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Well-posedness of Linear Complementarity Systems

W.PM.H. Heemels!

Abstract

In hybrid systems theory one often assumes (i) existence of
solutions (ii) uniqueness of solutions and (iii) non-Zenoness (i.e. at
most a finite number of events in a finite time interval). Sufficient
conditions for these properties are rarely given. In this paper we
present the state-of-the-art of the well-posedness results for the
linear complementarity class of hybrid systems. New results on
global existence of solutions and exclusion of accumulations of
event times will be given. Moreover, we present several examples
of hybrid systems showing the interaction between the solution
concept, non-Zeno assumptions and well-posedness.

1 Introduction

It is surprising to see that in hybrid systems theory studies
of well-posedness are quite rare. One often assumes that so-
lutions exist, are unique and have a finite number of events
in a finite time interval. However, verifiable conditions for
these properties are hardly ever presented. It is obvious that
studying well-posedness issues for the complete class of hy-
brid systems (HS) is an impossible task. The attention in
this paper will therefore be restricted to the subclass of lin-
ear complementarity systems (LCS) as introduced in [13].

LCS(A, B, C, D) is given by matrices A, B, C and D and
governed by

x(t) = Ax(t) + Bu(t) (la)

y{t) = Cx(t) + Du(z) (1b)

i) 20, ui(t) 20, {yi(t) =0o0ru;(t) =0} (lc)

for all i. The logical ‘or’ is meant to be nonexclusive. The
variable ¢+ € Ry := [0, 00) denotes time, x(t) € R” the
state and u(¢) € R¥, y(t) € R¥ denote the complementarity
variables at time ¢.

The class of (linear) complementarity systems includes
mechanical systems subject to unilateral constraints, elec-
trical networks with diodes, piecewise linear systems, vari-
able structure systems, systems with saturation, deadzones
or Coulomb friction, projected dynamical systems and relay
systems (see [8] for an overview). In view of this wide range
of applications, it seems worthwhile to study well-posedness
issues for LCS.

In this paper, the following notational conventions will be
inforce. For a positive integerk, we denote the set {1, ... , k)
by k. Given amatrix M € R**/ andindex sets I C , J cl,
the submatrix M, is defined as (M;})ics, jes. If I = k, we
also write M,;. Slmllarly, M,. is My with J = [. For
two index sets / € k and J C [ with the same number of
elements, we define the u,J ) -minor as the determinant of
the square matrix M;;. The (I, I)-minors are also known
as the principal minors. M € R*** is called a P-matrix, if
all principal minors are strictly positive. By { we denote the
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identity matrix of any dimension. For a vector u € R¥, we
write u > 0, when u; > Oforalli € k.

2 Hybrid automata

To emphasize the hybrid nature of LCS we will refor-
mulate them as hybrid automata, which forms a widely ac-
cepted framework for HS. A hybrid automaton is given by
(Q, Z, A, G) (notation taken from [1]) where

* O is a finite set of modes (sometimes called discrete
states or locations).

* X = {Z4)gep is a collection of dynamical systems.
For mode ¢ these are given by the ordinary differential
equations (ODE) z = f,(z) or by the differential and
algebraic equations (DAE) f,(2,2) =

A = {Aj)ge0. Ag C R” is the jump set for mode g
consisting of the states from which a mode transition
and/or state jump occurs.

G = {G,} is the set of jump transition maps where G,
isa (possxbly multi-valued) map from A, to a subset of
R" x Q.

The state zg is inconsistent for f(Z,z) = 0, if there is no
smooth solution z to the DAE satisfying z(0) = zo. We
assume that in case X, is given by DAE, the inconsistent
states of T, are a subset of 4.

A brief description of the dynamics is given as follows
[1]. Starting in a continuous state zg € R" \ A4, in mode
g0, one evolves according to the mode dynamics given by
240 until one reaches - if ever - Agy, say at the event time
71. From this set a transition is enabled and must be fired
instantaneously. The transition is governed by the relation
(21, q1) € Ggy(z(r1-)) with z(7y—) := lim;4y, 2(¢). From
this new state z; in mode g, it is possible that again a tran-
sition takes place, i.e. z1 € A, . Otherwise, a continuous
phase given by the dynamics Eq,,, will follow.

It must be stressed that the reformulation of a model de-
scription like (1) (think of a unilaterally constrained me-
chanical system) as a hybrid automaton is far from trivial.
Especially the explicit calculation of the jump sets A, and
the jump transition maps G, can be difficult.

3 LCS as a hybrid automaton

To rewrite LCS (1) as a hybrid automaton, the variable z
is taken to be (#, x, y) although in some parts (e.g. in G) the
formulation is more convenient in terms of x only. Recall
that (1c) states that u;(t) = O or y;(¢) = O foreachi € k.
This results in a multimodal system with 2¢ modes, where
each mode is characterised by a subset I of k, indicating that
y,(t)_Otelandu(t)_Otelc:—{tek[1¢1]
Hence, Q is equal to # (k), the power set of k, consisting
of the collection of all subsets of k. In case k = 1 (one
complementarity pair), we have Q = {#, {1}} and speak of
a bimodal LCS, because there are only two modes.
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The dynamics f; in mode [/ are given by the DAE
X = Ax + Bu; yi=0,i€el (2a)
y =Cx+ Du; u;=0,iel. (2b)

The smooth solutions of the DAE (2) are in general restricted
to a certain subspace of R” called the consistent subspace.
Assuming uniqueness of solutions, the evolution on the con-
sistent subspace may equivalently be described by a linear
ODE % = F;x. Note that the system (1) evolves in mode 1
as given by (2) as long as the remaining inequalities in (Ic)

ui(t)=0,iel y()=z0,iel (3)
are satisfied. Hence, the jump set A; is given by

A; = {xg € R" | there is no smooth solution(u, x, y)
of (2) for mode [ satisfying x(0) = x¢ and (3) on
[0, &) for some € > 0}.

The jump transition function G only depends on the state
x(t—=) just before the event time t, and not on the previous
mode. Also u and y do not play a role in the mode selection.
Hence, G;(z) = G(x) and is defined by the so-called ratio-
nal complementarity problem RCP(x) [10]. RCP(x) aims at
finding rational vector functions y(s) and u(s) such that

y(s) = C(s4 — A)~'x + [C(sL — A)"'B + Dlu(s) (4a)
{yi(s) = Oorui(s) =0} foralli €k (4b)

and moreover, there must exist a o9 > 0 such that for all
o > op we have

y(6) =0, u(o) 2 0. (40)
Then the jump transition map is given by

G(x):= {(xt, J) € R* x P(k) | there is (u(s), y(s))
solving RCP(x) such that y;(s) = 0, uyc(s) = 0 and

xt=x+) A'BuT), (5
i

where the coefficients u™* correspond to the polynomial part
S _ouTist of u(s).

This jump transition map can be motivated by considering
the inverse Laplace transform of a solution to RCP(xp). The
inverse Laplace transform of u(s) = Zf:o U™ st 4 peg(s)
with u,eg(s) strictly proper (i.e. lims— o0 Ureg(s) = 0) will
be of the form u(t) = Y i_qu ™ 8@ + u,.4(t), where 8 is
the delta or Dirac distribution, 8 is the i-th derivative of
8 and u,.g is a real-analytic function (even Bohl function).
Similarly, let y(¢) denote the inverse Laplace transform of
y(s). Taking u(¢) as input to the system (1a) with initial state
xo results in a state trajectory x(z). In case the solution to
RCP s strictly proper, (u(t), x(t), y(t)) satisfies the system’s
equations (1) on a small interval [0, £). In case the solution
to RCP is not strictly proper, the impulsive part of u(¢) will
resultin a state jump from x to xt asdescribed in (5) (see [7])
and the inverse Laplace transform satisfies the equationsinan
‘initial distributional sense’ [9, 10]. Hence, G asin (5) selects
amode in which a ‘local’ distributional solution to (1) exists.
Further details can be found in [9, 10]. Particularly, in [9] it
is shown that the above mode selection and re-initialization
procedure corresponds for linear mechanical systems with
unilateral constraints to the inelastic impact case. Moreover,
in some cases the jump of the state variable can be made
more explicit in terms of the linear projection operator onto
the consistent subspace of the new mode along a jump space

[9].

4 Existence of solutions

4.1 Deadlock

Construction of a solution to a hybrid automaton as in
section 2 fails when the hybrid state (z, qo) satisfies z € Ay
and Gg,(z) = @: a transition must happen, but there is no
mode to switch to (deadlock).

Definition 4.1 The LCS is weakly solvable, if RCP(xo) has
a solution for all initial states xo € R". Stated differently,
if there exists from all xo € R” a state jump or a smooth
continuation on [0, ) for some & > 0.

Infinite multiplicity

Weak solvability does not guarantee that a solution exists
on an interval of nontrivial support, because infinitely many
jumps might occur at the time instant 0 without smooth con-
tinuation on an interval (0, &) for some & > 0. In this case,
the event time O is said to have infinite multiplicity. When
there are only finitely many jumps, the number of (non-void)
jumps that occur is called the multiplicity of that event time.

In this context one often encounters the term ‘non-Zeno’
in hybrid systems theory, where it means that a solution has
only a finite number of event times in a finite time interval.
To make this precise, the following definitions are relevant.
A point T € & C R is called a right-accumulation point of
&, if there exists a sequence {7;};cy suchthatt; € §, 7 < T
for all i and lim;—eo 7i = 7. A left-accumulation point is
defined similarly by interchanging “<” by “>.” Aset€ C R
is called (right-)isolated, if it contains no (left-)accumulation
points.

Definition 4.2 A non-Zeno solution to an LCS is a solution
that satisfies the following.

« Event times have at most finite multiplicity.
« The set & of event times is isolated.

This solution concept leads to the following notion of
solvability.

Definition 4.3 The LCS is globally non-Zeno solvable, it
from each initial state there exists a non-Zeno solution on
[0, c0).

A non-Zeno solution concept can be restrictive as one
might exclude relevant phenomena observed in the physical
process of which the model was made. In case an event
time t occurs with infinite multiplicity (i.e. there exists a
sequence of event states {x;};en (from xp to xj, from x; to
X7, €tc.) at event time 7), there does not exist a non-Zeno
solution beyond . However, if x* := lim; o x; exists
and smooth continuation is possible from x* (after a finite
number of jumps) on an interval (7,7 + ¢€) withe > 0, a
(generalized) solution can be defined forz > 7.

Example 4.4 For an example of a HS with event times of
infinite multiplicity, consider a system consisting of three
balls in which inelastic impacts are modelled by successions
of simple impacts (Figure 1). Suppose the balls all have
unit mass and are touching at time 0. The initial velocity
v1(0) of ball 1 is equal to 1 and for balls 2 and 3 v2(0) =
v3(0) = 0. By modelling all impacts separately, first an
inelastic collision occurs between ball 1 and 2 resulting in
v1(0+) = v2(0+) = 3, v3(0+) = 0. Next, ball 2 hits ball

3 resulting in v;(04++4) = 1, v(0++) = v3(0++) = 3
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after which ball | hits ball 2 again. In this way, a sequence
of jumps is generated

vi: | 1133 1
v: 0 2% i % % ?
v3: 0 O 3—' T é

which converges to (-g-, %, %)T after which a smooth continu-
ation is possible with constant and equal velocity for all bails.
This example indicates that one should be careful to exclude
specific classes of solutions (e.g. with infinite multiplicity).

V0)=1 V(0)=0 V(0)=0

- °°

Figure 1: Three balls example.

Accumulation of event times

Apart from infinite multiplicity, one has to be careful
with accumulation points. In many models accumulation
of events occur and are physically interpretable.

Example 4.5 A well-known example is a model of a bounc-
ing ball (height of ball is x) with dynamics ¥ = —g and con-
straint x > 0. To complete the model we include Newton’s
restitution rule x(t+) = —ex(r—) when x(z—) = 0 and
x(t=) <00 < e < 1). Incase x(t—) = x(t—) = 0, the
dynamics are equal to ¥ = 0 due to the constraint x > 0.
The event times {7; }; N are related through (see [2, p.234])

2¢'%(0)

,ieN

T+l =T +

assuming that x(0) = 0 and x(0) > 0. Hence, {7i}ien
has a finite limit equal to t* = 2’1(—22 < 00. Since the
continuous state (x(¢), x (¢)) converges to (0, 0) whent 1 7*
a continuation beyond t* can be defined by (x(2), x(¢)) =
(0, 0) fort > r*. The physical interpretation is that the ball
is at rest within a finite time span, but after infinitely many
bounces. Hence, € contains a right-accumulation point.

Since our solution concept complies for mechanical sys-
tems to the inelastic impact case (as mentioned before), the
bouncing ball is not an LCS (at least using the jump transition
rulein (5)), but it indicates that there exist models of physical
relevance that require right-accumulations of events.

Example 4.6 An example of an LCS is provided by a time
reversed version of a system studied by Filippov [6, p. 116]
(mentioned also in [11]), i.e.

X1 = -—sgn(x)) + 2sgn(xy) (6a)
X2 —2sgn(x)) — sgn(xz), (6b)

I

where “sgn” denotes the signum-function given by sgn(x) =
I, if x > 0, sgn(x) = —1,if x < 0 and sgn(x) € [—1, 1]
when x = 0. Because this system consists of linear dif-
ferential equations and relays, it can be modelled as an
LCS [11, 8]. Solutions of this piecewise constant system
are spiralling towards the origin, which is an equilibrium.

Since %(lxl(t)l + |x2()]) = =2, when x(¢) # 0, solutions
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reach the origin in finite time. See Figure 2 for a trajec-
tory.. However, solutions cannot arrive at the origin without
going through an infinite number of mode transitions (relay
switches). Since these mode switches occur in a finite time
interval, the event times contain a right-accumulation point
(i.e. the time that the solution reaches the origin) after which
the solution stays at zero.

0 ¥ 2 D O s 0

Figure 2: Trajectory in the phase plane with initial state (5, 5) T .

Right-Zeno solutions

The previous examples show that one should be careful
in choosing a solution concept in case one cannot a priori
exclude infinite multiplicity and the occurrence of accumu-
lations of events. If the solution space is taken too small, you
may loose existence of (physically relevant) solutions. So,
in general one should start with a broad solution concept.

Definition 4.7 A right-Zeno solution (u, x, y) to LCS is a
solution to LCS that satisfies the following.

1. The set of event times & C R is closed and right-
isolated.

2. In case an event time has infinite multiplicity, the
limit of the event states should exist, say x*, and
hm,“,,gg x(t) = x*.

3. In case there is an accumulation point of event times,
say ¥, x(t*—) = limsq¢+ rge X (¢) must exist and con-
tinuation must be possible from x(t*~) (possible after
a (finite or infinite) number of jumps) as imposed in
item 2.

Definition 4.8 The LCS is locally right-Zeno solvable, if
from each initial state there is an ¢ > 0 such that a right-
Zeno solution to the LCS exists on [0, €).

Definition 4.9 The LCS is globally right-Zeno solvable, if
from each initial state there exists a right-Zeno solution on
{0, 00).

In the previous discussion the event set was restricted
to be right-isolated. The question arises what will happen
when this condition is dropped? As we will see, it will have
serious consequences for uniqueness of solutions, because
many ‘pathological’ solutions might be included.

5 Uniqueness of solutions

We distinguish between the following uniqueness con-
cepts.

Definition 5.1 The solutions of LCS are called weakly
unique, if RCP(xg) has at most one solution for all initial
states xg € R".



Note that weak uniqueness has a direct dynamical inter-
pretation, since RCP determines the jump transition map as
described in Section 3.

Definition 5.2 The solutions of LCS are called right-Zeno
unique, if the solutions are weakly unique and from each
initial state and arbitrary time horizon T > 0 there exists at
most one right-Zeno solution to the LCS on [0, T).

Theorem 5.3 Given an LCS (1). Then the following state-
ments are equivalent.

1. The solutions of LCS are weakly unique.
2. The solutions of LCS are right-Zeno unique.
Proof. See [10]. 0
Omitting the right-Zeno requirement of solutions (i.e.

dropping the right-isolated property of &) sometimes leads
to solutions with left-accumulation points.

Example 5.4 The time-reverse of (6) (which is the original
example in [6]) given by

X

sgn(x1) — 2sgn(x2) (72)

) 2sgn(x1) + sgn(x2), (7b)

has (infinitely many) left-Zeno solutions corresponding to
initial state xo = 0. Hence, uniqueness is lost due to gen-
eralizing the solution concept. Note that if we only allow
right-Zeno solutions (i.e. & is right-isolated), the only solu-
tion starting in the origin is the zero solution.

Allowing also “left-Zeno solutions” resulted in nonde-
terminism for the system above, which is undesirable from
a point of view of modelling and simulation. In contrast
with smooth dynamical systems, the time is considered to
be asymmetric for hybrid systems, since reversing time is
not natural and does not lead to well-posed systems in gen-
eral. Solutions must be considered in a ‘forward sense’ that
complies with the notion of a right-Zeno solution.

The solutions with left-accumulations of events in Exam-
ple 5.4 do however satisfy (7) in the sense of Carathéodory.
A function x is a Carathéodory solution to X € f(x) with
initial condition x(0) = xo, if x(£) € xo+ fy f(x(7))d7 for
all + > 0. Hence, one has to be careful in using ‘classical’
notions of solutions for hybrid systems. However, if one can
prove uniqueness in the sense of Carathéodory, one might
be able to show that no left-accumulation of events occurs
(see Thm. 9.2).

In the next sections we present the state-of-the-art on well-
posedness results for LCS obtained in earlier work [9, 10,
11, 13]. This is extended by new results on global right-Zeno
existence, right-Zeno uniqueness and results that exclude the
existence of accumulation of events.

6 Weak well-posedness

We will say that a property depending on a parameter o
holds for sufficiently large o, if there exists a o9 € R such
that the property is true for all ¢ > oy.

For the LCS(A, B, C, D) the rational matrices G(s) and
Q(s) aredefinedby C(s4—A)"'B+Dand Q(s) = C(s{ —
AL :

Theorem 6.1 [10] LCS(A, B, C, D) is weakly solvable if
and only if for all xq the linear complementarity problem
LCP(Q(o)xo, G(0)) given by

w = Q(o)xp + G(o)z
w; 20,220, {zi=00rw; =0} foralli

has a solution (w, 2) for sufficiently large o. Similarly, the
solutions of LCS(A, B, C, D) are weakly unique if and only
if for all xo LCP(Q(0)xo, G(a)) has at most one solution
for sufficiently large . .

The strength of this theorem is that dynamical properties
of an LCS are coupled to properties of families of static
LCPs, for which a wealth of existence and uniqueness are
available [4].

6.1 Sufficient conditions

Theorem 6.2 If G(o) is a P-matrix for sufficiently large o,
then LCS(A, B, C, D) is weakly solvable and the solutions
are right-Zeno unique.

Proof. According to [4, Thm. 3.3.7] LCP(q, M) has a unique
solution for all g if and only if M is a P-matrix. Applying Thm. 6.1
and 5.3 completes the proof. a

7 Local well-posedness

The Markov parameters of (A, B, C, D) are defined as
H®=DandH' = CA'"'B,i =1,2,.... Theleading col-
umn indices 7y, ... , 7 and leading row indices o1, . .. , Pk
are defined as

nj:=infli e N| H}; #0}, p;:=inf{i € N|H}, #0),

where j € k and inf@ := oo. Finally, the leading row
coefficient matrix M and leading column coefficient matrix
N are defined for finite leading row and column indices by

M and N := (H]| ... H}})

Pk
Hk .

Theorem 7.1 [9] If the leading column coefficient matrix N
and the leading row coefficient matrix M are both defined
and P-matrices, then LCS(A, B, C, D) is locally right-Zeno
solvable and the solutions are right-Zeno unique. Moreover,
the multiplicity of an event time is at most one.

Note that this theorem excludes infinite multiplicities.
This result applies to e.g. linear mechanical systems with
independent inequality constraints.

8 Global solvability

In this section we present global existence results for three
classes of LCS.

Bimodal LCS

In case of a bimodal system (i.e. (4, B, C, D) is single-
input-single-output as a linear system), it is clear that p :=
p1 = n and M = N. The next theorem extends a similar
result in [13, Thm. 4.8] by including statements on weak
and global well-posedness and dropping the assumption that
C(si—A)'B+D#0and D =0.
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Theorem 8.1 Consider a bimodal LCS (1) with C # 0.'

The following statements are equivalent.

1. The leading Markov parameter M = N-is defined and
positive.

2. C(ad — A" 'B + D > 0 for sufficiently large o.

3. LCS(A, B, C, D) is weakly solvable and the solutions
are weakly unique.

4. LCS(A, B, C, D) islocally right-Zeno solvable and the
solutions are right-Zeno unique.

5. LCS(A, B, C, D) is globally right-Zeno solvable and
the solutions are right-Zeno unique.

Proof. It is clear that | < 2. Thm. 7.1 implies 1 = 4.
By definition, 4 = 3 and 5 = 4. Statement 3 implies that
LCP(Q(o)xg, G(o)) has a unique solution for all xg and all suffi-
ciently large o. It can be verified that Q(o)xg can be made both
positive and negative for sufficiently large o, because C # 0. This
implies that G (o) must be positive for sufficiently large o, since
otherwise LCP(Q (o')xg, G(0)) does not have a unique solution for
all xg. Hence, 3 = 2. It remains to prove that 4 = 5.

For D # 0 the proof of global right-Zeno existence will be given
in Theorem 8.2. In case D = 0 the proof is based on explicitly
specifying the hybrid automaton for the bimodal L.CS as done in
[13]. Q = {4, {1}} with mode Ty given by x = f3(x) = Ax,

Ay = (xq | CeA'xg < 0 on (0, £) for some £ > 0}

and? Gyg(x) = (Px,{1}) with P the projection on
Viy = ker[cT ATcT (ATY=1cTIT along Tyyy =
im[B AB ... A®!B]. The other mode X)) is given by & =
fiy(x) = WAx with W = £ — gz BCAP~1,

Aqy={xo | CcAPeYAlxy < 00on (0, €) for some & > 0}

and G(1)(x) = (x, ). Observe that G can be defined indepen-
dently of the mode by G(x) := Gg(x) when x € Ag and by
G(x) := Gyj(x) when x ¢ Ag. VU] is the set of consistent
states of mode {1} and is consequently invariant under the dynam-
ics x = WAx.

Let [0, t*) be the maximal interval on which a solution (u, x, y)
exists for initial state xg and suppose that T* < co. Time v* must
be a right-accumulation point of events, because otherwise the LCS
evolves in either one of the modes on an interval (z* — 8, t*) for
some 8 > 0. Thenitisclearthatlim, 4+ x () exists. Consequently,
continuation beyond t* would be possible due to local right-Zeno
solvability. This would contradict the definition of t*.

Without loss of generality we may assume that the initial mode
is {1}. Since t* is a right-accumulation of events there are in-
finitely many cycles consisting of smooth continuation in mode
{1}, smooth continuation in mode @ and then a jump of the state
variable xT = Px. Consider the state x, at the beginning of the
cycle (after the jump). It is clear that Px, = xp € V(). Denote
the duration in mode {1) by A (may be equal to zero) and in mode
@ by Ag. Moreover, define x,, = eWAA'xb € Viy) (due to in-
variance of V(j) under ¥ = WAx). Then we obtain for the state

xe 1= PeAB0eWAL 4, at the end of the cycle
lxe — xpll = [[PeAB0eY AR g, — x| <
1PeAB0xy — xm [+ €W A1k — x| <
N’

=Pxp
cpSoll Pllllxm b + ey Atlixpll < c(bo+ ADlxpll (8)

' Note that C = 0 is a degenerate and uninteresting case.
2Note that real-analyticity of CeAlxg implies that either CeAlxp > 0
on (0, ¢) for some & > 0 or Ce'xy < 0 on (0, €) for some € > 0.
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for constants cg, c(1) and c. Consider the sequence of states {x;}; N
at the beginning of the cycles and let A; be the duration of the i-th
cycle starting in x; and ending in x; ;1. Hence, (8) translates into
hxitr = xill < cAjllx;ll and yields |lx;41ll < (1 + cAllxi|.
Consequently, we have that |lx; 1] < n;zl(l + cAj)lixoll. By
taking the logarithm of this inequality and using that 27?__0 Aj =

T*, it can be seen that ||x;{ < et llxgll. This implies that x(¢)
is bounded on [0, t*). For m > n it holds that |x, — x,|| <
e XM=V Ajllx;|l. Since Y92 A; = t*and x isboundedon [0, T¥)
this yields that {x; }; <N is a Cauchy sequence and hence has a limit..
It is clear that then also lim, 4 ¢+ x(¢) must exist. Local right-Zeno
solvability implies that continuation beyond t* is possible, which
contradicts the definition of t*. Hence, t* = 00. u]

LCS with low leading row indices

Theorem 8.2 If the conditions of Thm. 7.1 are satisfied and
moreover, if the leading row indices p; € {0, 1} foralli, then
the LCS is globally right-Zeno solvable. Moreover, the event
time t = 0 has at most multiplicity one. The other event
times have multiplicity zero (i.e. no jump of the continuous
state variable x).

Proof. According to Theorem 7.1 the LCS is locally right-Zeno
solvable, the solutions are right-Zeno unique and the event times
have at most multiplicity one.

Define K := {i € k | p; = 1} and call an initial state xo
a regular state for an LCS, if there exists a smooth continuation
(without jump) from xg on [0, @) for some & > 0. R is the set of
all regular states. In [9] it is proven that R is equal to {xp € R" |
Cgexg = 0}. Since R is closed, it is invariant under the dynamics.
Indeed, if R is not invariant, there exists an xg € R such that the
unique local right-Zeno solution (u, x, y) satisfies x(0) = xg and
x(t) g Rfort € (0, &) for some ¢ > 0. Since xg € R, there exists
0 < a < & such that (u, x, y) is smooth. This implies that for
initial state x (z) with T € (0, @) there exists a smooth continuation
equaltot — (u(t + 1), x(t + 1), y(t + 7). Hence, x(z) € R for
t € (0, @), which leads to a contradiction.

Since R is invariant, there do not occur jumps in the state vari-
able x of a right-Zeno solution afterr = 0. Hence, the multiplicities
of the event times T > 0 are equal to zero. Hence, it remains to
show that the LCS is globally right-Zeno solvable.

It is proven in {9] that under the hypothesis of the theorem every
mode I given by the DAE (2) is governed by ¥ = Fjx on the
consistent subspace (see section 3).

Suppose that the maximal interval on which a right-Zeno solu-
tion (u, x, y) with initial state xq exists is [0, T¥) with t* < o0
(note T > 0 due to local right-Zeno solvability). Since the LCS
is right-Zeno solvable with multiplicity at most one, we can as-
sume that xy € R (otherwise take one initial jump). Since R is
invariant under the dynamics of the LCS, it holds that x(¢) € R
for all t € [0, T*). Since in a continuous phase there is at most
exponential growth, it is clear that x(¢) is bounded on [0, T*) (say
Ilx()]l < M). Hence, when the solution x is given on the interval
(s, t) € [0, T*) by mode /, it holds that

Ix (1) — x()ll = 11" (s) —x(s)) <
crlt=sllx®l<eMit—s|

This yields for arbitrary (s, t) C [0, t*) that

lx@) = x| <M max c; |t—s].
TeP (k)

Hence, x is Lipschitz continuous on {0, t*) and thus also uniformly
continuous. A standard result in mathematical analysis [12, ex.
4.13] states that x* := lim, 4+ x(t) exists and lies in R due to
closedness of R. Therefore, smooth continuation is possible from
x* beyond 7*, because of local right-Zeno solvability. This con-
tradicts the definition of *. Hence, t* = 0.

a



Linear relay systems

A linear relay system is given by x = Ax + Bu; y =
Cx + Du with u(r) € R¥, x(t) € R", y(t) € R" and
(yi, —u;) connected by an ideal relay characteristic as in
Fig. 3 (note the minus sign in front of —u;). Such a relay

-u,

Figure 3: Relay characteristic.
system can be rewritten as an LCS [11, 8].

Theorem 8.3 Consider a linear relay system given by
(A, B,C, D) with G(o) = C(cd ~ A)"'B+ D a P-
matrix for sufficiently large o. Then the system is globally
right-Zeno solvable and the solutions are right-Zeno unique.
Moreover, the multiplicities of the event times are all equal
to zero.

Proof. Combining Thm. 6.1, Thm. 5.3 and [11] yields local right-
Zeno solvability and right-Zeno uniqueness. Since u; € [—1, 1]
there is at most exponential growth in each separate mode. There-
fore similar arguments can be used as in the proof of Thm. 8.2.

(=]

9 Exclusion of accumulations of events

Not much is known at present concerning conditions that
exclude the existence of accumulations of events. Some first
steps in this direction will be presented here.

Bimodal LCS with p = |

Theorem 9.1 Consider a bimodal LCS and assume that
D = 0 and CB is a positive scalar. The following state-
ments hold.

1. LCS(A, B, C, D) is globally right-Zeno solvable.

2. The event time T = 0 has at most multiplicity one. The
other event times have multiplicity zero.

3. Solutions do not have accumulations of event times.

Proof. According to Thm. 8.1 and 8.2 global existence is guaran-
teed and between event times the solution is real-analytic. More-
over, there are no jumps for ¢+ > 0. With minor modifications the
reasoning in the appendix of [5] can be used to exclude accumula-
tions of event times.

=]

Linear passive complementarity systems

Theorem 9.2 [3] Let (A, B, C, D) (as a linear system) be
passive (dissipative with respect to the supply rate u 1 y [14])
and minimal (i.e. controllable and observable). Assume B
has full column rank. Then the following statements hold.

1. LCS(A, B, C, D) is globally right-Zeno solvable.

2. The event time © = 0 has at most multiplicity one. The
other event times have multiplicity zero.

3. Solutions do not have left-accumulations of event times.

10 Conclusions

In this paper we have given an overview of the state-of-
the-art of well-posedness theory for linear complementarity
systems and extended this by new global existence results.
These global existence results apply to bimodal LCS, passive
LCS, LCS with low row leading coefficients and linear relay
systems. However, there is still a large class not covered.

By several examples it was shown that there is a clear rela-
tion between the solution concept, assumptions on non-Zeno
behaviour and well-posedness. Physically relevant phenom-
ena might be excluded by using non-Zeno solution concepts
and ‘pathological’ (irrelevant) solutions may be included by
using a too broad solution space (allowing left-Zeno so-
lutions). Classical solution concepts (e.g. Carathéodory)
might also not be suitable for hybrid systems, since they in-
corporate left-Zeno solutions in certain cases. The examples
presented here stressed that time in hybrid systems must be
considered asymmetric and solutions must be defined in a
forward sense. As a first step to justify non-Zeno assump-
tions, we provided sufficient conditions that exclude the oc-
currence of infinite multiplicities and (left-)accumulations -
of event times.
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