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Abstract

In this paper existence and uniqueness of solutions to
linear complementarity systems (LCS) are considered.
Complementarity systems are systems that are com-
posed of differential equations, inequalities and switch-
ing logic. These systems can therefore be seen as a
subclass of hybrid dynamical systems. The main result
of this paper states that dissipativity of the underlying
state space description of a LCS is a sufficient condition
for existence of so-called initial solutions and guaran-
tees uniqueness of the state trajectory. Applications of
the results include electrical networks with diodes.

1 Introduction

Linear complementarity systems [5-10] are defined
as linear time-invariant dynamical systems for which
the usual input and output components satisfy com-
plementarity constraints composed of inequalities and
Boolean expressions. These complementarity condi-
tions are similar as in the Linear Complementarity
Problem (LCP) of mathematical programming. A for-
mal definition will be given below. Examples of com-
plementarity systems include (but are not limited to)
mechanical systems subject to unilateral constraints,
electrical networks with diodes, systems with piecewise
linear characteristics like saturation or deadzones, relay
systems, systems with Coulomb friction, hydraulic sys-
tems with one-way valves and optimal control problems
with state constraints. By imposing complementarity
conditions on the usual input and output variables of
a linear dynamical system, the system description re-
sults in a hybrid dynamical system and the behaviour
becomes nonlinear. As a consequence, basic issues like
existence and uniqueness of solutions given an initial
condition are not trivial. Instances of LCS where ex-
istence or uniqueness of solutions fails are known [9].
In this paper, these questions are considered for LCS
for which the underlying state space description is as-
sumed to be dissipative with respect to a certain supply
rate. The results in previous papers {5, 6,9, 10] do not
apply to such systems.
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In this paper, the following notational conventions
will be in force. R denotes the real numbers, R, the
nonnegative real numbers. For a positive integer k, we
denote the set {1,...,k} by k. Let a matrix M € R&*!
be given. For index sets I C k, J C [, the submatrix
My is defined as (my;)ier,jes, where m;; denotes the
entry of M in the ¢-th row and j-th column. If I = £,
we also write M, . Similarly, M;, is My; with J = 1.
By T we denote the identity matrix of any dimension.
Finally, C*°(R,R) denotes all functions from R to R
that are arbitrarily often differentiable.

2 Linear Complementarity Systems

Given the matrices A € R**™, B € R*** C ¢
RF*™ and D € R*** the corresponding linear comple-
mentarity system (LCS) is governed by the equations

(t) Az(t) + Bu(t) (1a)
y(t) = Cuz(t) + Du(t) (1b)
yi(t) 2 0, uy(t) 20, (y:(t) =0 or w;(t) = 0)1lc)

where the last line must hold for all 4 € k. In this
formulation ¢t € R, denotes the time variable, z(t) the
state, u(t) and y(¢) the complementarity variables at
time ¢. The equations (1a)-(1b) are called the underly-
ing state space description of the LCS. Note that u(t)
and y(t) are not input and output variables of the sys-
tem as usual, because of the imposed restrictions (1c).

Examples of the systems contained in the above
class are e.g. linear electrical networks consisting of
resistors, capacitors, inductors, gyrators, transformers
and ideal diodes. To obtain a complementarity formu-
lation, the system is viewed as the interconnection of
a multiport (representing the behaviour of the RLC-
network) and the diodes. The interface between the
interconnection are multiple ports with two terminals.
Associated to each port are two variables: the current
entering one terminal and leaving the other and the
voltage across these terminals. The resulting multiport
network can be described by a state space representa-
tion (A,B,C,D) [1] with state variable z represent-
ing for instance, voltages over capacitors and currents
through inductors and input/output variables repre-



senting the port variables. For the i-th port, either u;
is the current entering the the terminals of the port and
; 1s the voltage across the terminals of the port or vice
versa. In this case (4. B,C, D) is a dissipative system
with respect to the supply function u "y (see section 3).

To include the ideal diodes in the electrical network,
the diodes are connected to the terminals. This results
in the additional (interconnection) equations

wi=-Vi, ys=Loru =1, y; = -V,

where V; and I, are the voltage over and current
through the ¢-th diode, respectively. The ideal diode
characteristics

Vi<0, 20, (Vi=0or; =0) (2)
then correspond to (1c) (see figure 1).
I
+ Vi -
Nt
L1 \Z

Figure 1: The ¢-th ideal diode characteristic.

The hybrid nature of a LCS like the electrical net-
work is caused by the conditions (1c), because (1lc)
states that for each i € k either u;(t) = 0 or y;(t) = 0.
In terms of the electrical network this corresponds to
each diode being either conducting (positive current)
or blocking (current is zero). This results in a mul-
timodal system with 2* modes (also called “discrete
states” ), where each mode is characterised by a subset
I of k, indicating that y;(t) = 0, ¢ € I and u,(t) = 0,
t & I. Mode I has its own specific motion laws, which
are given by

i = Axz+ Bu (3a)
y = Cz+Du (3b)
¥y = 0,1€l (3¢)
w, = 0,i¢]l (3d)

To keep the paper self-contained, we recall the con-
cept of an initial solution [5,6). Loosely speaking, an
initial solution is a (generalised) function that satis-
fies (1) “temporarily.” In case of a smooth function,
temporarily means on a time interval of nontrivial sup-
port containing zero. In case of a function containing
{derivatives of) Dirac pulses, temporarily is defined in
terms of the impulsive part as will be formalised next.

The solution concept of (1) is based on impulsive-
smooth distributions as in [4]. A distributional frame-
work is required to describe all occurring phenomena:
if an ideal diode is connected to a capacitor, the current
may become a multiple of a Dirac pulse and the voltage
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displays a discontinuity (jump) (see Example 2.4). Es-
pecially, for mechanical systems in which rigid bodies
are subject to unilateral constraints, jumps in the ve-
locity of the bodies (when colliding) are common. The
distributions 6 = 6(°) and 6(") denote the Dirac pulse
and its r-th derivative.

Definition 2.1 [4] An impulsive-smooth distribution
is a distribution of the form u = w;, + u,.q, where

Uimp = Yoieg w6 for scalars u™ and u,q is smooth
on [0,00), i.e. there exists a v € C°(R, R) such that

0
v(t)

The class of these distributions is denoted by Cir.p.

(t<0)

Ureg(t) = { (t > 0).

Given an impulsive-smooth distribution u = w;,, +
Uyeg € Cimp, we define the leading coefficient of its
impulsive part by

0,

u—l

if Llimp =0

. !
if Wimp = Yo

lead(u) := { —i§0) with u = # 0.

(4)

Definition 2.2 [6] A scalar-valued impulsive-smooth
distribution u € Cypn,p, is called initially nonnegative, if

e lead(u) > 0; or

¢ lead(u) = 0 and there exists an € > 0 such that
Ureq(t) 2 0,for all t € [0, ¢).

An impulsive-smooth distribution in Cf, _ is called ini-
tially nonnegative, if each of its components is initially
nonnegative.
Definition 2.3 [5] We call a triple (u,x,y) € C’fg;’%
an dnitial solution to (1) with initial state zo, if there
exists an I C k

1. there exists an I C k such that (u,x,y) satisfies
(3) with initial state xq in distributional sense®.

2. u,y are initially nonnegative.

Example 2.4 Consider the system z(¢) = u(¢), y(t)
z(t) together with (1c). This represents a system con-
sisting of a capacitor connected to a diode. The cur-
rent in the network is equal to u and the voltage over
the capacitor is equal to x y. For initial state
z(0) = 2o = 1, (u,%,y) with w = 0 (no current) and
y(t) = x(#) = 1 for all ¢ € R is an initial solution.
To demonstrate that the distributional framework as
above is needed, consider initial state zp = —1 for

which (u,x,y) given by u= 6, x(t) =y(¢t) =0,¢t >0 is

1To incorporate the initial condition z(0) = zg in (3), one has
to replace (3a) by £ = Az + Bu + z¢é, where z is the distribu-
tional derivative of = and equality is understood in the sense of
distributions.



the unique initial solution. This corresponds to an in-
stantaneous discharge of the capacitor at time instant
0. Note that in this case a state jump occurs at time
instant 0.

The initial solution concept describes the evolution
of the system only in one mode and on a limited time
span. Because a LCS (1) evolves through several modes
during time evolution, the valid parts of initial solu-
tions must be ‘glued’ together. To illustrate this con-
sider an electrical network. A diode in such a network
switches several times from conducting to blocking and
vice versa. Such mode transitions are triggered by state
events: some of the inequalities in (1c) tend to be vi-
olated. In a network a state event corresponds to a
current through a diode tending to become negative or
a voltage over a diode tending to become positive. The
“global solution” is constructed by concatenation of the
initial solutions. This is formalised in [6], where it is
shown that DAE-simulation (determining the evolution
of the system when the state (conduction or blocking)
of each diode is known), event-detection (determining
the times at which the diodes changes state), mode-
selection (determining which diodes will be conducting
and which will be blocking in the next time frame) and
re-initialisation (computing the jump of the continuous
state at an event time) are essential for the time simu-
lation of the above systems. See section 6 for an exam-
ple. A topic of current research is the investigation of
alternative numerical schemes with high efficiency and
robustness.

3 Dissipative Systems
A square system (A, B, C, D) given by
&= Az + Bu, y=Cz+ Du (5)

(as in {la)-(1b)) is said to be dissipative [12] with re-
spect to the supply rate uTy, if there exists a non-
negative function S : R* — Ry, called a storage func-
tion, such that for all locally square integrable solutions
(u,z,y) to (5) and ¢y £ t; the following inequality
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S(atto)) + [T @)t > S(altr)
to

holds.

The above inequality is called the dissipation in-
equality. A standing assumption throughout the whole
paper will be the minimality of the system description
(A, B,C, D), which is standard in the literature on dis-
sipative dynamical systems, see e.g. [12]. Recall that
(4, B, C, D) is called minimal, if (A, B) is controllable
and (C, A) observable.

Proposition 3.1 [12] Assume that the system in (5)
is minimal. The following statements are equivalent.

e (A, B,C,D) is dissipative with respect to the sup-
ply rate u” y.

o The transfer matriz M(s) := C(sI — A)"'B + D
is positive real, i.e. the poles of the entries of
M((s) lie in the closed left half plane and x*[M (s)+
M*(s)lx 2 0 for all complex vectors x and all com-
plex scalars s with Re s > 0 (* denotes conjugate
transpose.)

e The matriz inequalities

~ATK-KA -KB+CT 0 ()
-BTK +C D+ DT -

(i.e. the matriz is positive semi-definite) and
K=K">0

have a solution K. Moreover, all solutions to the
linear matriz inequalities above are positive defi-
nite (denoted by K > 0) and each such solution de-
fines a quadratic storage function S(z) = 27 Kz.

4 Main Results

Before presenting the main result of this paper,
we present an equivalence relation on the impulsive-
smooth distributions.

Definition 4.1 Let g, h € Cf . We say that g is
germ-equivalent to h (g ~ h), if there exists an ¢ > 0
such that gimp = himp and greg(t) = hpey(t) for all

0<t<e.

This clearly defines an equivalence relation and the
equivalence classes are called germs. The main result
of this paper is stated as follows.

Theorem 4.2 Consider the LCS given by (1) and as-
sume that (A, B, C, D) is dissipative with respect to the
supply rate u"y and that (A, B, C, D) is minimal. Then
for each initial state xo there exists at least one initial
solution. Furthermore, the state x of all initial solu-
tions (u,x,y) corresponding to the same initial state
are unigue up to germ-equivalence.

Example 4.6 below shows that this theorem cannot
be proven with earlier results on well-posedness [5,6,9,
10]. Specifically, consider the system (1). The Markov
parameters of this system are defined to be

Hi = D, .
CA™ 1B,

The leading column coefficient matrix A" and the
leading column coefficient matrix M are defined as fol-
lows.

ifi=0

7
ife=12,... @

Definition 4.3 The leading row coefficient matric M
and leading column coefficient matriz N for the system
(1) are defined as

Hi
M= : and NV := (H}; ... HY)
Hgl:
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respectively, where

inf{i e N| Hy; #0}, j €k
inf{i e N| Hj, #0}, j €k

i

i
Pi

1

with the convention inf & = oo. If n; = 00, then we set
H} =0 and similarly, if p; = co, we set Hj, = 0.

] T

In [6], existence and uniqueness of initial solutions
to (1) are guaranteed under the assumption that A is
a P-matrix. In {5, 6] tae following conditions for well-
posedness are stated.

Definition 4.4 The LCS (1) is (locally) well-posed if
from each initial state there exists an € > 0 such that
there exists a unique (“global”) solution starting with
at most a finite number of jumps followed by smooth
continuation on [0, €).

Theorem 4.5 If M and N are both P-matrices, then
the LCS system (1) is (locally) well-posed.

To show that these conditions for well-posedness do
not apply to the class of LCS with underlying dissi-
pative state space description, consider the following
example.

Example 4.6 Take A=0,B=(11),C=(11)7 and
D= ( i i . It is easily verified that M =N = D,
which is not a P-matrix. Hence, the results in [5,6] do
not apply. However, Theorem 4.2 claims the existence
of initial solutions for all initial states, because the sys-
tem description is minimal and dissipative. To show
that the initial solutions may be nonunique, consider
the initial state zop = —1. All initial solutions (u,x,y)
corresponding to this initial state are given by y = 0,
x(t) = —e~* (note x is regular) and there is some free-
dom in u. Any u satisfying u; + uy = e~¢ for initially
nonnegative functions u;, us satisfies the conditions of
an initial solution. Observe that the state x is unique,
although u is not.

In some special cases the results of 5, 6] can be used
to obtain local well-posedness. In an electrical net-
work containing only one diode (k = 1), it is clear that
the first nonzero Markov parameter is a scalar (in this
case equal to both M and A) which is strictly posi-
tive due to the positive realness of the transfer func-
tion M(s) = C(sZ — A)"'B + D. Hence, local well-
posedness is guaranteed in this case. Less trivial is the
case where the ‘feedthrough term’ of the state space de-
scription is zero (D = 0) and B has full column rank.
The condition (6) (being solvable according to dissipa-
tivity) can only be satisfied when C = BTK. From
this it follows that M =N = H' = CB=B"'KB is
positive definite and consequently a P-matrix (see {2,
Thm. 3.1.6 and Thm. 3.3.7]). Also in this case lo-
cal well-posedness (including existence and uniqueness
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of initial solutions given an initial state) is guaranteed
by the earlier results. In [10], a similar remark has
been made under additional conditions. However, in
[10] only existence and uniqueness of smooth initial so-
lutions has been studied.

Note that in general, existence of solutions on an in-
terval of positive length is not proven by Theorem 4.2.
The problem is that the theorem does not exclude that
infinitely many state jumps occur at a given time in-
stant (which happens if from a given initial state only
nonsmooth initial solutions exists resulting in only im-
pulsive motions (re-initialisations), but no smooth con-
tinuation on a nontrivial interval).

5 Proof of Main Result

To prove Theorem 4.2 we will use extensions of the
results as presented in [7]. In [7] similar but weaker
results as below have been applied to linear relay sys-
tems. In this paper it will be demonstrated that the
results have a much wider range of application. The re-
sults are stated in terms of complementarity problems
as often used in mathematical programming.

The Linear Complementarity Problem (LCP(q, M))
[2] is defined for a matrix M € Rf** and a vector
g € R* as follows. Find u, y € R* such that

y = g+Mu (8a)
wi = 0,y > Oforallick (8b)
(i = Ooru;=0)foralliek (8¢c)

LCP(q, M) is called feasible, if there exist u, y € RF
that satisfy (8a) and (8b). LCP(q, M) is called solvable,
if there exist u, y € R* that satisfy (8).

A wealth of theoretical and algorithmical results are
known in the literature [2]. Some of these will be re-
called below. For index sets I, J C k with the same
number of elements the (I, J)-minor of M is the de-
terminant of the square matrix My; := (mqj)ier jes.
The (I, I)-minors are also known as the principal mi-
nors. M is called a P-matriz, if all principal minors are
strictly positive.

Proposition 5.1 [2] For given M € R¥*¥ | the prob-
lem LCP(q,M) has a unique solution for all vectors
g € R* if and only if M is a P-matriz.

Proposition 5.2 [2] Let M € RE*¥ be q positive semi-
definite matriz (not necessarily symmetric) and q €
Rk, If LCP(q, M) is feasible, then it is solvable.

After these preliminaries on complementarity prob-
lems, we continue by introducing the rational vector
¢(s) and the rational matrix M(s) as

q(s) = C(sT — A)'mg, M(s)=C(sT - A)"'B+D
(9)

with zp € R™ corresponding to an initial state of (1).



Theorem 5.3 [7,8] The following statements are
equivalent.

1. An initial solution to (1) exists with instial state
Zo.

2. There exists a op € R such that LCP(q(c), M (o))
has a solution for all ¢ > og with q(s) and M(s)
as in (9).

Theorem 5.4 [8] Consider the LCS (1). The follow-
ing statements are equivalent.

1. For any pair of initial solutions (v/,x?,y7), j
1,2 to (1) with initial state x¢, it holds that x*
x2.

There exists a g9 € R such that for all ¢ >
oo any pair of solutions (u',y*), i 1,2 to
LCP(q(o), M (o)) with q(s) and M(s) as in (9)
satisfies Bu! = Bu?.

Proof of Theorem 4.2 Suppose that there exists a
o > 0 such that LCP(q(z), M (o)) is not solvable. Since
M{(s) is positive real, M (o) is positive semi-definite for
each o > 0. According to Proposition 5.2 this implies
that LCP(¢(o), M(c)) is not feasible. Farkas’ lemma
[3] implies that there exists a vector ug (possibly de-
pending on o) such that

0 < Up; (10)
0 > MT(o)u; (11)
0 > wugq(o) =ul CleT — A) lay, (12)

where the inequalities hold componentwise. Observe
that the following trajectories

u(t) uge”t (13)
e(t) = (6T —-AT)'CTuge’ (14)
y(t) M7 (0)uget. (15)
are solutions of
#(t) = ATz(t)+CTu(t)
y(t) = BTz(t)+ D u(t).
Note  that the system  with  parameters

(AT, CT,BT,DT) results in the transfer matrix
M7T(s). Furthermore, M'(s) is positive real, be-
cause M(s) is positive real and (A7,CT,BT,D7) is
minimal, because (4, B,C, D) is.

Substituting the solution trajectory in the dissipa-
tion inequality for (A7,CT,B7, D7), we get for ty < ¢

S(z{to)) + /t1 UJMT(a)uer"tdt > S(z(t1)), (16)

to

where we take S(z)
and positive definite as in Theorem 3.1.

$2" Kz with K symmetric
Note that
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ug MT(c)up = 0 due to the fact that M (o) is posi-
tive semi-definite and (10)-(11). Hence, the integral in
(18) is zero resulting in S(z(¢1)) < S{z(tg)). Letting to
approach to —oo we get %xT(tl)Kz(tl) = S5(z(t1)) =0
for all t; € R But this means that z(¢;) = 0 for all
t; € R, because K is positive definite. Since (67— A7)
is invertible for every o > 0, (14) implies CTug = 0
which contradicts (12). Hence, LCP(q(c), M (o)) is
solvable for all ¢ > 0. Proposition 5.3 proves the exis-
tence part of the theorem.

To prove the uniqueness part, we use simi-
lar reasoning as for the existence part. Suppose
LCP(q(c), M (o)) has for some ¢ > 0 multiple solu-
tions (u!,y!) and (u?,y?). According to [2, Thm.3.1.7],
we must have that [M' (o) + M(0))(u* — u?) = 0.
Observing that w(t) = e'(u! — u?), z(t) = (o7 ~
A7 B(u! — u?)e’t, y(t) = M(o)(u! — u?)e’t are tra-
jectories of the system (A, B,C, D), we can conclude
analogously as above by using the dissipation inequal-
ity for (A, B, C, D) that B{u' —u?*) = 0. According to
Proposition 5.4 this means that any pair of initial so-
lutions (u’,x?,y7), 7 = 1,2 with the same initial state
satisfies x* = x°. w

Since the state of all initial solutions are unique up
to germ equivalence, it is evident that the state of the
global solution of (1) for LCS, whenever it exists, is
unique, because it consists of concatenated initial solu-
tions. A formal proof of this result is given in [8].

6 Computational Example

g

Figure 2: Electrical network with diode

Consider the electrical network as depicted in fig-
ure 2 consisting of one diode, one capacitor, one induc-
tor and two resistors. We assume that ) = Ry = C =
L =1 and we introduce the variables z; as the voltage
over the capacitor, xg the current through the induc-
tor, —u the voltage over the diode and y the current
through the diode. This system can be modelled as

(%) = (5 () (h)

-1 -1 x 1
Yy

(01)(2>+u

together with (1c¢). Since the network contains only
one diode the system is locally well-posed as mentioned
earlier.

3
To



This system has two modes depending on the state
of the diode. Mode I == {1} corresponds to a blocking
diode (y = 0, left part of figure 3) and I = @ cor-
responds to a conducting diode (u = 0, right part of
figure 3) with the dynamics in both modes given by the
ODEs & = A(;)z and & = Ay, respectively, with

0 1 0 1
A{l}:(—l _2) andAg:(_l _1).

¢
R, L R, L

Figure 3: Configuration of the two possible modes in the
example

The first dynamics can be found by observing that
y = zg + v = 0 implies that v = ~z,. The modes {1}
and @ are valid as long as the inequalities u = ~2z5 > 0
and y = zo > 0, respectively, are satisfied. Hence,
mode transitions are triggered by zeros of z5.

Suppose we consider initial state xp = (—1,-1)7.
The main theorem of this paper states that an initial
solution must exist. Indeed, an initial solution starting
from this initial state is given by u(t) = (1 — 2t)e™?,
x(t) = —e~t(1 +2t,1 - 2t)7, y(t) = 0. The blocking
mode I = {1} (y = 0) is valid as long as u(¢) > 0. This
holds on the interval [0, ).

From the state at time ,i.e. (~2¢7%5,0)7, a new
initial solution (which exists according to Theorem 4.2)
has to be found. The first part of this initial solution
constructs a new part of the global solution. In this
case, the new mode will be I = @ corresponding to a
conducting diode. The solution will be valid on (ap-
proximately) the interval [0.5,4.1276). At time 4.1276
a transition from conducting to blocking occurs.

In Figure 4 a piece of the trajectory of the network
is depicted. The dashed lines corresponds to x,, the
solid one to x;. The vertical lines denote the event
times: the times at which a mode switch occurred.

Simulation of Diode system

states

4
time

Figure 4: Simulation of the network

4132

7 Conclusions

In this paper we studied existence and uniqueness
of solutions to a particular subclass of hybrid systems.
For hybrid systems such results are nontrivial and con-
ditions guaranteeing well-posedness are hardly found
in the literature. It turned out that for linear com-
plementarity systems for which the underlying state
space description (4, B,C, D) is dissipative and mini-
mal, the existence of initial solutions is guaranteed for
all initial states. Furthermore, the corresponding state
trajectory is unique. In some special cases even local
well-posedness holds. By an example, it was shown
how to concatenate initial solutions to get the solution
evolving through several modes.
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