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Abstract

We introduce the class of linear complementary-
slackness systems. The time evolution of these systems
typically consists of a series of continuous phases sep-
arated by “events” which cause a change in dynamics
and possibly a jump in the state vector. The occurrence
of events is governed by certain inequalities similar to
those appearing in the Linear Complementarity Prob-
lem of mathematical programming. The framework we
describe is motivated by physical models in which both
differential equations and inequalities play a role. We
present a precise definition of linear complementary-
slackness systems and give sufficient conditions for ex-
istence and uniqueness of solutions. The theory is il-
lustrated by mechanical systems.

1 Introduction

Hybrid Systems is a general term for dynamical
systems, where both continuous dynamics and logic
switching are incorporated. These occur for instance
when a discrete device, such as a computer program,
interacts with a part of the outside world that has its
own continuous time dynamics, such as a chemical pro-
cess. Hybrid systems have recently drawn considerable
attention both from computer scientists and from con-
trol theorists, see for instance [9]. In this literature,
existence and uniqueness of solutions is often simply
assumed, and easily verifiable sufficient conditions for
well-posedness in other than trivial cases are rarely
given. The work presented in this paper tries to fill
this gap for a particular subclass of hybrid systems.

The object of study is the linear complementary-
slackness class (also called “linear complementarity sys-
tems” [7]) as introduced in [12]. These systems switch
between various modes as a result of state events: when
a system variable violates a certain inequality, a tran-
sition to another mode must occur. Such a transition
can be accompanied by a jump of the state variable.
The most difficult problem is the selection of a new
mode, where continuation is possible. In [8,13], this
problem is treated in the case where no state jump is
required to get smooth continuation. Since mode tran-
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sitions often call for a state jump, the mode selection
procedure in those references is inadequate to come to a
complete description of the dynamics. In [12], existence
and uniqueness results are given for the case of systems
with a single inequality constraint. The main result of
this paper will be to give sufficient conditions for (lo-
cal) existence and uniqueness of solutions for systems
with several inequality constraints. We do this under
a formulation of the mode transition rule that is differ-
ent (for the multiconstrained case) from the one used
in [12]. It seems to be difficult to obtain well-posedness
results for the multiconstrained case using the rule of
[12]; moreover, this rule is not consistent with Moreau’s
rule [10,11] in the case of mechanical systems.

The systems that we consider have some charac-
teristics in common with ‘systems with impulses’ for
which several frameworks have been developed, see for
instance [1,3,4]. However there are also differences:
Filippov [3] does not allow jumps whereas we do, Ha-
lanay and Wexler [4] consider only time events whereas
we consider state events, and Bainov and Simeonov do
not consider mode switches whereas we look at mul-
timodal systems. An important difference with the
works just cited is also that we allow an implicit for-
mulation of the state events (cf. (1) below). Implicit
specifications are often more convenient from a point
of view of modelling.

This paper can be viewed as a continuation of the
work of Lotstedt [8] who pioneered the application of
the Linear Complementarity Problem (LCP) of math-
ematical programming to the simulation of the motion
of systems of rigid bodies subject to unilateral con-
straints. There is some change of direction however,
since we consider (piecewise) linear systems rather than
(nonlinear) mechanical systems and aim for a complete
specification of the system dynamics. Such a specifica-
tion was not given by Lotstedt; in particular he does
not precisely specify what trajectories should be chosen
in case multiple constraints become active at the same
time.

A main contribution of this paper will be the well-
posedness in the sense of existence and uniqueness of
solutions for linear mechanical systems with unilateral



constraints and inelastic collisions. In [10], existence
results are presented for the nonlinear case, but with
only one constraint. In the linear case, we extend this
result by allowing for multiple constraints and prove
also uniqueness of solutions. ’

This paper is a very condensed version of [7] which
has been submitted for publication elsewhere.

In this paper, the following notational conventions
will be in force. R denotes the real numbers and N :=
{0,1,2,...} the natural numbers. For a positive integer
I, I denotes the set {1,2,...,I}. If a is a (column)
vector with k real components, we write ¢ € R* and
denote the 7th component by a;. M7 is the transpose
of the matrix M. The kernel of M is denoted by Ker
M and the image by Im M. Given M € R¥* and
two subsets [ C k and J C I, the (I, J)-submatrix of
M is deﬁned as M[J = (Mij)ie]’jej. In case J = I,
we also write My, and if I = k, we write M,;. For a
vector a, ay := (a;);er. Given two vectors a € R¥ and
b € R/, then col(a, b) denotes the vector in R**' that
arises from stacking a over b.

2 Linear Complementary-Slackness Class

‘A system in the linear complementary-slackness
class is governed by the joint equations

#(t) = Az(t)+ Bu(t) (1a)
y(t) = Ce(t)+ Du(t) (1b)
W20, u®)>0, g @u=0. (i)

The functions u(-), z(-), y(-) take values in R¥, R" and
R*, respectively.

To give an indication of the relevance of the consid-
ered subclass of hybrid systems, we sum up the exam-
ples as presented in [13]; this class includes electrical
networks with diodes, mechanical systems with unilat-
eral constraints, Coulomb friction, saturation charac-
teristics and relays with deadzones.

3 Complete Description

The general set-up of the complete dynamics is
given schematically by figure 1. Next we will discuss
the indicated ingredients in this scheme one by one.

3.1 DAE simulation

Equation (1c) implies that for every 1 = 1,... )k
either u; or y; is zero. This results in a multimodal
system with 2% modes (or discrete states), where each
mode is characterised by a subset I of k, indicating
¥ = 0,7 € I and u; = 0,7 € I°. I° denotes the set
of numbers in k, that are not in I. Within a mode
the motion laws are given by Differential and Algebraic

Equations (DAEs). In mode I, they are

2(t) Az(t) + Bu(t)
y(t) Cz(t) + Du(t) @)
u; (1) 0,7e1I°.

(l

IR

DAE simulation

Figure 1: Schematical description of complete dynamics

An element ¢y € R™ will be called a consistent state
for mode I, if there exists an arbitrarily often differen-
tiable solution (u(-),2(-),y(:)) of (2). The set of con-
sistent states for mode I will be denoted by V;. The
following sequence of subspaces converges in at most n
steps to V; [6]:

Vo == Rn
Vit1 = {z € R™| Ivector v such that
Az + Byv € Vi, Crez + Drv = 0}. (3)

Sometimes continuation in mode [ is only possible after
a state jump. Think of mechanical systems: a parti-
cle moving around in free space hits a fixed wall and
the motion continues along this wall. Hence, we can
continue in this wall-constrained mode after a velocity
jump occurred. The velocity jump is caused by a Dirac
pulse exerted by the wall. To formalize this idea, we
introduce impulsive-smooth distributions [6].

Definition 3.1 An impulsive-smooth distribution is a
distribution of the form u = Usmp + Urey, Where Uimp
is the impulsive part, uimy = 3o u'6®) with ué € R
and u,., is smooth (i.e. arbitrarily often differentiable)
on [0,00). §() denotes the i-th derivative of the Dirac
distribution &. '

Solutions to (2) are defined as in [6]. The set of ini-
tial states for which an impulsive-smooth input exists
satisfying (2) is Vi +Tr :={v+t | v € V}, t € T},
where 17 is the jump space defined as the limit of the
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following recursion [6].

To = {0}
Tiy1 = {z € R"|3Ivector v IZ € T; such that
m:Af:+B.IU,CI.:l_:+DHU:0} (4)

Following the convention of Willems [14], we call
mode I autonomous if from every consistent state
for mode I there exists a unique smooth solution

(u(), 2(), () to (2).

Lemma 3.2 [6] The following statements are equiva-
lent

1. Mode I is autonomous.

2. Vi Tr = R™, i.e. Vi and Ty give a direct sum

decomposition of R™ and Ker( g}; ) = {0}.

Assumption 3.3 All modes are autonomous.

Under this assumption the DAE simulation leads to
a unique smooth solution in a particular mode given a
consistent initial state for this mode.

3.2 Event detection

Since the DAEs corresponding to the current mode
I lead to a unique solution (u(-), z(-),y(*)), we can now
incorporate the remaining inequalities

wr(t)> 0 and yre(t) > 0. (5)

As long as (5) is satisfied, the solution continues in
mode I. Let 7 be the current time. Event detection
consists then of determining the time-instant 7eyen:,
where () tends to get violated. Formally,

Tevent = Inf{t > 7| (5) does not hold}.

Since smooth continuation is not possible in the
mode I after time 7yens, a transition to another mode
has to occur. So we have to select a new mode to which
we can switch.

3.3 Mode selection

The Rational Complementarity Problem [7,13] will
be used to select a new mode from initial state z¢ :=
w("’e’uent)-

Rational Complementarity Problem.
(RCP(z()) For given =zo, find rational functions
9(s) and 4(s) such that the equalities

9(s) = C(sI — A)"tag + (C(sI — A)"'B + D)a(sg )
6

g (s)yi(s) =0 (7)

hold for all s € R, and there exists an so € R such that
for all s > sy we have

9(s) 2 0, 4(s) > 0. (8)

I (4, 7) is a solution to RCP (), any mode J satis-
fying 4s<(s) = 0 and §s(s) = 0, for all s € R is a mode
that can be selected as continuation mode.

A solution (4, §) to RCP(zq) is in fact the Laplace
transform of a so-called initial solution [7] to (1), i.e.
a solution which satisfies (1a),(1b) and y' (t)u(t) = 0
for all ¢ > 0 and the inequalities y(t) > 0 and u(t) 2 0
for t € [0, ) for some & > 0 if u(t) is smooth. If u(t) is
not smooth, these inequalities must hold in a distribu-
tional sense, which will be illustrated in the example in
section 5.

3.4 Re-initialisation

If the mode selection is performed by solving
RCP(zo) with resultant mode I, smooth continuation
on a nontrivial time-interval is only possible if ¢ € V.
If o & Vi, then a re-initialisation of the initial state in
mode I is necessary. Application of an impulsive input
to the system re-initialises z¢ to x(0+) which is the
projection of zg onto Vr along 7. Since Vi & Ty = R",
this projection is well-defined. The projection opera-
tor is denoted by Pg;’. Hence, z(0+) := P‘q,;fmg. How-
ever, there may be no smooth continuation from z(0+)
in mode I. Hence, multiple mode selections and re-
initialisations might be necessary, before smooth con-
tinuation is possible.

3.5 Solution Concept

A solution of (1) given initial state o is defined by
the flow diagram of figure 1 and the following rules.
The initial state zy is presented to the mode selection
block, which results in a selected mode, I. Then either

1. Smooth continuation is possible in the selected
mode I, i.e. g € V7 (answer is “Yes”). A DAE
simulation with this initial state and mode I is
performed until an event is detected at time Teyens-
Set g := w(Te'venﬁ_)

2. No smooth continuation is possible in the selected
mode I from z, (answer is “No”z‘, ie. zg & VI.
Re-initialise o by setting zo := Py zo.

Solve the mode selection problem with (new) state zo
and consider these two possibilities again. This cycle
is repeated till either

1. RCP(zo) has no solution anymore (deadlock);

2. an infinite loop of mode selections and re-
initialisations occurs.

Remark 3.4 Smooth continuation is possible from zg
in the selected mode if and only if the corresponding
solution to RCP(x) is strictly proper. This is based on
the fact that the Laplace transform {5] of the impulsive
part of an initial solution that causes the state jumps
corresponds to the polynomial part of the solution to
the RCP.
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4 Well-posedness

Definition 4.1 The complementary-slackness system
(1) is (locally) well-posed if from each initial state there
exists an € > 0 such that a unique solution on [0,¢)
in the above sense exists. This means that from each
initial state there exists a unique solution path start-
ing with at most a finite number of jumps followed by
smooth continuation on an interval of positive length.

This implies that after each event time, continua-
tion is possible over a time-interval of positive length.
Furthermore, the complete trajectory will be unique,
because all the episodes between event times are. Note
that this concept of well-posedness does not guarantee
existence of solutions on the interval [0,00). It could
happen that the event times have a finite accumulation
point. Well-posedness as in definition 4.1 does however
guarantee that infinitely many events cannot occur at
one time instant.

There exist complementary-slackness systems,
where no solution exists or the solution is not unique
(see [12]).

Consider the system (1). The Markov parameters
of this system are defined to be

H = D, .
{Csn

Definition 4.2 The leading column indices 71, ..., 7k
of (1} and leading row indices p1, ..., px are defined as

ni inf{i eN|H; #0}, j €k
pi = inf{i eN|H, #0}, jek

with the convention inf @ = oo.

ifi=0

ifi=1,2,... ®)

i

Due to assumption 3.3, the leading row and column
indices are all finite. The leading row coefficient ma-
triz M and leading column coefficient matriz N for the
system (1) are defined as

Hy
M = and N := (H}} ... HX
Hi;
respectively.

Given a matrix M € R*¥** and two subsets I and
J of k with the same cardinality, we define the (I, J)-
menor as the determinant of the square matrix My =
(Ms;)ier,jes. The (I, I)-minors are also known as the
principal minors. M is called a P-matrizif all principal

minors are (strictly) positive. The main result of this
paper is the following. A proof can be found in [T7].

Theorem 4.3 If the leading column coefficient matriz
N and the leading row coefficient matriz M are both P-
matrices, then the linear complementary-slackness sys-
tem (1) is well-posed. Moreover, from each initial con-
dition, at most one state jump occurs before smooth
continuation is possible.

N l NI AN CJI T

Figure 2: Two-carts system.

Remark 4.4 Although we proved existence and
uniqueness of solutions under the above conditions, the
system may display discontinuous dependence on ini-
tial conditions. An example of this phenomenon can
be found in [7].

5 Example

We will illustrate the theory by a system consisting
of two carts interconnected by a spring (cf. [12]). One
of the carts 1s also attached to a wall by a spring and
its motion is constrained by a completely inelastic stop.
The system is depicted in figure 2.

For simplicity, we assume that the masses of the
carts and the spring constants are scaled to 1. The
stop is placed in the equilibrium of the left cart. By
z1, 9 we denote the deviation of the left and right cart,
respectively, from their equilibria and 3, £4 are the ve-
locities of the left and right cart, respectively. By u we
mean the reaction force exerted by the stop. Further-
more, we set y equal to ;. The dynamics of this system
is given by (1) with

0 0 10 0
o o o1} . o]
A=l 5 1 00 7 B 1]
1 -1 0 0 0
C=(1000) ; D=0

The complementary-slackness conditions (1c) result
from the following reasoning. y(t) should be nonneg-
ative, because 1t is the position of the left cart with
respect to the stop. The force exerted by the stop can
only act in the positive direction: u(t) should be non-
negative. If the left cart is not at the stop at time ¢
(y(t) > 0), the stop is not active at time ¢, i.e. u(t) = 0.
Similarly, if u(¢) > 0, the cart must necessarily be at
the stop (y(t) = 0). Hence, y(t)u(t) = 0 for all ¢.

This system has two modes: the unconstrained
mode (I = @) and the constrained mode (I = {1})
with dynamics given by (2). Furthermore, we can stay
in the current mode as long as the corresponding con-
ditions remain satisfied.

constrained mode
u(t) 2 0

unconstrained mode
y(t) 20

Suppose that Zg =
(0.3202,—0.4335,0.3716,—1.0915)7 and the ini-
tial mode is the unconstrained one. A solution to (1)
is then generated as follows.

DAE simulation Since the unconstrained dynamics
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is an ordinary differential equation (ODE), a solution
can be generated by some ODE-solver as long as
y(t) > 0.

Event detection At time ¢ = 1, we arrive at state
z(1) = (0,-1,-1,0)7, where y(1) = 0,9(1) < 0.
Continuing in the unconstrained mode would violate
y(t) = 0. So an event is detected at Teyen: = 1. We
have to select a new mode. '

Mode selection Equation (6) of RCP(z(1)) reads

(s* + 35 + 1)9(s) = —s — % — 1 + (s + L)a(s).

g(s) = 0, 4(s) = 1+ 37 is the solution to the
RCP(x(1)). Hence, the constrained mode is selected.
Re-initialisation Since the solution to RCP(z(1)) is
not strictly proper, a re-initialisation is required. No-
tice that the inverse Laplace transform of @ equals
8 + cos(t). Hence, the positiveness of u(s) for suffi-
ciently large s corresponds to the positiveness of the
coefficient of §. The consistent states and the jump
space can be computed by using (3) and (4).

o 000
,V{l}_Ker( 01 0)

To re-initialise we have to project z(1) onto Vii3
along Ty}, which results in z(14+) = (0,—1,0,0)7.
Looking at figure 1, a new mode selection has to be
performed on state z(1+).

Mode selection Equation (6) of RCP(z(1+)) reads

Ty = Im

[l I ]
oo O =
O =

(34 +3s% +1)g(s) = —s + (s2 + 1)a(s).

The solution to RCP(z(1+)) is §(s) = 0,4(s) = =47,
which is strictly proper. Hence, smooth continuation is
possible from z(1+) in the constrained mode and thus
DAE simulation can be performed in this mode. The
physical interpretation is clear: the left cart hits the
stop. Instantaneously, the velocity is put to zero and
the right cart pushes the left cart to the stop.

DAE simulation The dynamics of the constrained
mode are given by DAEs. However, it is well-known
that DAEs of the form (2) can in general be trans-
lated into a linear ODE, because u; can be expressed
as a linear combination of the states. u must be cho-
sen in such a way, that it keeps y identically zero.
Since y = z1, ¥ = z3, ¥ = 22 + €2 + u, u should
equal —2z; — z,. Hence, the dynamics is given by
r1 =23 =0, 2y = —x3, u = —z3. Incorporating z(1+)
as the new initial condition, we get €2(t) = — cos(t—1),
u(t) = cos(t ~ 1) for ¢t € (1, 7}y ens), Where Teyen: is the
next event time, i.e. the first time instant at which
u(t) 2 0 is violated.

Event detection An event is detected at 7.,.,;
inf{t > 1| cos(t—1) <0} =1+7% z(1+73%)
(0,0,0,1)T. Again we have to select a new mode.
Mode selection RCP(0,0,0,1)7 has solution i(s)

i

0,9(s) = ?ﬁ%’i—f leading to the unconstrained mode.
The strict properness of §(s) indicates smooth contin-
uation is possible in the unconstrained mode. In terms
of the system: the right cart came to the right of its
equilibrium and pulled the left cart away from the stop.

The simulated trajectory is plotted in figure 3. Note
the complementarity between v and «; and the discon-
tinuity in the derivative of 1 at time¢ = 1.

s T T T T

time

-1

-1.!

Figure 3: Simulation of two-carts system.

As a second example, consider the initial state zg =
(0,1,-1,0)T. Equation (6) of RCP(zg) is given by

(s* + 352 + D)j(s) = s — s — 1 4 (s? + Da(s).

Solving the corresponding RCP leads to g(s) = 0 and
i(s) = 1 — =%5. The inverse Laplace transform of &
is § — cos(t). Note that although the smooth part is
initially negative, the distribution as a whole is con-
sidered initially negative, because the ‘leading coef-
ficient’ in front of the Dirac pulse is positive. This
indicates what is meant by an initial solution if the
function is not smooth: the nonnegativity in distri-
butional sense. So, we select the constrained mode.
Since #(s) has a polynomial part a re-initialisation is re-
quired. Re-initialisation leads to z(0+) = (0,1,0,0)T.
Again we have to select a new mode. Equation (6) of
RCP(z(0+)) is given by

(8* + 352 + 1)g(s) = s + (s? + 1)a(s).

and has i(s) = 0 and §(s) = ragzsagyy 2s the solution
of the corresponding RCP. This corresponds to the un-
constrained mode. Since the solution is strictly proper,
smooth continuation in the unconstrained mode is pos-
sible.

In terms of the two-carts system: the left cart hits
the stop, instantaneously the velocity is put to zero.
Since the right cart is on the right of its equilibrium, it
pulls the left cart away from the stop.

6 Mechanical Systems

In this section, we show that the mode selection

rule that we propose coincides with the one proposed
by Moreau [10, 11].
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We will focus on linear mechanical systems given by
the differential equations

Mi+ D¢+ Kq=0, (10)

where ¢ denotes the vector of generalized coordinates.
M denotes the generalized mass matrix, which is as-
sumed to be positive definite, D denotes the damping
matrix and K the elasticity matrix. The system is sub-
ject to frictionless unilateral constraints given by

Fg>0 11)

with F a matrix of full row rank. Furthermore, we
assume that impacts are purely inelastic.

To obtain a complementary-slackness formulation,
we introduce the constraint forces u needed to sat-
isfy the unilateral constraints and the state vector
2z = col(q,¢). According to the rules of classical me-
chanics, the system can then be written as follows

. 0 I . 0 )
*=\ -M-'K -—-M-'D M-1FT

A B
(12a)
y=(F 0)= (12b)
C

together with the complementary-slackness conditions
(1c) on the reaction force u and y. This systems satis-
fies p; = ; = 2, i € k; note that M =N = FM~'FT
is positive definite and hence a P-matrix [2, Thm.3.1.6].

We consider only realistic initial states z¢ =
col(qgo, §o) with Figo > 0 and call them feasible states.
In Moreau’s formulation (see [10,11]) no jumps occur in
¢, but jumps can occur in the velocities §. These jumps
are governed by the following minimization problem,
where J :={i € k| F;go = 0}.

Minimization Problem 6.1 Let an initial state
zo = col(go,do) be given. The new state after re-
initialization, denoted by z(04) = col(q(0+), ¢(0+)),
is determined by

7(0+)
(0+)

q0
; 1
T min -
g{w|F,'w20, ieJ} 2

i

a. (w—-(jo)TM(w—-q'o).

If we proved that jumps in our formulation corre-
spond to the above minimization problem, then the
feasible set {# € R™ | Cz > 0} is invariant under the
dynamics.

Theorem 6.2 For mechanical systems as described in
this section, re-inttialisation following from the mode
selection by means of RCP corresponds to the mini-
mization problem in case of feasible points. Further-
more, linear mechanical complementary-slackness sys-
tems are well-posed.

7 Conclusions

A description of the complete dynamics of the lin-
ear complementary-slackness class has been proposed.
This proposal leads in a natural way to a notion of well-
posedness, meaning that after a finite number of jumps
smooth continuation is possible. Under the assump-
tion that the leading row coeflicient matrix and the
leading column coefficient matrix are both P-matrices,
well-posedness is guaranteed. As a special case, this
result states that linear mechanical system with uni-
lateral constraints are well-posed. The proposed state
Jumps agree with Moreau’s formulation of mechanical
systems. We demonstrated how to compute trajec-
tories of linear complementary-slackness systems in a
two-carts example.
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