Lygeros
et al. (2003) or Goebel et al. (2012), are not always
applicable as they define solutions only up to Zeno points,
but not beyond. For the class of infinite interconnections
of hybrid systems considered in this paper, it is highly
relevant to have such solution concepts as Zeno behavior
is often inevitable due to the infinite number of hybrid
subsystems H(s) as in (1), see also Remark 1 below. As
such, inspired by Heemels et al. (2000), in this subsection
we introduce a novel, but natural solution concept which
allows us to define solutions beyond these Zeno points,
i.e., solutions can be defined for all times t ∈ R≥0. Consider
hereto the following definitions.

Definition 3. A point τ ∈ R ⊂ R is called a right-accu-
mulation point of R if there exists a sequence {τi}i∈N such
that τi ∈ R and τi < τ for all i ∈ N and, furthermore,
limi→∞ τi = τ . A left-accumulation point is defined simi-
larly by interchanging “<” with “>”. A set R ⊂ R is called
right-isolated if it contains no left-accumulation points.
Hence, we say that R is right-isolated if for all τ ∈ R it
holds that there is an ε > 0 such that (τ, τ + ε) ∩R = ∅.
Definition 4. A pair (R, ξ), where R is a right-isolated
closed subset of [0, T ),

ξ ∶ [0, T )/R → �1,m1

2 × �1,m2 ,

is a solution to the overall system H composed of the
identical subsystems H(s) given by (1), s ∈ Z, on [0, T )
with T > 0 or T = ∞ for initial state ξ0 ∈ �1,m1

2 × �1,m2 and
external (disturbance) inputs d ∈ Lp if the following are
satisfied:

(1) 0 ∈ R
(2) For all τ ∈ R and s ∈ Z, the right-limit ξ(τ+, s) ∶=

limt↓τ, t∉R ξ(t, s) exists and for all τ ∈ R/{0} and s ∈ Z
the left-limit ξ(τ−, s) ∶= limt↑τ, t∉R ξ(t, s) exists.
Moreover, for all τ ∈ R and s ∈ Z it holds that

ξ(τ+, s) ∈ G (ξ (τ−, s)) or ξ(τ+, s) = ξ (τ−, s)
when ξ(τ−, s) ∈ D, while for ξ(τ−, s) ∉ D it holds that

ξ(τ+, s) = ξ (τ−, s) ,
where ξ (τ−, s) ∶= ξ0(s), s ∈ Z, when τ = 0.

(3) For all intervals (τ, τ∗) with τ ∈ R and

τ∗ ∶= inf {θ > τ ∣ θ ∈ R ∪ {T}} ,
it holds that ξ ∶ (τ, τ∗) → �1,m1

2 × �1,m2 is absolutely

continuous, ξ̇(t) = F (ξ(t), d(t)) for almost all t ∈
(τ, τ∗), and that ξ(t, s) ∈ C for all t ∈ (τ, τ∗) and
s ∈ Z.
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Definition 5. A solution (R, ξ) to the overall system H
composed out of the identical subsystems H(s) given by
(1), s ∈ Z, on [0, T ) is called maximal if there does not
exist a T ′ > T and a solution (R′, ξ′) to the overall system
H on [0, T ′) for which it holds that

(1) R′ ∩ [0, T ) = R
(2) ξ′(t) = ξ(t) for all t ∈ [0, T )/R.
Definition 6. A solution (R, ξ) to the overall system H
composed out of the identical subsystems H(s) given by
(1), s ∈ Z, on [0, T ) is called complete if T = ∞.

Note that complete solutions are always maximal. The set
R contains the jump times, i.e., the times at which there
is a jump in one of the subsystems H(s). Between the
successive jump times τ and τ∗, ξ captures the trajectories
in the flow phases of the system (as imposed by item 3 of
Definition 4 above). Item 2 of Definition 4 connects the
flow phases at the jump times and specifies also the initial
conditions. In this solution concept, right-accumulation
points of event times are included and solutions can indeed
be defined beyond Zeno points in the sense that despite
the occurrence of right-accumulation points or even an
infinite number of jumps at one (continuous) time instant,
solutions can still be defined globally on R≥0 (i.e., for
T = ∞), see also Section 4.2.

4. STABILITY AND PERFORMANCE ANALYSIS

With a solution concept now in place, stability (in absence
of disturbances) in the sense of UGAS and performance
(in presence of disturbances) in the sense of Lp-stability
of the overall system can be defined. In this section, these
concepts of stability and performance are introduced and
Lyapunov-based conditions to guarantee them are given.

4.1 Stability and performance concepts

As a result of the specific structure of the hybrid
(sub)systems considered in this paper, we are often only
interested in a relevant set of (initial) states specified by

X0 ⊆ �1,m1

2 × �1,m2 for the overall system H in (1).

With this set of initial states defined, we can analyze
uniform global asymptotic stability (UGAS) of the overall
system in the case that the external (disturbance) inputs
are absent, i.e., d = 0.
Definition 7. For the overall system H with associated set
of initial states X0 ⊆ �1,m1

2 × �1,m2 and composed of the
identical subsystems H(s), s ∈ Z, given by (1), the set

E = {ξ = (ξc, ξd) ∈ �1,m1

2 × �1,m2 ∣ ξc = 0} (2)

is uniformly globally asymptotic stable (UGAS) if there
exists a function β ∈ KL such that for any initial condition
ξ(0) ∈ X0, all corresponding maximal solutions (R, ξ) to
H with d = 0 are complete, and for all t ∈ [0,∞)/R

∥ξc(t)∥�2 ≤ β (∥ξc(0)∥�2 , t) .
Moreover, if β is an exp-KL function, the set E is uniformly
globally exponentially stable (UGES).

In the case of the external inputs being present, i.e., d ≠ 0,
we analyze the performance of the hybrid system H as
being the level of input attenuation with respect to the
external output variable

z = Q(ξc, d) (3)

with Q ∶ �1,m1+md

2 → �1,mz

2 and where we use the Lp-
induced gain with p ∈ [0,∞) as the performance criterion.

Definition 8. The overall system H with associated set
of initial states X0 ⊆ �1,m1

2 × �1,m2 and composed of the
identical subsystems H(s), s ∈ Z, as in (1) with (3), is said
to be Lp-stable (p < ∞) with an Lp-gain less than or equal
to θ ≥ 0 from input d to output z, if there exists a function
β ∈ K such that for any exogenous input d ∈ Lp and
any initial condition ξ(0) ∈ X0, all corresponding maximal
solutions (R, ξ) to H are complete and it holds that

∥z∥
Lp
≤ β (∥ξc(0)∥�2) + θ ∥d∥Lp

. (4)

Next, for a specific class of infinite-dimensional intercon-
nected hybrid systems that is, for instance, used for the
modeling of interconnected systems that use packet-based
communication networks for the exchange of information,
we will provide Lyapunov-based conditions that, when
satisfied, guarantee UGAS (and sometimes even UGES)
of the set E of (2) and/or Lp-stability with an Lp-gain less
than or equal to θ ≥ 0.

4.2 Lyapunov conditions for UGAS (or UGES)

Consider again the hybrid modeling framework of (1) for
each subsystem H(s), s ∈ Z, in the infinite interconnection
of Fig. 2 with the “local” state ξ(s). However, we now
assume that the function τ(t, s) ∈ R≥0, which is a timer for
each s ∈ Z that resets itself to zero after each jump of the
subsystem H(s), i.e.,

{
τ̇(t, s) = 1, ξ(t, s) ∈ C

τ(t+, s) = 0, ξ(t, s) ∈ D, (5)

is part of the state ξd(t, s) for each subsystem H(s),
s ∈ Z. Moreover, we also assume that the flow and jump
conditions ξ(t, s) ∈ C and ξ(t, s) ∈ D are now given by

ξ(t, s) ∈ C(s) ⇔ τ(t, s) ∈ [0, τ smati] (6a)

ξ(t, s) ∈ D(s) ⇔ τ(t, s) ∈ [δs,∞), (6b)

respectively, where τ smati ∈ R≥0 represents a upper bound
on the time elapse between two consecutive jumps of the
hybrid system H(s), i.e., the MATI, and δs > 0 a lower
bound, s ∈ Z. Here we assume that τ smati − δs ≥ τmin > 0
for all s ∈ Z. This kind of setup with a bounded timer is
natural in many applications, including networked control
systems, see, e.g., Nešić and Teel (2004), Carnevale et al.
(2007), Borgers and Heemels (2014), or Heijmans et al.
(2015). Hence, (5)-(6) models that the hybrid subsystem
H(s), s ∈ Z, has an uncertain duration between two
consecutive jump times larger than δs, but smaller than
τ smati. In case of packet-based communication networks
this means that the inter-transmission times are between
δs and τ smati, see Nešić and Teel (2004). Note that, while,
as a result of (6b) and δs > 0, local Zeno behavior is
prevented, these kind of infinite interconnections of hybrid
systems are still typically an example in which an infinite
number of jumps occurs in a finite time interval, see also
Remark 1 below.

Remark 1. Local Zeno behavior, as mentioned above,
refers to the (possible) Zeno behavior of one single subsys-
tem in the interconnection. In order to define a solution
globally, i.e., for all time t ∈ R≥0, this behavior must be
prevented for the same reasons as for the finite dimensional
case as in Dashkovskiy and Kosmykov (2013). However, as
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a result of (6a), global Zeno behavior, i.e., Zeno behavior of
the overall interconnected system H, cannot be prevented
as a result of the infinite number of “jumping” hybrid
subsystems. As a result, solution concepts as in Lygeros
et al. (2003) or Goebel et al. (2012) cannot be used directly,
since they cannot be defined beyond these Zeno points.
Therefore, there is the need for a novel solution concept
as introduced in Section 3.2 that does allows us to define
solutions beyond these Zeno points.

For the systems given by (1) with (5) and (6), as described
above, we provide sufficient Lyapunov-based conditions
such that UGAS (or UGES) is guaranteed for the overall
system. In particular, since the considered systems consist
of an infinite number of interconnected hybrid subsys-
tems, the conditions guaranteeing UGAS of the set (2)
can be obtained as merely infinite-dimensional extensions
of the Lyapunov-based arguments for hybrid systems as
stated in Goebel et al. (2012) Theorem 3.18, of course,
with proper adaptions to accommodate the new solu-
tion concept (which allows Zeno points and trajectories
beyond). As such, the analysis is based on constructing

a (Lyapunov) function U ∶ �1,m1

2 × �1,m2 → R≥0 that is
locally Lipschitz in its first and second argument, functions
αU , αU ∈ K∞ and a positive definite function � such that

αU(∥ξc∥�2) ≤ U(ξ) ≤ αU(∥ξc∥�2) (7a)

U(ξ+) −U(ξ) ≤ 0 when ξ(s) ∈ D for some s ∈ Z (7b)

⟨∇U(ξ), F (ξ)⟩�2 ≤ −�(∥ξc∥�2)when ξ(s) ∈ C ∀ s ∈ Z (7c)

with ξ = (ξc, ξd) and where ξ+ is given by ξ+(τ, s) =
ξ(τ+, s) = limt↓τ,t∉R ξ(t, s) for s ∈ Z as in Definition 4.
These conditions are sufficient to guarantee UGAS of the
set E of (2). If, in addition, there exist αc

U , α
c
U , ε ∈ R≥0

such that αc
U ∥ξc∥

2

�2
≤ U(x) ≤ αc

U ∥ξc∥
2

�2
, and �(r) ≥ ε2r2,

r ∈ R>0, then the set E of (2) is UGES. Of course,
this reasoning can only be used if we can also show the
following claim.

Claim 1. If (7) holds, then each maximal solution is com-
plete, i.e., any maximal solution (ξ,R) with initial state
ξ0 ∈ X0 should be defined on [0, T ) for T = ∞.

Note that if we prove this property, then the conditions
in (7) are indeed sufficient to establish UGAS or UGES of
the set E .
Proof. [Proof of Claim 1] To show completeness of a
maximal solution (ξ,R) under the stated conditions, we
will proceed by contradiction by assuming that T < ∞. In
fact, we will show that we can prolong the solution (ξ,R)
and get a solution (ξ′,R′) on [0, T ′) with T ′ > T that
satisfies the points 1) and 2) in Definition 5. This would
contradict the maximality of the solution (ξ,R) and thus
T must be infinite.

Observe that for T < ∞, each subsystem in the intercon-
nection can jump at most one time in the time period
[T −δs, T ). Hence, we know that for each s ∈ Z there exists
a ts ∈ [T −δs, T ) such that ξc(t, s) is absolutely continuous
on (ts, T ) (see Definition 4 point 3). In addition, based on
the bounds (7a), (7b), and (7c), we can also conclude that

αU (∥ξc∥�2) ≤ U(ξ(t)) ≤ U(ξ(0)) ≤ ∞ (8)

for all t ∈ [0, T )/R, implying that there is no finite escape
time for the solution ξc. Hence, we have that ξc(t) ∈ B
for all t ∈ [0, T ), where B is some compact set in �1,m1

2 .

As a result of the absolute continuity and boundedness
of the solutions ξc, it follows from a standard result
in mathematical analysis (Rudin, 1976, ex. 4.13) that
ξc(T −, s) ∶= limt↑T ξc(t, s) exists for each s ∈ Z and we

thus have that ξc(T −) ∈ B ⊆ �1,m1

2 as a result of (8).

Based on these properties we can now construct a solution
(ξ′,R′) that prolongs the considered maximal solution
(ξ,R). Consider hereto two possibilities for each subsys-
tem. If τ(T −, s) ≥ δs for s ∈ Z, then we can define a solution
with a jump at time T for this subsystem at s (note that
ξ(T −, s) ∈ D in this case, see (6)). If τ(T −, s) < δs, then
we define the solution without a reset at time T for the
corresponding subsystem at s. Hence, we have ξ(T +, s) ∈
G (ξ(T −, s)) for s ∈ Sr(T ) and ξ(T +, s) = ξ(T −, s) for
s ∉ Sr(T ) where Sr(T ) = {s ∈ Z ∣ τ(T −, s) ≥ δs}. Due to
(5), it follows that τ(T +, s) ∈ [0, δs).
For the state ξ(T +) there now exist a constant ε > 0 and

an absolutely continuous ξ̄ ∶ [T,T + ε) → �1,m1

2 × �1,m2 such

that ξ̄(T ) = ξ(T +) and ˙̄ξ(t) = F (ξ̄(t),0) for almost all
t ∈ [T,T + ε). Since, τ(T +, s) < δs for all s ∈ Z, it holds
that ξ(t, s) ∈ C for all t ∈ [T,T + ∆T ) and s ∈ Z, where
∆T ∶= infs∈Z (ε, τ smati − τ(T +, s)) > 0. Hence, this indicates
that (ξ′,R′) with R′ ∶= R ∪ {T} and

ξ′(t) = {
ξ(t) for all t ∈ [0, T )/R′

ξ̄(t) for all t ∈ [T,T +∆T )/R′

is a solution to H on [0, T +∆T ) satisfying points 1) and
2) in Definition 5. This contradicts the maximality of the
solution (ξ,R) and thus T = ∞, implying that indeed every
maximal solution is a complete solution. ◻

4.3 Lyapunov conditions for Lp-stability

In a similar fashion as for the case with disturbances,
we can also compose Lyapunov-based conditions that
guarantee Lp-stability of the overall system according
to Definition 8 when disturbances are present. Consider
hereto again the candidate Lyapunov function U ∶ �1,m1

2 ×
�1,m2 → R≥0 such that the conditions (7a) and (7b) hold.
However, during flows, i.e., when ξ(s) ∈ C for all s ∈ Z, we
now require that it should hold that

⟨∇U(ξ), F (ξ, d)⟩�2 ≤ µ (θ
p ∥d∥p�2 − ∥q(x, e, d)∥

p

�2
) (9)

for some constants µ > 0 and θ ≥ 0. To show that the
conditions (7a), (7b), and (9) are indeed sufficient to
guarantee Lp-stability of the overall system, consider the
following. Combining integrated versions of (9) with (7b)
on the interval [0,T ] with 0 ≤ T < T and assuming that the
considered maximal solution is defined on at least [0, T )
yields

U (ξ(T )) −U (ξ(0)) ≤ µ∫
T

0
(θp ∥d∥p�2 − ∥Q(ξc, d)∥

p

�2
)dt.

Hence, recalling (3), we have for all 0 ≤ T < T that

U(ξ(T )) ≤ U (ξ(0)) + µ∫
T

0
(θp ∥d∥p�2 − ∥z∥

p

�2
)dt. (10)

As a result of this observation, we obtain the bound

U (ξ(T )) ≤ U (ξ(0)) + µθp ∫
T

0
∥d∥p�2 dt

for all T ∈ [0, T ). Using now similar arguments as for the
case with disturbances, it can be proven that all maximal
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a result of (6a), global Zeno behavior, i.e., Zeno behavior of
the overall interconnected system H, cannot be prevented
as a result of the infinite number of “jumping” hybrid
subsystems. As a result, solution concepts as in Lygeros
et al. (2003) or Goebel et al. (2012) cannot be used directly,
since they cannot be defined beyond these Zeno points.
Therefore, there is the need for a novel solution concept
as introduced in Section 3.2 that does allows us to define
solutions beyond these Zeno points.

For the systems given by (1) with (5) and (6), as described
above, we provide sufficient Lyapunov-based conditions
such that UGAS (or UGES) is guaranteed for the overall
system. In particular, since the considered systems consist
of an infinite number of interconnected hybrid subsys-
tems, the conditions guaranteeing UGAS of the set (2)
can be obtained as merely infinite-dimensional extensions
of the Lyapunov-based arguments for hybrid systems as
stated in Goebel et al. (2012) Theorem 3.18, of course,
with proper adaptions to accommodate the new solu-
tion concept (which allows Zeno points and trajectories
beyond). As such, the analysis is based on constructing

a (Lyapunov) function U ∶ �1,m1

2 × �1,m2 → R≥0 that is
locally Lipschitz in its first and second argument, functions
αU , αU ∈ K∞ and a positive definite function � such that

αU(∥ξc∥�2) ≤ U(ξ) ≤ αU(∥ξc∥�2) (7a)

U(ξ+) −U(ξ) ≤ 0 when ξ(s) ∈ D for some s ∈ Z (7b)

⟨∇U(ξ), F (ξ)⟩�2 ≤ −�(∥ξc∥�2)when ξ(s) ∈ C ∀ s ∈ Z (7c)

with ξ = (ξc, ξd) and where ξ+ is given by ξ+(τ, s) =
ξ(τ+, s) = limt↓τ,t∉R ξ(t, s) for s ∈ Z as in Definition 4.
These conditions are sufficient to guarantee UGAS of the
set E of (2). If, in addition, there exist αc

U , α
c
U , ε ∈ R≥0

such that αc
U ∥ξc∥

2

�2
≤ U(x) ≤ αc

U ∥ξc∥
2

�2
, and �(r) ≥ ε2r2,

r ∈ R>0, then the set E of (2) is UGES. Of course,
this reasoning can only be used if we can also show the
following claim.

Claim 1. If (7) holds, then each maximal solution is com-
plete, i.e., any maximal solution (ξ,R) with initial state
ξ0 ∈ X0 should be defined on [0, T ) for T = ∞.

Note that if we prove this property, then the conditions
in (7) are indeed sufficient to establish UGAS or UGES of
the set E .
Proof. [Proof of Claim 1] To show completeness of a
maximal solution (ξ,R) under the stated conditions, we
will proceed by contradiction by assuming that T < ∞. In
fact, we will show that we can prolong the solution (ξ,R)
and get a solution (ξ′,R′) on [0, T ′) with T ′ > T that
satisfies the points 1) and 2) in Definition 5. This would
contradict the maximality of the solution (ξ,R) and thus
T must be infinite.

Observe that for T < ∞, each subsystem in the intercon-
nection can jump at most one time in the time period
[T −δs, T ). Hence, we know that for each s ∈ Z there exists
a ts ∈ [T −δs, T ) such that ξc(t, s) is absolutely continuous
on (ts, T ) (see Definition 4 point 3). In addition, based on
the bounds (7a), (7b), and (7c), we can also conclude that

αU (∥ξc∥�2) ≤ U(ξ(t)) ≤ U(ξ(0)) ≤ ∞ (8)

for all t ∈ [0, T )/R, implying that there is no finite escape
time for the solution ξc. Hence, we have that ξc(t) ∈ B
for all t ∈ [0, T ), where B is some compact set in �1,m1

2 .

As a result of the absolute continuity and boundedness
of the solutions ξc, it follows from a standard result
in mathematical analysis (Rudin, 1976, ex. 4.13) that
ξc(T −, s) ∶= limt↑T ξc(t, s) exists for each s ∈ Z and we

thus have that ξc(T −) ∈ B ⊆ �1,m1

2 as a result of (8).

Based on these properties we can now construct a solution
(ξ′,R′) that prolongs the considered maximal solution
(ξ,R). Consider hereto two possibilities for each subsys-
tem. If τ(T −, s) ≥ δs for s ∈ Z, then we can define a solution
with a jump at time T for this subsystem at s (note that
ξ(T −, s) ∈ D in this case, see (6)). If τ(T −, s) < δs, then
we define the solution without a reset at time T for the
corresponding subsystem at s. Hence, we have ξ(T +, s) ∈
G (ξ(T −, s)) for s ∈ Sr(T ) and ξ(T +, s) = ξ(T −, s) for
s ∉ Sr(T ) where Sr(T ) = {s ∈ Z ∣ τ(T −, s) ≥ δs}. Due to
(5), it follows that τ(T +, s) ∈ [0, δs).
For the state ξ(T +) there now exist a constant ε > 0 and

an absolutely continuous ξ̄ ∶ [T,T + ε) → �1,m1

2 × �1,m2 such

that ξ̄(T ) = ξ(T +) and ˙̄ξ(t) = F (ξ̄(t),0) for almost all
t ∈ [T,T + ε). Since, τ(T +, s) < δs for all s ∈ Z, it holds
that ξ(t, s) ∈ C for all t ∈ [T,T + ∆T ) and s ∈ Z, where
∆T ∶= infs∈Z (ε, τ smati − τ(T +, s)) > 0. Hence, this indicates
that (ξ′,R′) with R′ ∶= R ∪ {T} and

ξ′(t) = {
ξ(t) for all t ∈ [0, T )/R′

ξ̄(t) for all t ∈ [T,T +∆T )/R′

is a solution to H on [0, T +∆T ) satisfying points 1) and
2) in Definition 5. This contradicts the maximality of the
solution (ξ,R) and thus T = ∞, implying that indeed every
maximal solution is a complete solution. ◻

4.3 Lyapunov conditions for Lp-stability

In a similar fashion as for the case with disturbances,
we can also compose Lyapunov-based conditions that
guarantee Lp-stability of the overall system according
to Definition 8 when disturbances are present. Consider
hereto again the candidate Lyapunov function U ∶ �1,m1

2 ×
�1,m2 → R≥0 such that the conditions (7a) and (7b) hold.
However, during flows, i.e., when ξ(s) ∈ C for all s ∈ Z, we
now require that it should hold that

⟨∇U(ξ), F (ξ, d)⟩�2 ≤ µ (θ
p ∥d∥p�2 − ∥q(x, e, d)∥

p

�2
) (9)

for some constants µ > 0 and θ ≥ 0. To show that the
conditions (7a), (7b), and (9) are indeed sufficient to
guarantee Lp-stability of the overall system, consider the
following. Combining integrated versions of (9) with (7b)
on the interval [0,T ] with 0 ≤ T < T and assuming that the
considered maximal solution is defined on at least [0, T )
yields

U (ξ(T )) −U (ξ(0)) ≤ µ∫
T

0
(θp ∥d∥p�2 − ∥Q(ξc, d)∥

p

�2
)dt.

Hence, recalling (3), we have for all 0 ≤ T < T that

U(ξ(T )) ≤ U (ξ(0)) + µ∫
T

0
(θp ∥d∥p�2 − ∥z∥

p

�2
)dt. (10)

As a result of this observation, we obtain the bound

U (ξ(T )) ≤ U (ξ(0)) + µθp ∫
T

0
∥d∥p�2 dt

for all T ∈ [0, T ). Using now similar arguments as for the
case with disturbances, it can be proven that all maximal
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solutions are complete solutions, i.e., T = ∞. Now using
that U(ξ(T )) ≥ 0 for all T ∈ R≥0, letting T → ∞ in (10),
and computing the Lp-norm according to Definition 2 yield

∥z∥p
Lp
= ∫

∞

0
∥z∥p�2dt ≤ ∫

∞

0
θp ∥d∥p�2dt +

1

µ
U (ξ(0))

= θp ∥d∥p
Lp
+ 1

µ
U (ξ(0)) ≤

⎛
⎝
( 1
µ
U (ξ (0)))

1
p

+ θ ∥d∥
Lp

⎞
⎠

p

.

(11)

Since (U(ξ)/µ)1/p ≤ βU(∥ξc∥�2) for some βU ∈ K∞, (11)
leads to (4) we indeed have proven that the existence
of a Lyapunov function U satisfying the conditions (7a),
(7b), and (9) is sufficient to guarantee Lp-stability of the
overall system composed out of the hybrid subsystems
H(s), s ∈ Z, of (1) with (5) and (6).

5. CONCLUDING REMARKS

In this paper we considered a class of infinite-dimensional
hybrid systems, or more precisely, interconnections con-
sisting of an infinite number of spatially invariant hybrid
(sub)systems. These kind of interconnections have been
proven to be very useful for the modeling of large-scale
systems which use packet-based communication networks
for the exchange of information, see, e.g., Heijmans et al.
(2015). However, this modeling setup requires the estab-
lishment of a proper definition of solutions since classical
solution concepts typically do not define solutions beyond
Zeno points, which is relevant for the class of systems
studied here. Therefore, we provided a novel solution con-
cept for the considered infinite interconnections of hybrid
systems, which can incorporate Zeno points and allows
us to define solutions globally, i.e., for all time t ∈ R≥0.
In addition, we have provided sufficient Lyapunov-based
conditions for a subclass of hybrid systems relevant for
modeling, for instance, networked control systems based
on the new definition of solutions, such that UGAS or Lp-
stability is guaranteed for the overall system.

This novel solution concept and sufficient (Lyapunov-
based) conditions to guarantee global stability properties
(UGAS or Lp-stability) clear the path for a more in
depth analysis of the topic of infinite interconnections
of hybrid systems. In particular, one can, for instance,
exploit the spatial invariance of the hybrid subsystems
in the interconnection to construct Lyapunov functions
satisfying the condition (7a), (7b), and (7c) or (9) based
only on the local dynamics of one of the subsystems
in the interconnection structure. Some first results in
this direction are presented in Heijmans et al. (2015),
expanding ideas from D’Andrea and Dullerud (2003).
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