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ABSTRACT
The presence of a communication network in a control loop
induces many imperfections such as varying transmission
delays, varying sampling/transmission intervals and packet
loss, which can degrade the control performance significantly
and can even lead to instability. Various techniques have
been proposed in the literature for stability analysis and
controller design for these so-called networked control sys-
tems (NCSs). The goal of this paper is to survey a par-
ticular class of techniques using discrete-time models that
are based on polytopic overapproximations of the uncertain
NCS model and lead to stability conditions in terms of lin-
ear matrix inequalities (LMIs). We discuss the advantages
and disadvantages of the existing techniques in both qual-
itative and quantitative manners. In particular, we apply
all methods to a benchmark example providing a numerical
comparison of the methods with respect to conservatism as
well as numerical complexity.
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1. INTRODUCTION
Networked control systems (NCS) [18, 35, 40, 41] offer var-

ious benefits such as the ease of maintenance and installa-
tion, the large flexibility and the low cost. However, besides
the benefits, the presence of a wired or wireless network in
a control loop also causes negative effects such as commu-
nication imperfections and constraints, which can degrade
the performance of the control loop significantly and can
even lead to instability. Roughly speaking, the communi-
cation imperfections can be categorized in five types: (i)
Variable sampling/transmission intervals; (ii) Variable com-
munication delays; (iii) Packet dropouts; (iv) Communica-
tion constraints; and (v) Quantization errors. Clearly, it is
of importance to understand how these phenomena influence
the closed-loop stability and performance properties.
Although the field of NCSs is relatively young, various re-

search lines for stability analysis are crystalizing out these
days. In this survey we will focus on a time-driven discrete-
time modeling approach, assuming availability of lower and
upperbounds on the delays, sampling intervals and number
of subsequent dropouts. Basically, the essential modeling
steps to arrive at the discrete-time model are the same for
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all methods as they are based on exact discretization of the
underlying continuous-time plant, which is assumed to be
linear and time-invariant. The most general and complete
modeling approach is provided in [5] (see also [7, 8]) that
includes types (i)-(iii) of network-induced uncertainties, i.e.
time-varying delays (both smaller and larger than the sam-
pling interval), time-varying sampling intervals and explicit
modeling of the dropouts. In [10] also a discrete-time mod-
eling approach is adopted including (i)-(iv), however, with
only considering delays smaller than the sampling interval.
In the resulting discretized models, the varying delay and

sampling interval uncertainties appear in an exponential form
(cf. (5) below) that is hard to use directly for stability anal-
ysis. At this point the analysis techniques proposed in the
literature divert and use different overapproximation tech-
niques to embed the original model with the exponential un-
certainty (as tight as possible) in a larger model that has nice
structural properties suitable for the application of robust
stability methods. Adopted overapproximation techniques
are based on the real Jordan form [5, 7, 8, 30, 37], the Tay-
lor series [19], gridding and norm-bounding [11, 13, 33, 34],
and the Cayley-Hamilton theorem [15, 16]. Earlier and more
conservative results as in [6] based on interval matrices will
not be discussed here. The overapproximation techniques
typically result in discrete-time polytopic models with or
without additive norm-bounded uncertainties. These mod-
els are amendable for robust stability assessment using linear
matrix inequalities (LMIs). When exploiting such polytopic
embedding techniques, the question naturally arises how the
many, existing methods for overapproximation compare in
terms of the conservatism of the embedding and the com-
plexity (number and dimension) of the resulting LMIs. The
purpose of this paper is to present the advantages and dis-
advantages of the existing techniques and compare them in
the light of the above criteria.
Besides the discrete-time modeling approach various other

methods are available to perform stability analysis, see the
survey papers [18, 35, 40, 41]. For instance, there are also
continuous-time approaches towards the modeling and sta-
bility analysis of NCSs involving different subsets of the
network-induced imperfections mentioned above such as [3,
4, 14, 17, 26–28, 37–39]. Frequency domain conditions for sta-
bility of discrete-time, continuous-time and sampled-data
systems with delays are provided in [23]. Also stability anal-
ysis results are available using stochastic information on the
delays, sampling intervals and dropouts, see e.g. the survey
[18]. However, here we focus on discrete-time modeling ap-
proaches using deterministic bounds on the delays, sampling
intervals and number of subsequent dropouts.
The outline of the paper is as follows. In Section 2, a de-

scription of the NCS and the discrete-time uncertain model
is presented. In Section 3, the basic idea of embedding
the uncertain NCS model in a polytopic model is illumi-
nated. Section 4 deals with the exploitation of such poly-
topic models to arrive at LMI-based stability analysis tech-
niques. Next, Section 5 presents four different overapprox-
imation techniques for the construction of such polytopic
embeddings. Sections 6 and 7 present qualitative and quan-
titative (based on a numerical example) comparisons of these
techniques. Conclusions are presented in Section 8.

2. DESCRIPTION OF THE NCS
The NCS as considered in this paper is a simplified setup

Figure 1: Schematic overview of the NCS.

from the general framework presented in [5] (see also [8]),
which includes delays both smaller and larger than the un-
certain and time-varying sampling interval, and packet drop-
outs. For the sake of clarity, we focus here on a more basic
NCS setup where the sampling interval is constant, no drop-
outs occur and delays are smaller than the sampling time.
The NCS is depicted schematically in Figure 1. It consists

of a linear continuous-time plant

ẋ(t) = Ax(t) +Bu(t) (1)

with A ∈ R
n×n and B ∈ R

n×m, and a discrete-time static
time-invariant controller, which are connected over a com-
munication network that induces network delays (τ sc and
τ ca). The state measurements (y(t) = x(t)) are sampled re-
sulting in the sampling time instants sk = kh, where h > 0
is the constant sampling interval. We denote by yk := y(sk)
the kth sampled value of y, by xk := x(sk) the kth sampled
value of the state and by uk the control value corresponding
to yk = xk.

In the model, both the varying computation time (τ c
k),

needed to evaluate the controller, and the network-induced
delays, i.e. the sensor-to-controller delay (τ sc

k ) and the con-
troller-to-actuator delay (τ ca

k ), are taken into account. We
assume that the sensor acts in a time-driven fashion (i.e.
sampling occurs at the times sk = kh, k ∈ N) and that
both the (time-invariant) controller and the actuator act in
an event-driven fashion (i.e. they respond instantaneously
to newly arrived data). Under these assumptions, all three
delays can be captured by a single delay τk := τ sc

k +τ c
k+τ ca

k ,
see also [29], [41]. We assume here that τk ∈ [τmin, τmax] with
0 ≤ τmin ≤ τmax ≤ h. Finally, the zero-order-hold (ZOH)
function in Figure 1 transforms the discrete-time control in-
put uk to a continuous-time control input

u(t) = uk for t ∈ [sk + τk, sk+1 + τk+1), k ∈ N. (2)

If we now exactly discretize the linear plant (1) at the sam-
pling times sk, k ∈ N, we obtain

xk+1 = e
Ah

xk+

∫ h−τk

0

e
As

dsBuk+

∫ h

h−τk

e
As

dsBuk−1. (3)

Using now the lifted state vector

ξk =
(
x�k u�k−1

)�
that includes the current system state and past system in-
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put, we obtain the lifted model

ξk+1 =

(
eAh

∫ h

h−τk
eAsdsB

0 0

)
︸ ︷︷ ︸

Ã(τk)

ξk+

(∫ h−τk

0
eAsdsB

I

)
︸ ︷︷ ︸

B̃(τk)

uk.

(4)
This representation (4) can be written as

ξk+1 =

(
eAh

∫ h

0
eAsdsB − Γ(τk)

0 0

)
ξk +

(
Γ(τk)

I

)
uk

(5)

with Γ(τk) :=
∫ h−τk

0
eAsdsB a matrix depending on the un-

certain time-varying delay τk.
Hence, the stability analysis for the uncertain system (5)

with the uncertainty parameter τk ∈ [τmin, τmax] (given a
discrete-time controller such as a lifted state feedback uk =
−Kξk) is essentially a robust stability analysis problem. The
obstruction to apply existing robust stability analysis tech-
niques directly is that the uncertainty appears in an expo-
nential fashion in Γ(τk) of (5). To make the formulation
(5) suitable for robust stability analysis, overapproximation
techniques are employed in the literature to embed the origi-
nal model (as tight as possible) in a larger model, which has
nice structural properties, such as discrete-time polytopic
models [2, 9, 24] with (or without) additive norm-bounded
uncertainties. These polytopic models are suitable for the
application of available robust stability methods.

3. POLYTOPIC OVERAPPROXIMATION
The exponential uncertainty in the discrete-time NCS mo-

del (5) is entirely represented by the matrix Γ(τk) satisfying
Γ(τk) ∈ Γ, k ∈ N, with

Γ := {Γ(τ ) | τ ∈ [τmin, τmax]}. (6)

To perform the robust stability analysis we aim to overap-
proximate the set of matrices Γ in (6) as

Γ ⊆

⎧⎪⎨
⎪⎩

N∑
i=1

αi[Fi +GiΔHi] | α =

⎛
⎜⎝

α1

...
αN

⎞
⎟⎠ ∈ A, Δ ∈Δ

⎫⎪⎬
⎪⎭ ,

(7)
where Fi ∈ R

n×m, Gi ∈ R
n×q , Hi ∈ R

q×m, i = 1, . . . , N , are
suitably constructed matrices with N the number of vertices
in the polytopic overapproximation. In addition, Δ is a
specific set of structured matrices (e.g. with a norm bound

‖Δ‖ :=
√

λmax(Δ�Δ) ≤ 1) and

A = {α ∈ R
N | αi ≥ 0, i = 1, . . . , N and

N∑
i=1

αi = 1}. (8)

If an overapproximation of the matrix set Γ is available, then
the system (5) can be embedded in the new polytopic system
with structured uncertainty given by

ξk+1 =
∑N

i=1 αk,i

[(
eAh

∫ h

0
eAsdsB − Fi −GiΔkHi

0 0

)
ξk

+

(
Fi +GiΔkHi

I

)
uk

]
(9)

with Δk ∈ Δ and αk = (αk,1, . . . , αk,N )
� ∈ A for all k ∈

N. Hence, once we obtain an overapproximation of Γ as in
(7), the transformation of (5) into a polytopic model (9)

is straightforward. Although for the sake of transparency
we only consider the small-delay case, in principle the same
techniques directly apply to the general NCS setup as in
[5] in which large delays, packet dropouts and time-varying
sampling intervals are included.
In the literature, many different ways of constructing such

polytopic embeddings of the uncertain system as in (7) are
proposed, see e.g. [5–8, 11, 13, 15, 16, 19, 33, 34]. However, it
remains unclear how these methods compare both in terms
of computational complexity (number and size of LMIs) and
conservatism introduced by the polytopic embedding. In
Section 5, after introducing LMI-based stability conditions
for (9) in the next section, we present an overview of the
different approaches available. In Sections 6 and 7 we will
qualitatively and quantitatively compare the different ap-
proaches.

4. LMI-BASED STABILITY ANALYSIS
If a lifted state feedback

uk = −Kξk = −(Kx Ku)

(
xk

uk−1

)
(10)

is used in (9), the closed-loop system can be directly trans-
formed into

ξk+1 =
N∑

i=1

αk,i(Acl,i +Bcl,iΔkCcl,i)ξk (11)

with

Acl,i =

(
eAh − FiKx

∫ h

0
eAsdsB − FiKu − Fi

−Kx −Ku

)
,

Bcl,i =

(
Gi

0

)
, Ccl,i = (−HiKx −Hi(I +Ku)) ,

i = 1, . . . , N , Δk ∈ Δ and αk ∈ A, k ∈ N. Based on this
model, we present stability analysis results with or without
additive uncertainties Δk in a concise fashion next.

4.1 Without uncertainty (Δk = 0)
The following theorem provides a sufficient condition for

the stability of the closed-loop NCS system (1), (2), (10).

Theorem 4.1. Suppose there exist matrices Pi � 0, i =
1, . . . , N , satisfying1

Pi −A
�
cl,iPjAcl,i � 0, (12)

for all i, j = 1, . . . , N . Then, (11) is globally asymptotically
stable (GAS). In addition, the continuous-time NCS given
by (1), (2), (10) is GAS as well.

Two important observations are in order:

• The result of the theorem is based on a parameter-
dependent quadratic Lyapunov function

V (ξk, τk) = ξ
�
k P (τk)ξk, (13)

see e.g. [5, 9]. We can reduce the number of LMIs, at
the cost of introducing conservatism, by choosing Pi =
P , for all i = 1, . . . , N , yielding a so-called common
quadratic Lyapunov function, see, e.g. [8].

1We write H � 0 for a square matrix H if H is symmetric
and satisfies x�Hx > 0 for all x 	= 0.
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• Theorem 4.1 does not only guarantee the stability of
the discrete-time NCSmodel (11), but also of the conti-
nuous-time sampled-data NCS system (1), (2), (10),
see [6].

Remark 4.2. In [5] also LMI-based synthesis conditions
are given for the design of stabilizing lifted state feedbacks as
in (10) and genuine state feedbacks uk = −Kxxk (i.e. Ku =
0 in (10)).

4.2 With uncertainty (Δk 	= 0)
Now we present sufficient conditions for the stability of the

closed-loop NCS system (1), (2), (10) in case Δk is present
in the overapproximation. Assuming that the set Δ has a
block diagonal structure, i.e.,

Δ =
{
diag(Δ1

, . . . ,ΔL) | Δj ∈ R
qj×qj , ‖Δj‖ � 1,

for j ∈ {1, . . . , L}
}
, (14)

allows us to use the full-block S-procedure, see [32], for which
we define the following set of matrices

R =
{
diag(r1I1, . . . , rLIL) ∈ R

q×q | rj > 0

for j ∈ {1, . . . , L}
}
, (15)

where Ij is an identity matrix of size qj and
∑L

j=1 qj = q.

Theorem 4.3. [10] Suppose there exist matrices Pi �
0,and matrices Ri ∈ R, i = 1, . . . , N , satisfying(

Pi −A�cl,iPjAcl,i − C�cl,iRiCcl,i A�cl,iPjBcl,i

B�cl,iPjA
�
cl,i Ri −B�cl,iPjBcl,i

)
� 0

(16)
for all i, j = 1, . . . , N . Then (11) is globally asymptotically
stable (GAS). In addition, the continuous-time NCS given
by (1), (2), (10) is GAS as well.

In the above theorem, one can also adopt a common qua-
dratic Lyapunov function by taking Pi = P for i = 1, . . . , N .

5. OVERAPPROXIMATIONTECHNIQUES
In Sections 5.1-5.4, we present four different ways of con-

structing an overapproximation of the matrix uncertainty
set Γ in (7) based on the Jordan form (Section 5.1), the
Cayley-Hamilton theorem (Section 5.2), the Taylor series
(Section 5.3) and gridding (Section 5.4). We note that the
first two approaches lead to overapproximations without ad-
ditive uncertainties Δk, whereas the Taylor series and grid-
ding approaches do require such additive uncertainties.

5.1 Real Jordan form
The first method is based on exploiting the real Jordan

form of the continuous-time system matrix A ∈ R
n×n, which

is given by [22, 36]:

J = Q
−1

AQ (17)

with Q ∈ R
n×n an invertible matrix that contains the (real

and imaginary parts of the) generalized eigenvectors of A

with J a block diagonal matrix given by

J = diag(J1, . . . , Jp), (18)

where Jj , j = 1, 2, . . . , p, is a so-called real Jordan block that
corresponds to either a real eigenvalue λj ∈ R or a pair of
complex conjugate eigenvalues aj ± bji with bj 	= 0. In case

of a real eigenvalue λj ∈ R, the corresponding Jj ∈ R
rj×rj

is given by

λj ,

(
λj 1
0 λj

)
, . . . ,

⎛
⎜⎜⎜⎜⎜⎝

λj 1 0 . . . 0
0 λj 1 . . . 0
...

. . .
...

0 0 . . . λj 1
0 0 . . . 0 λj

⎞
⎟⎟⎟⎟⎟⎠ . (19)

In case of a pair of complex conjugate eigenvalues aj ± bji

with bj 	= 0, the real Jordan block Jj ∈ R
2rj×2rj has the

form

Dj ,

(
Dj I
0 Dj

)
, . . . ,

⎛
⎜⎜⎜⎜⎜⎝

Dj I 0 . . . 0
0 Dj I . . . 0
...

. . .
...

0 0 . . . Dj I
0 0 . . . 0 Dj

⎞
⎟⎟⎟⎟⎟⎠ (20)

with the matrix Dj defined as

Dj =

(
aj −bj

bj aj

)
. (21)

Using this real Jordan decomposition it is clear that

Γ(τk) =

∫ h−τk

0

e
As

dsB =

Q

∫ h−τk

0

e
Js

dsQ
−1

B =
ν∑

i=1

γi(h− τk)SiB (22)

for certain matrices S1, . . . , Sν ∈ R
n×n, where ν ≤ n is the

degree of the minimal polynomial qmin of A. Note that the
minimal polynomial of A is the monic polynomial p of small-
est degree that satisfies p(A) = 0. The minimal polynomial
can be easily obtained [22, 36] from the Jordan normal form.
Actually, ν is equal to the sum of all the maximal dimen-
sions of the Jordan blocks corresponding to all the distinct
eigenvalues of A. The functions γi correspond to the dis-
tinct eigenvalues of the matrix A. Indeed, they take the
form t 
→ tl−1eλjt − δ1,l, l = 1, . . . , rj in case λj ∈ R \ {0}
and the form t 
→ tl, l = 1, . . . , rj when λj = 0, where rj×rj

is the size of the corresponding (real) Jordan block in (19).
Here, δ1,l denotes the Kronecker delta, which is equal to 1
in case l = 1 and 0 otherwise. For complex conjugate pairs
of eigenvalues γi takes the form t 
→ tl−1eajt cos(bjt) − δ1,l

or t 
→ tl−1eajt sin(bjt) with l = 1, . . . , rj , where the size of
the real Jordan block in (20) is 2rj × 2rj .
By computing

γ
i
:= min

τ∈[τmin,τmax]
γi(h− τ ) and γ̄i := max

τ∈[τmin,τmax]
γi(h− τ ),

(23)
for i = 1, . . . , ν, we obtain that

Γ(τ ) ∈ Co{F1, . . . , F2ν } (24)

for all τ ∈ [τmin, τmax] with

{F1, . . . , F2ν} =

{ ν∑
i=1

ηiSi | ηi ∈ {γ
i
, γi} for i = 1, . . . , N

}
.

(25)
Here, Co{F1, . . . , FN} is the convex hull of {F1, . . . , FN}, i.e.

Co{F1, . . . , FN} := {
N∑

i=1

αiFi | α ∈ A}.
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Hence, we obtain an overapproximation as in (7) with Gi = 0
and Hi = 0 for all i and thus no additive uncertainty Δ.

5.2 Cayley-Hamilton theorem
The second method is based upon the Cayley-Hamilton

theorem. This theorem states that, given the characteristic
polynomial of A, i.e. q(λ) := det(λIn − A), then q(A) = 0,
where In is the n × n-identity matrix. Again, we will use
here the minimal polynomial of A that satisfies qmin(A) = 0
as well. Clearly, based on the Cayley-Hamilton theorem, the
degree of the minimal polynomial (denoted by ν) is smaller
than or equal to n. Using the minimal polynomial it is
possible to express all powers of A of order ν and higher as
a combination of the first ν powers of A, i.e.

A
j−1 =

ν∑
i=1

ci,jA
i−1 (26)

for some ci,j ∈ R, i = 1, . . . , ν, j > ν. Furthermore, for all
j = 1, . . . , ν and i = 1, . . . , ν let ci,j = 1 when i = j and
ci,j = 0 when i 	= j.
Next, we define the functions βi : R → R for all i =

1, . . . , ν as

βi(t) :=

∫ t

0

∞∑
j=1

ci,j

(j − 1)!
s

j−1
ds, (27)

and use (26) to obtain

Γ(τ ) =

∫ h−τ

0

e
As

Bds =

∫ h−τ

0

∞∑
j=1

Aj−1Bsj−1

(j − 1)!
ds =

ν∑
i=1

∫ h−τ

0

∞∑
j=1

ci,jA
i−1Bsj−1

(j − 1)!
ds =

ν∑
i=1

βi(h− τ )Ai−1
B.

(28)

The functions βi can be derived exactly using the real Jordan
form of A. Indeed, (22) yields∫ t

0

e
As

dsB =
ν∑

l=1

γl(t)SlB (29)

with Sl ∈ R
n×n and the functions γl, l = 1, . . . , ν, as in

Section 5.1. We use now that the minimality of the min-
imal polynomial implies that the matrices I,A, . . . , Aν−1

are linearly independent in R
n×n and that by inspection

of eAs = Q−1eJsQ, where A = Q−1JQ with J the real
Jordan form of A, it follows that S1, . . . , Sν are linearly in-
dependent as well and span the same linear space in R

n×n

as I,A, . . . , Aν−1. Hence, there is a unique invertible ma-
trix T ∈ R

ν×ν such that Sl =
∑ν

i=1 Tl,iA
i−1, l = 1, . . . , ν.

Substituting this in (29) yields∫ t

0

e
As

dsB =
ν∑

l=1

γl(t)
ν∑

i=1

Tl,iA
i−1

B

=
ν∑

i=1

(
ν∑

l=1

γl(t)Tl,i)A
i−1

B.

Based on (28) it holds that βi(t) =
∑ν

l=1 γl(t)Tl,i, i =
1, . . . , ν and thus we computed the functions βi exactly. Cal-
culating now

β
i
:= min

τ∈[τmin,τmax]
βi(h− τ ) and β̄i := max

τ∈[τmin,τmax]
βi(h− τ ),

(30)

for all i = 1, . . . , ν, we obtain that

Γ(τ ) ∈ Co{F1, . . . , F2ν }

for all τ ∈ [τmin, τmax] with

{F1, . . . , F2ν}=

{
ν∑

i=1

ηiA
i−1

B | ηi ∈ {β
i
, βi} i = 1, . . . , ν

}
.

(31)
Hence, we obtain an overapproximation as in (7) in which
Gi = 0 and Hi = 0 for all i and thus no additive uncertainty
Δ.

5.3 Taylor series
Using the definition of the matrix exponential, we have

e
Aρ =

∞∑
i=0

Ai

i!
ρ

i (32)

for ρ ∈ R, which leads to

L(ρ) =

∫ ρ

0

e
As

ds =

∞∑
i=1

Ai−1

i!
ρ

i
. (33)

Since the integral of the matrix exponential satisfies∫ a+b

0

e
As

ds =

∫ a

0

e
As

ds+

∫ b

0

e
As

ds

(
A

∫ a

0

e
As

ds+ I

)
,

taking a = h− τmax and b = τmax − τk the uncertain matrix

Γ(τk) =
∫ h−τk

0
eAsdsB, τk ∈ [τmin, τmax] can be expressed

as

Γ(τk) = Γ(τmax) + L(τmax − τk) (AΓ(τmax) +B) , (34)

where the exponential uncertainty L(·) is independent of h

and where the parameter τmax − τk ∈ [0, τmax − τmin].
Consider now the p-order Taylor approximation of the un-

certain term L(ρ) in (33) given by

L
p(ρ) =

p∑
i=1

Ai−1

i!
ρ

i
. (35)

The remainder of the approximation ΔpL(τk) = L(τk) −
Lp(τk) is then given by

Δp
L(τk) =

∞∑
i=p+1

Ai−1

i!
(τmax − τk)

i
. (36)

Using the above, we obtain the p-order Taylor approxima-
tion of Γ(τk) as

Γp(τk) = Γ(τmax)+

(
p∑

i=1

Ai−1

i!
(τmax − τ )i

)
(AΓ(τmax) +B) .

(37)
A simple method to construct a convex polytope from this

description is to consider the terms ρi(τk) = (τmax−τk)
i, i =

1, . . . , p as independent parameters. Similarly to the case of
the real Jordan form, this would result in a matrix polytope
with 2p vertices. However, in the case of the p-order Tay-
lor approximation, we can exploit the relation between the
different parameters, which is given by ρi(τk) = (ρ1(τk))

i ≥
0, i = 1, . . . , p. The following lemma shows how to use these
identities to construct a polytope with only p+ 1 vertices.

Lemma 5.1. [20] Consider a polynomial matrix

L(ρ) = L0 + ρL1 + ρ
2
L2 + . . .+ ρ

p
Lp, (38)
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where ρ ∈ R and Li ∈ R
n×n, i = 1, . . . , p. For each upper

bound ρ ≥ 0 on ρ there exist matrices Ui ∈ R
n×n, i =

1, . . . , p+ 1 such that the following property holds:
For all ρ ∈ [0, ρ] there exist parameters μi(ρ), i = 1, . . . , p+1
with

p+1∑
i=1

μi(ρ) = 1, and μi(ρ) ≥ 0, i = 1, . . . , p+ 1

such that

L(ρ) =

p+1∑
i=1

μi(ρ)Ui. (39)

In particular, Ui, i = 1, . . . , p can be chosen as

U1 = L0,

U2 = ρL1 + L0,

U3 = ρ
2
L2 + ρL1 + L0,

...

Up+1 = ρ
p
Lp + ρ

p−1
Lp−1 + . . .+ ρ

2
L2 + ρL1 + L0.

Applying the previous lemma to (37) leads to Γp(τk) ∈
Co {F1, F2, . . . , Fp+1} with F1 = Γ(τmax)

Fi = Γ(τmax)+

(
i−1∑
j=1

Aj−1

j!
(τmax − τmin)

j

)
(AΓ(τmax) +B)

for i = 2, . . . , p+ 1.
Using the remainder of the Taylor series given in (36)

together with (34), we obtain an overapproximation as in
(7) with an additive uncertainty described by

Gi = γI and Hi = AΓ(τmax) +B, i = 1, . . . , p+ 1 (40)

and

Δ = {Δ ∈ R
n×n | ‖Δ‖ ≤ 1}, (41)

where

γ = max
ρ∈[0,τmax−τmin]

∥∥∥∥∥
(∫ ρ

0

e
As

ds−

p∑
i=1

Ai−1

i!
ρ

i

)∥∥∥∥∥ (42)

with, as before, ‖M‖ :=
√

λmax(M�M).

5.4 Gridding and norm bounding
In this section, we present a method proposed in [11] to

study the stability of NCS with time-varying sampling times.
This method is based on the gridding idea of [13, 31, 34]
to obtain Fi by evaluating Γ(τ ) of (6) at a collection of
selected transmission delays combined with improved tech-
niques for norm bounding of the remaining exponential un-
certainty. The method proposed in [11] has been extended
in [10], to include for time-varying delays and A-matrices
with eigenvalues having an algebraic multiplicity larger than
one. Contrary to [13, 31, 34], the method of [10, 11] allows
for convex combinations of the vertices, thereby reducing
the magnitude of the additive uncertainty if compared to
[13, 34]. A second difference between [13, 34] and [10, 11] is
that in the latter the structure of the additive uncertainty is
exploited using the full-block S-procedure, see [32], to fur-
ther reduce conservatism. A related procedure was proposed
in [33], which is based on a LQ criterion and studies loss
of performance instead of stability of systems with varying

sampling intervals (no delays). We also would like to men-
tion“gridding-like”methods that use only one nominal value
for the sampling interval and/or delay (essential one grid
point) and compute a norm-bound on the remaining uncer-
tainty induced by the varying sampling interval/delays, see
e.g. [1, 12]. However, these works do not exploit the poten-
tial of using more grid points to reduce conservatism.
In the method presented here, we take a priori chosen

grid points τ̃1, . . . , τ̃N , and construct a norm-bounded ad-
ditive uncertainty Δ ∈ Δ to capture the remaining ap-
proximation error. Hence, Fi = Γ(τ̃i), with i = 1, . . . , N ,
in (11). The approximation can be made arbitrarily tight,
from a stability point of view, by increasing the number
of grid points τ̃1, . . . , τ̃N , in a well-distributed fashion, as
we will formally show in Theorem 5.3. By specifying τ̃i,
i = 1, . . . , N , and thereby determining Fi, it only remains
to show how to choose Gi and Hi in (11) and Δ in order to
satisfy (7). This additive uncertainty is used to capture the
approximation error between the original system (4) and the
polytope Co{F1, . . . , FN}. In order for (7) to hold, for each
τ ∈ [τmin, τmax], there should exist some α ∈ A and Δ ∈Δ,
such that

Γ(τ )−
N∑

i=1

αiFi =
N∑

i=1

αiGiΔHi. (43)

Hence, we should determine the worst-case distance between
Γ(τ ) and Co{F1, . . . , FN} leading to an upper bound on the
approximation error. To obtain such a bound, we partition
the set [τmin, τmax] into N − 1 line segments S1, . . . , SN−1

and construct different uncertainty bounds for each Sm, m =
1, . . . , N − 1. This procedure is formalised below.

Procedure 1.

• Select N distinct delays τ̃1, . . . , τ̃N such that τmin =:
τ̃1 � τ̃2 < . . . < τ̃N−1 � τ̃N := τmax.

• Define

Fi = Γ(τ̃i), i = 1, . . . , N (44)

• Decompose the matrix A, as in (1), into its real Jor-
dan form [22, 36], i.e. A := QJQ−1, where Q is an
invertible matrix and

J = diag(J1, . . . , JL) (45)

with Jj ∈ R
nj×nj , j = 1, . . . , L, the j-th real Jordan

block of A, see (17)-(21).

• Compute for each line segment Sm = [τ̃m, τ̃m+1], m =
1, . . . , N − 1, and for each real Jordan block Jj, j =
1, . . . , L the worst case approximation error, i.e.

δ̃j,m = max
α̃

1
+ α̃

2
= 1,

α̃
1
, α̃

2 � 0

∥∥∥ 2∑
l=1

α̃
l

∫ α̃1τ̃m+α̃2τ̃m+1

τ̃m+l−1

e
Ji(h−s)

ds
∥∥∥.

(46)
For a detailed explanation of the origin of the approx-
imation error bounds, see [10].

• Map the obtained bounds (46) at each line segment
Sm, m = 1, . . . , N − 1, for each Jordan block Jj , j =
1, . . . , L, to their corresponding vertices i = 1, . . . , N ,
according to

δj,i =

{
δ̃j,i i ∈ {1, N},

max{δ̃j,i−1, δ̃j,i} i ∈ {2, . . . , N − 1}.
(47)
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• Finally, define

Hi = Q
−1

B (48)

and

Gi := Q · diag(δ1,iI1, . . . , δL,iIL) (49)

with Ij the identity matrix of size nj , complying with
the size of the j-th real Jordan Block. The additive
uncertainty set Δ ⊆ R

n×n is now given by

Δ =
{
diag(Δ1

, . . . ,ΔL) | Δj ∈ R
nj×nj ,

‖Δj‖ � 1, for j = 1, . . . , L
}

. (50)

Theorem 5.2. Consider the NCS given by (4),(10) with
τk ∈ [τmin, τmax]. If system (11) is obtained by following
Procedure 1, then (7) holds and thus (11) is an overapprox-
imation of (4).

Proof. The proof is similar to the one of Theorem III.2
of [10] and is therefore omitted.

Given the results above, it is natural to ask if and how con-
servative this methodology is. The answer is given by the
following result, showing that if the original system (4),(10)
(without any overapproximation) is quadratically stable, in
the sense that a parameter-dependent quadratic Lyapunov
function exists, the presented gridding procedure will guar-
antee stability and will find a respective Lyapunov function
for a sufficiently refined partitioning of the set [τmin, τmax].
To show this fact, we define the notion of ε-refined parti-
tioning, meaning that it holds that

max
m∈{1,...,N−1}

‖τ̃m − τ̃m+1‖ � ε (51)

for ε > 0.

Theorem 5.3. Suppose system (4), (10) has a parameter-
dependent quadratic Lyapunov function, i.e., there exists
P : [τmin, τmax] → R

(n+m)×(n+m) such that for some 0 <

a < b and γ > 0 it holds that for all τ ∈ [τmin, τmax]
aI < P (τ ) < bI and for all τ1, τ2 ∈ [τmin, τmax]

(Ã(τ1)− B̃(τ1)K̄)�P (τ2)(Ã(τ1)− B̃(τ1)K̄)− P (τ2) ≺ −γI.
(52)

Then, there exists ε0 > 0, such that for any ε-refined parti-
tioning with 0 < ε < ε0, the LMIs in Theorem 4.3 hold for
the resulting overapproximations using gridding and norm-
bounding.

Proof. The proof is given in [10].

This result states that the polytopic overapproximation
does not introduce conservatism when analyzing stability
using delay-dependent quadratic Lyapunov functions.

6. QUALITATIVE COMPARISON
There are various aspects on which the presented meth-

ods can be compared. In the comparison below we use
the abbreviations JND, CH, TS and GND for real Jordan
form, Cayley-Hamilton, Taylor series and gridding (with
norm bounding), respectively.

Additive uncertainty.
The GND and TS methods require an additive uncertainty

term Δk in (7), while the JNF and CH methods do not.

Approximation error.
The CH and JNF methods, at least as described in Sec-

tion 5, have essentially a fixed approximation error. They
do not have a tuning parameter to modify the overapproxi-
mation error (and thereby the numerical complexity of the
resulting LMIs), at least not in a direct way. Also the TS
approach for a given p results in a fixed overapproximation
error due to the usage of Lemma 5.1. Although the effect of
the additive uncertainty Δ can be made arbitrarily small
in the TS method, by increasing the order p in (35), it
is in general not true that the overapproximation error of
the polynomial matrix Lp(ρ) in (35) by a polytopic matrix
set described in (39) is vanishing when p approaches infin-
ity. Stated differently, the difference between Lp(ρ) in (35)
and the polytopic matrix set (39) does not disappear when
p →∞. The fact that the effect of the additive uncertainty
goes to zero for increasing p to infinity is due to the fact that
the additive uncertainty Δk in (41) is scaled by Gi = γI in
(40) and γ in (42) vanishes for p →∞.
Only the GND approach leads to arbitrarily tight over-

approximations by increasing the number of grid points N .
Indeed, when N → ∞ and making the partitioning by the
grid points sufficiently refined, δ̃j,m in (46) and thus δj,i in
(47) approaches 0. As a consequence, Gi in (49) approaches
zero and thus the overapproximation for GND can be made
as tight as desired. Theorem 5.3 proves this formally in
terms of poly-quadratic stability: If a parameter-dependent
quadratic Lyapunov function exists for the original system,
then the LMIs based on the GND method will become fea-
sible for sufficiently refined gridding.
However, the CH, JNF and TS methods can be extended

using the idea that was advocated in [21] [25]. Basically,
the idea is based on splitting the interval [τmin, τmax] into
disjoint subintervals [τ̃l, τ̃l+1], l = 0, 1, . . . , T − 1 such that
τmin =: τ̃0 � τ̃1 < . . . < τ̃T−1 � τ̃T := τmax. Hence,
[τmin, τmax] =

⋃T−1
l=1 [τ̃l, τ̃l+1]. We can now apply the de-

scribed CH, JND and TS methods on each of the individual
subintervals (thus T times instead of 1 time). By making
T arbitrarily large we can approximate the true set Γ ar-
bitrarily accurate. Indeed, αi and αi for [τ̃l, τ̃l+1] in (23)

(JNF) and β
i
and βi for [τ̃l, τ̃l+1] in (30) (CH) can be made

arbitrarily close on each of the subintervals. A similar rea-
soning applies for the TS method. If this splitting idea is
applied, we call the adapted versions of the CH, JNF and TS
methods, the CH-s, JNF-s and TS-s methods, respectively.
The price paid of splitting the range [τmin, τmax] is a linear
growth in numerical complexity in terms of the number of
subintervals (T ).

Numerical complexity.
To assess the stability of the NCS the LMIs in Section 4

have to be solved. Given the dimension nξ := n+m of the
lifted state vector in (4), N the number of vertices in the
polytopic overapproximation (7) and Δk ∈ R

q×q, we obtain
the following numbers that indicate the complexity. Solving
(12) for a common quadratic Lyapunov function (CQLF)
Pi = P requires the solution of one LMI (by stacking all
required LMIs in (12) together with P � 0 in one block
diagonal matrix that has to be positive definite) of size (N+
1)nξ in

1
2
(nξ + 1)nξ free scalar variables (being the entries

of P ). Solving (12) for a parameter-dependent quadratic
Lyapunov function (pd-QLF) leads to one LMI of size (N2+
N)nξ in

1
2
N(nξ + 1)nξ free variables (Pi, i = 1, . . . , N). In
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case additive uncertainty Δ ∈ R
q×q has to be taken into

account a CQLF using (16) requires the solution to one LMI
of size N(nξ+q)+nξ+NL in 1

2
(nξ+1)nξ+NL free variables

(being P and ri,j > 0, i = 1, . . . , N , j = 1, . . . , L, where
Ri = diag(ri,1, . . . , ri,L), i = 1, . . . , N and L is the number
of blocks in Δ as in (14). In case a pd-QLF is used in (16),
we need to solve an LMI of size N2(nξ + q) + Nnξ + NL

in 1
2
N(nξ + 1)nξ + NL free variables (Pi and ri,j > 0, i =

1, . . . , N , j = 1, . . . , L). From these numbers the dominance
of N is obvious, especially since nξ is a given number in the
original system setup, q = n for the TS and GNB approaches
and L (the number of blocks in Δ) is equal to 1 for the
TS and L ≤ n for the GNB approach. Therefore, below
we will focus in particular on the number N of vertices in
the polytopic overapproximation for each of the individual
methods.
The JNF and CH methods are of a similar complexity

as they both have NJNF = NCH = 2ν vertices in the poly-
topic overapproximation. In case the splitting of the interval
[τmin, τmax] is applied for JNF and CH, then the complexity
rises linearly as a function of the number of subintervals T .
Each subinterval has 2ν vertices in the polytopic overapprox-
imation, which results overall in NJNF−s = NCH−s = T2ν .
The TS method has NTS = p + 1 vertices of the polytopic
overapproximation, where p indicates the truncation order in
the Taylor series. The TS-s method has NTS−s = T (p+ 1).
Finally, the GNB approach based on N gridpoints has N
vertices in the polytopic overapproximation.

Remark 6.1. In [15, 30] a technique is proposed that can
be used to modify the JNF and CH methods to result in
2ν vertices of the polytopic overapproximation at the cost
of introducing more conservatism in the overapproximation
(overapproximation being less tight).

Summary of the qualitative comparison.
The exponential dependence of NJNF = NCH on ν (where

in many cases ν = n) shows that the plain JNF and CH
methods suffer from the “curse of dimensionality” in the
sense that the complexity grows exponentially in the state
dimension n of the plant to be controlled. One can use
the technique indicated in Remark 6.1 to beat the curse of
dimensionality and obtain linear growth of complexity in
terms of ν at the cost of increased overapproximation er-
rors and thus more conservatism. Hence, if the overapprox-
imation error has to be made sufficiently small, this would
require using JNF-s or CH-s with T being larger than the
case without the usage of the technique in Remark 6.1. To
be precise, if T1 subintervals would be needed for JNF-s or
CH-s without the technique and T2 > T1 subintervals with
the technique in Remark 6.1 to guarantee a certain overap-
proximation error, we obtain T12

ν in the former and 2T2ν in
the latter case. The ratio of T2 versus T1 determines which
method would be computationally friendlier (given a small
overapproximation error). Resuming, these methods have
the drawback that in case the overapproximation error has
to be made small, the JNF-s and CH-s always require an in-
teger multiple of 2ν (or 2ν) vertices. Hence, improvements
in overapproximation errors always require (severe) jumps
of at least 2ν (or 2ν) in the number of vertices. This latter
drawback is not present in the TS method as p can be chosen
independent of the (dimensions of the) NCS at hand. This
gives more control over the complexity than the JNF and
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Figure 2: Comparison of the polytopic overapprox-

imations for Example 7.1.

CH methods and hence, this method does suffer less from
the “curse of dimensionality.” However, in case the overap-
proximation error has to be made small TS-s has to be used
as discussed above. Hence, although p can be chosen (pos-
sibly different p for each subinterval) still T might become
prohibitively large and thereby the number of vertices pT
in the polytopic overapproximation (given a desired level of
accuracy).
The GND method seems to be most favorable in both

aspects of numerical complexity and accuracy. As in the
TS method, the number of grid points can be chosen inde-
pendent of the (dimensions of the) NCS at hand. This gives
direct control over the size of the resulting LMI to be solved.
In addition, N can also be used directly (without any modi-
fications to the GND method) to get the overapproximation
error arbitrarily small, a feature that the other methods does
not offer directly. From a qualitative assessment, this seems
to make the GND method most effective for the stability
analysis of NCS, although a systematic manner of select-
ing the grid points is at present not available. In the next
section we will investigate whether these conclusions remain
true if we apply the methods to a numerical example.

7. NUMERICAL COMPARISON
The above overapproximation schemes are now applied to

the following example.

Example 7.1. The example is taken from [41] and is given
by (1) with

A =

(
0 1
0 −0.1

)
; B =

(
0
0.1

)
(53)

and the genuine state feedback uk = −Kxk with K = (3.75
11.5) We take h = 1, τmin = 0 and τmax = 0.1.

7.1 Plots of overapproximation of Γ
We will plot now the overapproximations of Γ := {Γ(τ ) |

τ ∈ [τmin, τmax]} as obtained for the various methods dis-
cussed above for the example. This results in Figure 2.
These figures also indicate the area of the overapproxima-

tions as a measure for comparison (although one has to be
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a bit careful with drawing conclusions from these area num-
bers). In Figure 2 (for Example 7.1) CH outperforms JNF
(with the same number of vertices, being 2ν = 2n = 4). For
Example 7.1, TS and GNB have a much tighter approxima-
tion than JNF and CH using only 3 vertices. Hence, TS and
GNB are less conservative than CH and JNF and require less
vertices for this example. Based on the area numbers we can
see that GNB performs slightly better than TS. In the next
section we evaluate if such conclusions can also be drawn on
the basis of the stabilization region for a parameterized set
of feedback laws.

7.2 Stabilization region
Consider Example 7.1 in which we use the state feedback

uk = −Kxk with K = (3.75 K2) (note that K in (10) is
equal to K = (3.75 K2 0)). We take h = 1. This results in
closed-loop systems of the form (11) parameterized in K2.
Below we plot the largest τmax (as a function of K2) for
which the NCS with delays satisfying τk ∈ [0, τmax], k ∈ N

is stable (as guaranteed by the LMI-based stability test us-
ing common quadratic Lyapunov functions corresponding to
one of the overapproximation methods). For references we
also displayed the range of state feedbacks that result in sta-
ble NCSs for constant delays in [0, τmax]. As this forms an
upperbound for the stability boundary for state feedbacks
for time-varying delays in [0, τmax], it is a general indication
how conservative the derived stability conditions with re-
spect to the true stability boundary. The results are plotted
in Figure 3.
First, we observe that in this example a smaller polytope

in Figure 2 roughly leads to a larger stability range, which
stresses the need for tight over-approximation techniques.
However, strictly speaking this statement is only true when
one polytopic region is strictly contained in the other. If this
is not the case, one cannot make any formal comparison. It
then depends on which of the vertices in the overapproxi-
mation is dominant (most restrictive) for determining the
stability region in terms of the parameterized feedbacks.
Second, regarding the largest region of stabilizing feed-

backs, JNF is performing the worst, while CH, TS and GND
produce comparable results (although CH needs more ver-
tices in the overapproximation). Actually, for most systems
with state dimension 2 (n = 2) CH outperforms JNF as was
shown by studying many examples. However, a recent nu-
merical example with state dimension n = 4 (inspired by
the NCS benchmark example of a linearized batch reactor
[38, 39]) JNF was outperforming CH regarding the region of
stabilizing feedbacks. Due to space limitations, we cannot
present these results here, but it can be concluded that it
seems to be example-related, whether JNF or CH is leading
to tighter approximation regions. Finally, we observe that
GNB performs best in the example providing a favorable
tradeoff between numerical complexity and conservatism of
the stability characterization, as was also concluded in Sec-
tion 6 (although for this particular example TS is close).

8. CONCLUDING REMARKS
In discrete-time modeling approaches for the stability anal-

ysis of linear Networked Control Systems (NCS) with un-
certain time-varying sampling intervals, delays and packet
dropouts, one generally arrives at discrete-time models with
uncertainties appearing in an exponential form. To render
such models suitable for robust stability analysis/controller
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synthesis, many different overapproximation techniques lead-
ing to discrete-time polytopic models (with and without ad-
ditive norm-bounded uncertainty) have been proposed in the
literature. In this paper, we present a comprehensive survey
of the existing overapproximation techniques based on the
real Jordan form, the Cayley-Hamilton theorem, the Taylor
series and gridding. A thorough comparison of these ap-
proaches on the basis of the conservatism introduced by the
overapproximation and the numerical complexity in terms
the number and size of the resulting LMI-based stability
conditions is presented. Advantages and disadvantages of
the different approaches are highlighted, which are further
illustrated by the application to a numerical example. The
same conclusions also hold in case these overapproximations
are used to synthesize stabilizing controllers as in [5], see
e.g. Remark 4.2, and [15, 16].
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