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Existence and Completeness of Solutions to
Extended Projected Dynamical Systems and
Sector-Bounded Projection-Based Controllers

W. P. M. H. Heemels

Abstract—Projection-based control (PBC) systems have
significant engineering impact and receive considerable
scientific attention. To properly describe closed-loop PBC
systems, extensions of classical projected dynamical
systems are needed, because partial projection operators
and irregular constraint sets (sectors) are crucial in PBC.
These two features obstruct the application of existing
results on existence and completeness of solutions. To
establish a rigorous foundation for the analysis and design
of PBC, we provide essential existence and completeness
properties for this new class of discontinuous systems.

Index Terms—Projected dynamical systems, hybrid
control, discontinuous dynamics, sectors, non-smooth
analysis.

[. INTRODUCTION

N RECENT years, there has been a strong interest in

projection-based control (PBC) systems, including the
hybrid integrator-gain system (HIGS) [4], [14], [15], in which
specific closed-loop signals are kept in sector-bounded sets
in order to overcome fundamental performance limitations
inherent to LTI control [11]. PBC’s potential in overcom-
ing these limitations was demonstrated in [15] and practical
successes were reported in lithography systems [3], force
atomic microscopes [14], etc. Interestingly, the fundamental
and important problem of well-posedness of PBC in the sense
of existence and completeness of solutions was so far only
partially addressed in [4], [13], where the plant model was
limited to be LTI and the external input signals (references,
disturbances) were restricted to so-called (piecewise) Bohl
functions (i.e., functions generated by LTI models). Clearly,
to expand the applicability of PBC, there is a strong interest
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to provide well-posedness guarantees for larger classes of
nonlinear plants and controllers, and more general and natural
input classes, such as piecewise continuous inputs.

The natural formalism to describe (closed-loop) PBC
systems is formed by the recently proposed extension [4], [13]
of classical projected dynamical systems (PDS) [5], [8].
“Classical” PDS consider a differential equation given by

x(1) = f(x(1) (D

in which the state x(r) € R” is restricted to remain inside a
set § € R", for all times ¢t € R>g, which in PDS is ensured
by redirecting the vector field at the boundary of S. Formally,
PDS are given for a continuous vector field f : R” — R” and
set S € R" (with further additional conditions) by

x  =TIsx, f(x)) with
[s(x,v) = argmin, ez, lw — V|

@)
3

for x € S and v € R". The set Ts(x) is the tangent cone of S at
x, defined formally in Section II, which essentially contains all
admissible velocities that keep the trajectories inside S. It is
possible to draw connections between this conventional PDS
and other formalisms used for modeling constraints on evo-
lution of state trajectories, which provide some insight about
the algorithms for simulating such systems [2].

Although the framework of PDS is a source of inspiration
to study PBC, it cannot properly describe the resulting closed-
loop PBC systems. This can be observed from the fact that (3)
allows projection along all possible directions of the state vec-
tor (including both controller and plant states) in the sense that
it just takes the vector ITg(x, v) € Ts(x) that is “closest” to v
irrespective of the direction Ilg(x, v) — v. Clearly, if (1) is a
closed-loop system in the sense of an interconnection of a
physical plant and a controller (and thus the state x consists
of physical plant states x, and controller states x.), one can-
not project freely in all directions. Indeed, the physical state
dynamics cannot be modified by projection; it is only possible
to “project” the controller (x.-)dynamics. Hence, in contrast
to PDS, there are only limited directions in order to “correct”
the vector field f(x) at the boundary, which we describe by a
subspace & C R". One then obtains

X = Iy g(x, f(x)) with 4)
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[ g(x, v) = argmin,c 7o) w—yesllv — vl (5) For all x € R", we define the set of active constraints by
for x € S and v € R". Hence, the projection Ilg g projects Jx)y=1{ie{l,...,m}| hj(x) =0} )]
the vector v onto the set of admissible velocities (in the tan- . )
(CQ): The functions h;, i = 1,...,m, are assumed to be

gent cone Ts(x), x € S) along & in such a way that the
correction w — v is minimal in norm. For these systems,
we coined the term extended Projected Dynamical Systems
(ePDS) in [4], [13], as they include the classical PDS (2)
as a special case by taking & = R”. Clearly, this new pro-
jection operator (5) and the corresponding ePDS (4) require
careful analysis to provide conditions on the vector field f,
constraint set S and projection directions & so that Ilg g is
well-defined, and the existence and completeness of solutions
to (4) is guaranteed.

Recently, such questions were answered for an alternative
extension [7] of PDS, called oblique PDS, that did not restrict
the projection directions as is needed for closed-loop PBC
systems, but allowed a state-dependent metric to execute the
projection in (6) leading to, loosely speaking,

(6)

where G(x) is a positive definite matrix for each x € § and
[lw — v||2G(X) = w =) Gx)(W—v). Although under rather
strict conditions [12] some connections can be established
between extended and oblique PDS, the underlying philosophy
is different, as well as the underlying mathematical structure.
Moreover, the well-posedness conditions in [7] are given for
constraint sets that are convex or Clarke regular [10], while
in the PBC, including HIGS [3], [4], [14], [14], [15], sectors
are used as constraint sets that do not satisfy these regular-
ity properties. This calls for new and alternative conditions
guaranteeing the well-posedness of the ePDS (4) with partial
projection operators as in (5) and irregular constraint sets such
as sectors. Such results will form the main contributions of this
letter, thereby laying a rigorous foundation for the analysis and
design of PBC. The first set of well-posedness results will be
given in Section II for ePDS, hence, with partial projection,
but still working with regular sets being finitely generated.
Based on these results, in Sections III and IV, we will provide
well-posedness results for ePDS with sectorsets and partial
projection, and will also show how closed-loop PBC systems
are covered by these results.

[s(x, v) = argmin,ero o W — vilGr).

Il. EXTENDED PDS ON FINITELY GENERATED
CONSTRAINT SETS

The primary object in our study of ePDS is the operator
ITg g(x, f(x)), which basically projects the unconstrained vec-
tor field f(x) on the set Ts(x), in the direction determined by
&, for each x € S. The tangent cone to a set S C R” at a point
x € S, denoted by Ts(x), is the set of all vectors v € R” for
which there exist sequences {x;}ieny € S and {tj}ien, Ti > O
with x; — x, 7; | 0 and i — oo, such that v = lim;_, o 2.

For ease of exposition, we consider sets S, which "are
described by the intersections of sublevel sets of finitely
many real-valued functions. In particular, for given functions
hi :R"—=R,i=1,...,m, we take S to be of the form

S={xeR"|h(x)>0, foralli=1,..., m}. @)

smooth and for each x € §, it holds that {Vh;(x),i € J(x)} are
linearly independent.

Under this constraint qualification, the tangent cone to S at
x is given by [9, Lemma 12.2], [2]:

Ts(x) = {v e R"|(Vhi(x),v) > 0,i € J(x)}. 9

Well-defined projection operator Tlg g: For the dynamical
system (4), it is important to study conditions under which the
right-hand side is well-defined, i.e., [Tg g(x, f(x)) is nonempty,
and preferably single-valued, for each x € § and f(x) € R".
Clearly, for a given S and &, this may not be the case in
general, so we need suitable conditions.

Proposition 1: Consider a closed set S, and a given sub-
space & C R”. For each x € S, if

Ts) N (f(x)+8E) #0

then Ilg g(x, f(x)) is non-empty. If S satisfies (7) and (CQ)
holds, then (10) implies that I1g g(x, f(x)) is a singleton.

Existence of Solutions: We now turn our attention to the
existence of Carathéodory solutions to the ePDS (4).

Definition 1: We call a function x : [0,T7] — R" a
(Carathéodory) solution to (5), if x is absolutely continuous
on [0, T] and satisfies i(f) = Ilg g(x(?),f(x(#))) for almost
all € [0,T] and x(r) € S for all t € [0, T]. We say that
x : [0, 00) — R” is a solution on [0, 00), if the restriction of
x to [0, T'] is a solution on [0, T'] for each T > 0.

Our road map to establish existence of Carathéodory solu-
tions is based on constructing the Krasovskii regularization of
the discontinuous dynamical system (4) and demonstrate the
existence of solutions to this regularization with additional
viability conditions in the sense of Aubin and Cellina [1].
We show then that all Krasovskii solutions satisfy the viabil-
ity condition, see (11) in the forthcoming Theorem 1, which
essentially says that the Carathéodory solutions coincide with
Krasovskii solutions for the ePDS.

To state the result, we let F(x) := I1g g(x, f(x)), and denote
the Krasovskii regularization by Kr(x) := Ns=oconF(B(x, 5)),
where con(M) denotes the closed convex hull of the set M, in
other words, the smallest closed convex set containing M.

Theorem 1: Assume that f is continuous and the set S in (7)
satisfies (CQ) and (10). Then, for all x € S, it holds that

Kp(x) N Ts(x) = {F)} = {IIg gx, f(x))}. (1)

For the proof of this result, we need to compute the
Krasovskii regularization of F, which is described as follows:

Proposition 2: For a continuous function f : R" — R", a
closed set S C R" satisfying (10), and F(x) = Ig g(x, f(x)),
it holds that

(10)

Kp(x) = con limsup PTS(y),gf(y), (12)
y—>x

where Px g(f(y)) = argminvek,f@)fveanv — fMIl, and the
lim sup on the right is interpreted in terms of convergence of

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on July 05,2023 at 11:48:16 UTC from IEEE Xplore. Restrictions apply.



1592

IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

sets. In particular, if S satisfies (7) and (CQ) holds, then
Kr () = con{Ppy ) g(f) | J CI@)},

where T;(x) ={veR"|(Vhix),v)>0,ieJ}.

Proof of Prop. 2: As the set sequence F(B(x, §)) is mono-
tonically increasing with 4§, i.e., F(B(x, 1)) € F(B(x, 62)), if
81 < 82, [10, Example 4.3(b), Proposition 4.30(b)] yield (12).

“D (13):” For § as in (7), and a fixed x € S, sup-
pose, w.lLo.g., J(x) = {1,...,m,}. Note that we can choose
vectors Vi, ..., vy, € R” such that the Jacobian of the map-
ping R™ > o = (a1,...,0p,) = (& + oy +--- +
O Ving)s -+« B, (ka1 vi+- - -, Vi, )) € R™ is nonsingu-
lar at « = 0 due to (CQ). Using the inverse function theorem,
it follows that, for each J C J(x) there exists a sequence
yr — x such that J(yx) = J. Along this sequence, it holds
that limyk—m PTS(yk),S(f(Yk)) = limyk—>x PTg(yk),S(f(yk)) =
PTJ'(X)’S(]C()C)), using (9). Now “2” in (13) follows from (12).

‘C:” Consider a sequence y; — x with z =
limy,— x Prg(y,).8(f (k). Due to continuity of h, we have
JOr) € Jx) for k large enough. Therefore, as only a
finite number J(yx)’s are possible, we can select a subse-
quence y;, — x with z = liml_)ooPTS(yk[),g(f(yk,)) and
J(yr,) =J C J(x) constant. Now “C” in (13) follows from the
last step in the “2 (13)”-proof, using characterisation (12). O

Proof of Theorem 1: The inclusion D is obvious; so con-
sider the inclusion C. Thereto, let v € Kgp(x) N Ts(x).
Based on Proposition 2, v € Kr(x) can be written as v =
ZJQ(X) A.JPT;(X),S(]C(X)) with A; > 0, for / C J(x), and
> Jci s = 1. Let us consider

(13)

=@l = 3 APrwet@ - Y e
JCJ(x) JcJ(x)
< Y MIPpwef) —fW]
JCJ(x)
< D M[Ppwgy g0 —f@|
JCJ(x) s

)

= || Pryo.eF00) = fO] = [ Ms.g0x f(0) = f(0)
where we used in the second inequality that ||PT§(X)’ sf®) —

FOI < 1P, s(@) = @I as 7370 € T,
Moreover, by definition of PTg(x),S’ it holds that
PTg(x)’a(f(x)) —f(x) € & for each J C J(x) and thus,

Y WP —f0) =v—f@) €&

JCJ(x)

due to & being a linear subspace. Since v € Ts(x) and v—f(x) €
&, and ||[I1g g(x, f(x)) —f(x)| is the shortest distance along &
between Tg(x) and f(x), i.e., it must hold that ||v — f(x)| =
TIg g(x, f(x)) — f(x)|| and thus v must be the unique closest
point in Ts(x) to v along & and thus v = ITg g(x, f(x)), thereby
proving the result. |

Theorem 2: Assume f is continuous and the set S in (7)
satisfies (CQ) and (10). Then for every x(ty) = xo € S there
exist T > 0 and an AC solution x : [0, T] — S to (4).

Proof: Tt follows from [6, Lemma 5.16] that Ky is outer
semicontinuous. Moreover, Kr takes non-empty, closed and

convex set-values, and for all x € § there is an open
neighborhood U of x such that for all y € UN S it holds that
Kr(y) N Ts(y) # § (as it contains g g(y, f(y))). According
to [6, Lemma 5.26 (b)], see also [1], the corresponding via-
bility conditions are satisfied implying that the Krasovskii
regularization (12) has a solution x. Hence, this solution x sat-
isfies x(¢t) € S for all ¢ € [0, T], it holds that x(¢) € Ts(x(?)),
almost everywhere, see [6, Lemma 5.26 (a)]. Hence, it holds
a.e. that x(r) € Kg(x(f)) NTs(x(¢)). Invoking Theorem 1 shows
that x is now a solution to (4). [ |

I1l. EPDS ON SECTORS

In the previous section we focussed on ePDS with partial
projection, but regular, finitely generated sets. In this section,
we abandon the regularity by allowing sectors as the constraint
sets S, which is important for PBC. We start by showing that
closed-loop PBC systems can be written in the form of ePDS,
and prove that the corresponding projection operator is well-
defined. In Section IV we provide results on existence and
completeness of solutions.

A. Closed-Loop PBC Systems Are ePDS

Consider the general nonlinear SISO plant given by

(14a)
(14b)

)'C = fp (xs M)

e = Gyx
with state x € R”, control input u € R and output e € R. Here,
fp i R" xR — R" is a continuous function and G, € RIxn g

row vector. This system is connected to a PBC for which the
unprojected dynamics are given by

z2=fc(z,e)

u=2

(152)
(15b)

with state z € R™, controller output # € R and controller
input ¢ € R. The map f, : R” x R — R™ is assumed to be
continuous. Note that we have for both plant and controller
linear output equations, which in many cases can be realized
by suitable coordinate transformations. The reason for this set-
ting will become clear later. For ease of exposition, we took
u = z1. The projection will take place only along controller
states z-dynamics, as we cannot change the plant dynamics as
they adhere to physical laws, resulting in a partial projection
operation with the goal to keep the output-input pair (e, 1) in
a sector

S:kamew|m—ham—@@5q, (16)

where ki, ko € R with k| < kp, as is motivated by HIGS and
other PBCs [3], [4], [14], [15]. Note that the set S does not
satisfy the constraint qualification (CQ) in Section II as the
gradient of the mapping, RZ 5 (e, u) — (u— kie)(u — kae) €
R, vanishes at the origin, which also reflects the absence of
Clarke regularity [10]. We can also write S as the union of
two polyhedral cones

S = K U —K with
K:{@J)@Wluzhewdu§h4.

(17a)
(17b)
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To obtain the closed-loop system description, we introduce the = AGMIN_ (1 (&) 1. £, 2(6)), (Gpfy (6).v., DETs(Gpxzp Ve 1 (8) = vzl

state £ = (x, z7) € R™" the constraint set S € R"™" as (22¢)
= {S = (x,2) € R™™| (Gpx,21) = (e,u) = HE € S}’ (18) Hence, this shows that

and the projection subspace as MseE. fE) = (&), Vzl,fc,Z(E)) with (23a)

_ On _(Gp
8—Im[lm] andH—(O (19)
(—

=F

0
[10...01)°

where ImE denotes the column space of the matrix E. The
closed-loop dynamics can now be written as the ePDS

£ =TggE f(§) =F&)

with f denoting the unprojected closed-loop vector field

F&) = (fpx, 21), fe(z, Gpx)),

which we sometimes write, with some abuse of notation,

as (f,(&),f(£)), and we split f.(§) as (f.,1(&).f.2(€)) with
fe1(8) € R and thus it = z; =f,.1(£). Hence, f. 2(£) € R~ 1,

(20)

2y

B. Well-Defined Partial Projection Operators on Sectors

Consider the ePDS (20) with sector constraints as in
the previous subsection. As a first step towards establishing
existence of solutions, we show that the introduced partial pro-
jection Ilg g(x, v) provides a unique outcome for each x € S
and each v € R”, for which the next lemma is useful.

Lemma 1: Let D C R" be a closed set and H € R"%*"d
with H full row rank. Define C C R as C = {c € R" |
Hc € D}. Let x € C. Then T¢c(x) = {v € R | Hv € Tp(Hx)}.

Proof: “C” follows from [10, Th. 6.31]. “2:” Consider v
with Hv € Tp(Hx). Hence, there are sequences {d;}ien € D
and {tj}ien € R.g with Hx = limj oo d;, limjt; = 0
and Hy = limj_ o0 & d_Hx We will use the decomposition
R* = kerH & ImHT, where kerH = {w | Hw = 0},
and the projection H' (HH")~'H on ImHT along ker H. We
write x uniquely as x = x; 4+ x, with x, € kerH and
xp = H'(HH") 'Hx € ImH" and, similarly v = v, + v
with v, € kerH and v, = H' (HH")~'Hv. Take ¢; = x, +
HT(HHT)_ldi+t,~va. Note that Hc; = d; € D and thus ¢; € C.
Moreover, c¢; converges to xa +HT (HHT) THy = x,4xp = x,

T Ty\—1
when i — oo. Finally, note _x M +v,, which

is equal to H' (HH )~ (4=t —’Z’)‘) + vy —> HT(HHT) "Hy +
Vg = vp + v, = v. Hence, veT(x) [ |
This result will be instrumental below and explains the
choice for the linear output equations for plant (14) and con-
troller (15). In case the output equations would be nonlinear,
an extension of Lemma 1 would be needed, which due to the
absence of Clarke regularity of the sector (16) in the origin,
is not straightforward, see, e.g., [10, Th. 6.31]. Extending this
lemma to nonlinear maps is interesting future work.
Exploiting Lemma 1 gives

s g€, f(8)) = argmin,crqe) re)—vesllf (§) — Vi (22a)
= argminy_, . )erg ()., =f,© fe(E) = vell (22b)
= argmin,_ ¢ v)ers(6) e (§) — vell (22¢)

Lem. 1

= AgMi_ (p (6) 1) (Gyfy ()01 eTs Gz e () — vzl (22d)

VI = Argming | (G,p ). )eTs(Gpran Ve 1 (6) = vzl
(23b)

Note that (22) reveals that the partial projection I1g g(&, f(§))
only alters the u = zj-dynamics and the rest remains
unchanged, including the e-dynamics. In fact, the projection
I[Ig g can be perceived to take place in a 2-dimensional sub-
space. Indeed, the optimization in (23b) can be retrieved as
(part of) a partial projection in a 2-dimensional (e, u)-space.
To make this more concrete, the unprojected (e, u)-dynamics
can be written as

(€, 1) = (Gpfp(§), fe,1(6)) = feu(§) (24)
and the corresponding projected dynamics
(&, i) = Mg g ((e, w), feu(®)) = (Gpfp(€), V) (25)
with & = ImE’ where E/ = (1)> Interestingly, I g (s, w)
for s = (e, u) € R? and w = f,,,(¢§) € R? can be written as
g (s, w) =w+ E'n*(s, w), (26)
where
n*(s, w) = argmin, ¢ a (s ) |LE:77-|L and 27)
As,wy={neR|w+E'n Z‘Ts(s)}. (28)
Using the above and observing that
E' full column rank ,& NS = {0} and S + & = R?, (29)

we can obtain a lemma that will lead to well-definedness of
HS,S and HS_S"

Lemma 2: Consider S as in (16) for k» > k; and let & =
ImE’ satisfying (29). Then, it holds for each s € S and each
w € R? that A(s, w) is a non-empty closed polyhedral set.

Proof: Let s € S and w € R? be given and notice that

Tk (s), when s € K\ —K,
Ts(s) =3 KU—-K, whenseKN-—K, (30)
—Tk(s), when s € —K \ K.

It follows from S + & = R2? that for all s € S we have
Ts(s) + & # ¥ and thus A(s, w) is non-empty. Clearly, when
s ¢ KN —K it follows that Ts(s), as given in (30), is a closed
polyhedral cone (as K is polyhedral cone, see (17b)) and then
A(s,w) is a closed polyhedral set. So, let us focus on s ¢
KN —K, where Ts(s) = KU —K and thus A(s,w) = {n € R |
w+Ene KU—K}.

Claim: w+ E'n € K and w + E'fj € —K imply that n = 7.
To prove the claim, note that due to K being a convex cone
and —w — E'fj € K, we get that

E(n—1m)=

w+En) —w—-Enjek.
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2
oS = Ts6(f(6)
> fo= 1@
Fig. 1.  Depiction of a counterexample showing that Kg(§) NTg(&)

# Mg g(&, f(§)), for & € Kn =K. In particular, Kr(§)= co{fy, f2} and
Kr(E)NTg(&)= colfy, I} # {f).

Since & NS = {0} and E’ has full column rank, this shows
that » = n and the result follows.

Using the Claim, it follows that if there is n with w +
E'n € K then A(s,w) = {n € R | w+ E'n € K} (as any
nin {n € R | w+ E'n € —K} would also be contained in
{n € R| w+ E'n € K}, and similarly if there is 7 with
w+E'7 € —K then A(s,w) ={n e R|w+ E'n € —K}. As
thesets (n e R|w+EneK)and {n e R|w+E'ne —K}
are both closed polyhedral sets, so is A(s, w). |

Due to the constraint set of (27) being a closed poly-
hedral set, and the square of the cost function of (26) is
n"(EYTE'n = n* is a quadratic positive-definite function, a
unique minimizer exists, showing that (25) is well-defined and
so is (23), ie., Mg g(&,v) forall § e Sand v € R

Interestingly, from the proof of Lemma 2 and (30), it follows
that for all s € S and w € R?

Mg (s,w) € {Mgg,w), M ggsw) (31)

and, using Lemma 1, we obtain for all £ € S, v € R

Mg, v) € {MgeE, v), M_geE v},

with the convention that some of the projections in the set
in the right-hand sides of (32) and (31) may be empty, e.g.,
Ny gé,v) =0, if v+8E NTg(E) =@ (which is, amongst
others, the case when & ¢ K).

(32)

IV. WELL-POSEDNESS OF EPDS ON SECTORS

We focus now on existence and completeness of solutions.

Theorem 3: Consider (20) with set S defined via (18)
and (16). For each initial state & € S, there exists a
Carathéodory solution locally, i.e., there is a T > 0 such that
£ :[0,T] — R*™" with £(0) = & is a solution to (20).

The proof is based, as in Section II, on showing existence
of Krasovskii solutions, and then proving that the Krasovskii
solutions are also (Carathéodory) solutions to (20). Proving
Theorem 3 for sectors is more complicated compared to the
counterpart in Section II due to absence of (Clarke) regu-
larity [10]. For this reason, the relation (11) does not hold
everywhere for sectors as illustrated in Fig. 1. However,
we show that Krasovskii solutions will only visit states for
which (11) is violated on a set of times with measure zero.

Proof Thm. 3: First note that the Krasovskii regularisa-
tion Kr is outer semicontinuous and takes non-empty convex
closed set-values. Moreover, observe that Kr(§) N Tg(§) # ¥

for all £ € S as [1g g(&,f(§)) is contained in the intersection.
Hence, the local viability assumption, see [6, Lemma 5.26]
and [1], is satisfied and we can establish for any initial
state the existence of an AC solution & : [0,T] — S to
£ € Kp(&) for some T > 0. Clearly, due to the necessity
of the viability condition in [6, Lemma 5.26], we obtain that
the solution satisfies, for almost all times ¢ € [0, T], that
é € Kr(&) N Ts(£). Interestingly, for all times ¢ € [0, T] for
which &(r) ¢ K N —K, we can use the results in Theorem 1,
as Mgg&,f(¢)) = TggE, f(§)) in a neighbourhood of
& € K\ —K (and similarly for & € —K \ K). Hence, for
almost all ¢ with £(f) ¢ K N —K (and due to the continu-
ity of & and closedness of K N —K, there is ¢, such that for
T e[t,t+€), we have £(7) € KN —K)

Kr(&(0) NTs(E(0) = s gE(0), f(E(D)).

Hence, we only have to consider the times where &£(f) € K N
—K, ie., (e(®),u(r)) = (0,0). We will consider two cases:
(1) e(r) # 0, and (ii) e(r) = 0, and only times ¢ where &
is differentiable. The latter can be done as the set of non-
differentiability has measure zero.

Case (i): w.l.o.g., assume e(¢) > 0. Note that ¢ = G,f, (&),
which is a continuous function of time along solution & (as f,
and £ continuous). Hence, there are ¢; and n > 0 such that
e(t) = n for v € [t,t + &]. Thus, e(r) > n(t — 1) > 0 for
T € (t, t+ ¢]. Hence, the time ¢ where e is zero is an isolated
point in this case, and for T € (¢, 1+ €] £(t) € K\ =K,
for which (33) holds (with ¢ = 7). In fact, the set M = {r €
[0, T] | e(®) = u(r) = 0 and é(r) # 0} is countable as its points
are right-isolated, and, hence, in each interval (¢, t + &;] there
lies a rational number not in M, and the rational numbers in
[0, T] are countable. Therefore, this set is of measure zero.

Case (ii) e(t) = Gpfp(5(1)) = 0. Now f(§) takes the form
(0, fz.1(%)) in (e, u)-space. From (12), using (23), (25), we get

Kr (&) = con{f (), (fp(§). 0. fe.2(§))}

by considering all possible tangent cones Ts(s) for s €
S in a neighborhood of (0,0). We either have f(§) =
(fp(€), 0, f:2(§)) in which case Kr(§) is a singleton and thus
must be equal to {I1g g(&,f(§))} (as this one is guaranteed to
lie in Kr(§)), or f(§) # (fp(§), 0, fc,2(5)) (s0, fc,1(§) # 0). In
the latter case, f(£) ¢ Ts(&). Given the structure of Tg(§) = S
(as H§ = (0,0)) and (1—a)(fp(§), 0, fc,2(§)) +af (§) & Ts(§)
for o € (0,1) — use here that Tg(§) = {v € R"™ | Hy €
Ts(HE) = S} due to Lemma 1 — it follows that

Kr() NTs) = {(£5), 0. fc26))} = {Tls g&.f(E))} (35)

Hence, we have &() = Tgg(&(1),f(E() Gf £() exists)
in this case. Summarizing all cases, we obtain a.e. 5 (1) =
g s(&(@),f(E(1))). Hence, & : [0, T] — S is a solution. M

Theorem 3 shows local existence of Carathéodory solutions
for a given initial condition. Below we extend this result to
the existence of global solutions under suitable boundedness
conditions of the unprojected vector field f.

Corollary 1: Consider (20) with sectorset S as in (16).
Moreover, we assume that there is M > 0 such that |[f(§)] <
M(1 + ||&|]) for all & € 8. For each initial state & € S,

(33)

(34)
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there exists a Carathéodory solution £ : [0, co) — R with
£(0) = &p to (20) on [0, 00).

Proof: The proof starts by showing that the bound ||f(§)| <
M(1 + |I€]) leads to a similar bound on |I1s g(&,f (&)l
in (20). To show this, recall (23). Clearly, the bounds carry
over to the f,(§)- and f. 2(§)-parts in (23), so we only have
to show that a similar bound also applies to |v2"1|. Thereto,
realize that (31) implies that V;k,l satisfies

v:,] = argminvzvl ,(é,vzvl)ETK(e,zl) lfC, 1 (%‘) - vZ,l |7 (36)

where we replaced G, p(é) by e, Gox by e and f.1(§) by
fea for shortness, (or v} 1 Is given by the same expression
with K replaced by K) Using the form of K in (17b) and
consider all variations for Tk (e, z1) using the explicit expres-
sion in (9), we get that (e, v; 1) € Tk(e, z1) is equivalent to
either V1 € R, ke < Vil V7,1 = koe, or kje < V1 =< koe,
depending on the active constraint set in (8) for K. In fact,
we obtain a piecewise linear solution for v} ~1 in terms of
e and f. 1, for each of the four options for TK(e z1), tak-
ing values v 1 € {fc.1, k1é, kae}. Clearly, this shows that
Vil < maX(lfcl(é)I lkil1Gpfp (B, k2l 1Gpfp (E)D) < cllf (E)I
for some ¢ > 0, and combining this with the bound on f,
yields the existence of M’ > 0 such that also for all £ € S we
have

IMs.g@ fENI =M L+ [IE]D.

Using this bound and local existence of solutions per
Theorem 3, we can now proceed similarly as in the proof
of [4, Th. 4.2] to show by contradiction that a maximal solu-
tion (i.e., a solution defined on the largest interval of the form
[0, T] possible) must be complete (i.e., T = o0). [ |

Consider now system (20) with the inclusion of external
time-varying functions in the plant, i.e., x = f,(x, u, w) and
w a piecewise continuous function, i.e., w € PC, meaning
that there is {fz}reny C [0, 00) with o = 0, fx41 > 1 for all
k € N, limg_, o0 txy = 00, w is continuous for all ¢ & {tt}reN,
and lim;;, w(t) = w(fx), k € N. Using the same controller and
the modelling as in Section III-A, we obtain the closed loop

£ = Mg g€, fE w()) with (37a)
f(é& W) = (fp(xs 21 W)’fC(Zv Gp-x))v (37b)

Corollary 2: Consider (37) with S as in (18) and f contin-
uous. Then for each w € PC and & € S, thereisa T > 0
such that a Carathéodory solution exists on [0, T] to (37) with
£(0) = &p and input w. Moreover, if for an M > 0

IfE wll =M+ 1§, w) forall & €S,

then for each initial state & € S and bounded w € PC
there exists a Carathéodory solution & : [0, co) — R with
£(0) = &p and input w to (37) on [0, 00).

Proof: The idea of the proof is to embed ¢ as a state in
x = (£,1), see also [1, p. 191], leading to the ePDS model

% =Tgz(0.f(0) (39)

with S = ((6.0) | 1 = 0 and & € S}, f(0) = (F(E. w®). 1)
and & = & x {0}. Obviously, a solution & to (37a) given input
w and initial state £(0) = &y leads to a solution t — (£(¢), 1)

(38)

to (39) with x(0) = (&p, 0) (without input) and vice versa. On
[0, #1] w is continuous, implying that f is a continuous function
of x on [0, #1]. Applying Theorem 3 to (39) proves now the
local existence of solutions, and applying Corollary 1 using
the bound (38) guarantees that the solution is defined on the
full interval [0, #1]. Exploiting the bound (38) again, following
similar steps as in the proof of [4, Th. 4.2], we obtain that the
left limit lims, x (f) exists; let us call this left limit x (¢1),
which lies in S. Now we can repeat the arguments for the
time window [#1, t2) and, in fact, for each window [fx, fx+1)
leading to a solution on [0, #) for each k € N and as 7 — oo
when k — o0, this leads to a solution on [0, 00). [ ]

V. CONCLUSION

We established existence and completeness results for solu-
tions to extended PDS and closed-loop PBC systems (with
and without inputs). This required careful analysis due to
partial projection operation and irregular constraint sets (sec-
tors), which are important in PBC systems [3], [4], [14], [15],
but obstructed the application of existing results. The results
provide cornerstones for further analysis of PBC systems.
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