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Abstract

Complementarity systems are described by differen-
tial and algebraic equations and inequalities similar to
those appearing in the Linear Complementarity Prob-
lem (LCP) of mathematical programming. Typical ex-
amples of such systems include mechanical systems sub-
ject to unilateral constraints, electrical networks with
diodes, processes subject to relays and/or Coulomb fric-
tion and many more. For linear complementarity sys-
tems the so-called Rational Complementarity Problem
(RCP) turns out to be crucial to solve well-posedness
issues as well as to simulate these systems. In this pa-
per, the main results can be split into two parts. In the
first part it is proven that the existence and uniqueness
of initial solutions to linear complementarity systems is
equivalent to existence and uniqueness of solutions to
the RCP. The second part is concerned with the rela-
tion between solvability of RCP and the solvability of
a family of LCPs. By using the available literature on
solvability of LCPs, we can establish solvability of an
RCP and as a consequence of linear complementarity
systems. The strength of the results is demonstrated by
presenting sufficient conditions for uniqueness of solu-
tions to relay systems.

1 Introduction

The systems we study are so-called “complementar-
ity systems” as introduced in [10]. These systems are
governed by differential and algebraic equations and
inequalities similar as in the Linear Complementarity
Problem (LCP, cf. (3) below) of mathematical program-
ming. Such systems switch between various modes as
results of state events: when a systems variable crosses
a certain value, continuation in the current mode is no
longer possible. A suitable mode has to be selected to
switch to. Such a mode transition can be accompanied
by a jump of the state variable. The mode-switching
behaviour may also be seen as interaction of differential
equations and switching rules. Systems containing such
mixed behaviour are called hybrid systems. Hybrid sys-
tems have recently drawn considerable attention [9]. In
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this literature, existence and uniqueness of solutions is
often simply assumed, and conditions guaranteeing well-
posedness are rarely given. The work presented in this
paper tries to fill this gap for linear complementarity
systems (LCS).

The main results in this paper can be split into two
parts. In the first part a relation between initial solu-
tions to LCS and solutions to RCP is shown. The exis-
tence of an initial solution to LCS is equivalent to the
existence of a solution to a corresponding RCP. Unique-
ness results are more subtle. We will introduce an equiv-
alence relation on the set of initial solutions. Uniqueness
of the equivalence class of initial solutions is equivalent
to uniqueness of solutions to the corresponding RCP.

In the second part necessary and sufficient conditions
for existence and uniqueness of solutions to RCP are
presented in terms of a related family of LCPs. The
strength of these results lies in the large literature on
LCPs in the (see e.g. [2]). These results can be exploited
to obtain solvability results for an RCP, which in turn
can be translated into results on LCS.

The approach taken here is different from the one
in [5]. In fact, the results in [5] do not apply to linear
relay systems. However, using the conditions in terms
of LCPs and results from [8] sufficient conditions for
well-posedness of relay systems will be derived.

In this paper, the following notational conventions
will be in force. R denotes the real numbers, R the
nonnegative real numbers. R¥ denotes the real vectors
with k components and R**! the set of matrices with k
rows and ! colums. For a positive integer k, we denote
the set {1,...,k} by k. By Z we denote the identity
matrix of any dimension. For a vector a, ay := (a;)er.
By R(s), R¥(s) and R**!(s) we denote the field of ra-
tional functions, vectors and matrices in one variable.
G(s) € R**!(s) is called strictly proper, if the limit
lim|sj— o0 G(s) vanishes. A vector u € R is called non-
negative, and we write u > 0,if u; > 0,7 € k. A vector
u 1s called positive, denoted by v > 0, if u; > 0, for all
i. Finally, C°°(IR,IR) denotes all functions from R to R
that are arbitrarily often differentiable.



2 Mathematical Preliminaries

The set of distributions defined on R with support
on [0, c0) is denoted by D% (see [11] for more details).
Examples of elements of D/, are the delta or Dirac dis-
tribution (denoted by 6) and its derivatives (6(") is the
r-th derivative). Linear combinations of these particular
distributions(i.e. Ei:o u™%6@) with w~* real numbers)
will be called impulsive distributions. A special subclass
of D), is the set of regular distributions in D/, which
are smooth on [0, 00). Formally, a distribution u € D/,
is smooth on [0, 00), if a function v € C*°(R,R) exists
such that

{0 (t<0)
““)‘{ ot) (t>0)

Definition 2.1 [4] An impulsive-smooth distribution is
a distribution u € D/ of the form u = Wimp + upeg,
where uimp is impulsive and u,¢4 is smooth on [0, c0).
The class of these distributions is denoted by Cimp.

An impulsive-smooth distribution is of Bohl type, also
called a Bohl distribution, if the regular part is of the
form Fe®'H, for t > 0 for constant matrices F, G and
H of appropriate dimensions.

Given an impulsive-smooth distribution u = ujmp +
Uyeg € Cimp, we define the leading coeflicient of its im-
pulsive part by

0, if Wimp = 0

lead(u) := {
(1

Definition 2.2 [6] A scalar-valued impulsive-smooth
distribution u € Cyyp is called initially nonnegative, if

e lead(u) > 0; or

e lead(u) = 0 and there exists an ¢ > 0 such that
Urey(t) > 0,for all ¢ € [0,¢).

An impulsive-smooth distribution in C’fmp is called ini-
tially nonnegative, if each of its components is initially
nonnegative.

Next, a solution to & = Kz + Lu,y = Mz + Nu
with K, L, M and N constant matrices and impulsive-
smooth input u will be given.

Definition 2.3 [4] An element (Xz,u, Yrou) € ’Dinw)
is a (distributional) solution of & = Ke+ Lu,y = Mz +
Nu with initial condition zg andu = u = Zi:o T IONE
Ureg € Chpy i (Xzo,u, Yuo,u) satisfies

x =

Y:

Kx+ Lu+ zg6 (2a)
Mx+ Nu, (2b)

as an equality of distributions, where x denotes the dis-
tributional derivative of x.
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u i Uiy = Yot w46 with ! £ 0.

In [4], it is shown that the solution (X, Yoou) €X-
ists, is unique in ’Dfﬂ'r) and belongs to CJ,T7. Further-
more, the impulsive part of u results in a state jump
from zo at time 0 to Xgou(0+4) = limgjoxzu(t) =

zo + E;:O KiLu*i.

3 Complementarity Problems

The Linear Complementarity Problem (LCP(g, M))
[2] is defined for a matrix M € R*** and ¢ € R* as
follows. Find u, y € R* such that

y = q+Mu (3a)

u > 0,y >0y u=0 (3b)
or show that no such w, y exist. Note that (3b) implies
that for all i € k either u; = 0 or y; = 0.

The following result is classical. A matrix M € RF**
is called a P-matrix, if all its principal minors (i.e. the
determinants of submatrices My := (M;;)ierjer) are
strictly positive.

Theorem 3.1 [2] Let a matriz M € RF¥F be given.
LCP(q, M) has a unique solution for all ¢ € R* if and
only if M is a P-matriz.

An extension of the LCP is the so-called Rational
Complementarity Problem.

Definition 3.2 Let ¢(s) € R*(s) and M(s) € RF¥k(s)
be given. RCP(q(s), M(s)) is defined as follows.
Find rational vector functions y(s) and u(s) such that

y(s) = q(s) + M(s)u(s) and y" (s)u(s) =0 (4)

hold for all s, and that there exists an so € R4 such
that for all s > so we have

y(s) 20, u(s) 2 0. (5)
In case

q(s) = C(sT — A)"Yzg, M(s) = C(sT — A)"'B+D
(6)
for constant matrices A, B, C, D and a vector zg, we
speak of RCP(zq).
4 Linear Complementarity Systems

A linear complementarity system is governed by the
simultaneous equations

z(t) = Az(t)+ Bu(t) (7a)
y(t) = Caz(t)+ Du(?) (7b)
y(t) >0, u(t) 20, y' (u@)=0.  (7¢)

The functions u(t), z(t), y(t) take values in R¥ R" and
R*, respectively; A, B, C and D are real constant ma-
trices of appropriate dimensions. Equation (7c) implies



that for every component i = 1,...,k either u;(¢) = 0
or ¥;(t) = 0. This results in a multimodal system with
2% modes, where each mode is characterised by a subset
I of k, indicating that y;(t) = 0, i € T and w;(t) = 0,
i € I° with I° = k\ I. For each such mode the laws
of motion are given by Differential and Algebraic Equa-
tions (DAESs). Specifically, in mode I they are given by

z = Az+ Bu (8a)

= Cz+ Du (8b)
yi = 0,7€1 (8¢)
up = 0,i€l° (8d)

To keep this paper self-contained, we recall the concept
of initial solution as introduced in [6].

Definition 4.1 [6] We call (u,x,y) € C',-k,,f:‘*k an initial
solution to (7) with initial state zg, if there exist an
ICkandaue Ct,p such that the solution (x,y) =
(Xzo,u, Yzo,u) to (8a)-(8b) with initial state 2o and input
u satisfies

1. (8c)-(8d) as equalities of distributions; and
2. u,y are initially nonnegative.

As is indicated by the nomenclature, an initial so-
lution satisfies (7) only “temporarily.” In fact, we can
define for each initial solution (u,x,y) the nonnegative
real number 7(u, x,y) as

(u,x,y) 1=
inf{t > 0] u,¢4(t) > 0 or yreq(t) > 0 does not hold}.
)

Hence, an initial solution (u,x,y) with initial state
zo satisfies (7) only on the time interval [0, 7(u, x,y)). If
7(u,x,y) = 0 only the re-initialisation (state-jump) as
described after Definition 2.3 is acceptable. After time
7(u, x, y) no smooth continuation is possible correspond-
ing to the initial solution (u, x,y). Hence, a new initial
solution with state x(7(u,x,y)+) at time 7(u, x,y) has
to be computed which gives a new piece of the trajectory
for (7). In this way the global solution is constructed
by concatenation of these time restricted parts of suc-
cessive initial solutions.

A problem in this trajectory computation arises
when from a state no initial solution exists (deadlock) or
only a series of initial solutions can be constructed that

“ result only in re-initialisations, but not in smooth con-

tinuation on an interval of positive length. This leads
to the following definition of well-posedness [5].

Definition 4.2 The complementarity system (7) is {lo-
cally) well-posed if from each initial state there exists
a unique solution path starting with at most a finite
number of jumps followed by smooth continuation on
an interval of positive length.
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5 Main results

The main results of this paper are separated into two
parts.

5.1 Relation between RCP and LCS

We generalize a result presented in [6]. In [6] the
following theorem was proven under the additional con-
straint that all separate mode dynamics (8) allow only
one solution given an initial state.

Theorem 5.1 The following statements are equivalent.
1. An initial solution to (7) with initial state z¢ exists.

2. A Bohl initial solution to (7) with initial state zo
exists.

3. RCP(zg) has a solution.

Furthermore, there is a one-to-one correspondence be-
tween initial solutions to (7) of Bohl type and solutions
to RCP(xg). More specifically, (u,x,y) is an initial so-
lution to (7) of Bohl type if and only if its Laplace trans-
form (i(s), %(s), §(s)) is such that (i(s), §(s)) is a solu-
tion to RCP(zg) and

%(s) = (sT — A)"tao + (sT — A)~! Bi(s). (10)
The initial (Bohl) solution is smooth if and only if the
corresponding solution to RCP(zg) is strictly proper.

Of course, one may wonder whether a similar state-
ment as in Theorem 5.1 can be made about uniqueness.
The next example shows that this is not the case.

Example 5.2 We define for 7 € R the functions
f-(t) € C*(R;R) as

fr(t) = {S:

It can be verified that this defines indeed a class of C*°-
functions with derivatives equal to zero in t = 7.

Consider the LCS (7) with
Jie=(

(38

and D the zero matrix. The corresponding RCP(zq)
with g = (0,0)7 has a unique solution u(s) = y(s) =
(0,0)T for all s. However, we can construct uncountably
many other initial solutions (note that these cannot be
Bohl due to the one-to-one correspondence between ini-
tial solutions of Bohl type and solutions to the RCP).
For all 7 > 0 the functions uy(t) = f;(t), u2(t) = —f(t)
and z1(t) = z2(t) = y1(t) = y2(t) = 0 constitute a reg-
ular initial solution to (7) with initial state (0,0)T.

0

i<T
t>T.

(11)

i
=7
b

0 0
0 0

11
11

10
01



This example demonstrates that multiple initial so-

lutions can exist in certain situations, although there
is only one Bohl initial solution (or equivalently, only
one solution to the corresponding RCP). However, we
can introduce an equivalence relation on the space of
impulsive-smooth distributions such that all the initial
solutions belong to the same equivalence class if there
is only one initial solution of Bohl type.
Definition 5.3 Let g, h be two Cfmp-functions. We
shall say g is equivalent to h, g ~ h, if there exists an
€ > 0 such that gimp = himp and greg(t) = hyey(t)
for all ¢ € [0,¢). This is an equivalence relation and
the equivalence classes are called germs. We say that
two initial solutions (u!,x!,y'), (u?,x2,¥%) are in the
same germ or are unique up to germ equivalence if
col(ul, x', y1) ~ col(u?,x2,¥?).

This definition extends an equivalence relation on
C*-functions as often used in differential geometry
[1]. Using this equivalence relation we can formulate
a uniqueness result.

Theorem 5.4 All initial solutions with initial state are
unique up to germ equivalence if and only if RCP(zo)
has a unique solution.

Remark 5.5 Returning to Example 5.2, we observe
that all the indicated initial solutions are in the same
germ. This is in accordance with the theorem above.

5.2 Relation between RCP and LCP

From the previous section, the crucial role of the
RCP is immediately clear. For instance, if RCP(z.) has
no solution, the simulation of system (7) stops at the
time instant at which the state equals z.(deadlock). If
multiple solutions exists to RCP, then the trajectory of
(7) might split and the uniqueness of the global solution
cannot be guaranteed. Hence, existence and uniqueness
of solutions to RCP are essential.

In this section, we relate the solvability of the RCP
to the solvability of related LCPs. The proofs rely on
convexity theory and properties of rational functions.
The proofs can be found in [7].

Theorem 5.6 Let ¢(s) € R¥(s) and M(s) € R¥*¥(s)
be given. RCP(q(s), M(s)) has a solution if and only if
there exists a 0o > 0 such that LCP(q(c), M (o)) has a
solution for all c € R, ¢ > 0y.

Furthermore, we would like to stress that the solv-
ability of RCP(q(s), M(s)) is not completely charac-
terised by the solvability of LCP(g(o0), M(o0)) where
q(c0), M(co) denote the limits of ¢() and M(s) for
| o |— oo, if they exist.

1If they do not exists, one could perform some scaling on the
equations of the RCP. Solvability of RCP(g(s), M (s)) is equivalent
to solvability of RCP(D1(s)q(s), D1(s)M(s)D2(s)) for diagonal
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Example 5.7 Take ¢(s) = —1 and take M(s) = 0.
Then it is evident that RCP(q(s), M (s)) is unsolvable
and LCP(g(c0), M(c0)) has infinitely many solutions.
Also for the converse, examples exist. ]

Similarly to Theorem 5.6, we can look at the rela-
tion between uniqueness of RCP and the corresponding
LCPs.

Theorem 5.8 Let ¢(s) € R*(s) and M(s) € R**¥(s)
be given. RCP(q(s), M(s)) has at most one solution if
and only if there exists a oo such that LCP(q(c), M (o))

has at most one solution for all o > oy.

Also for uniqueness of solutions to RCP, it is not
sufficient to look at uniqueness properties of solutions
to LCP(g(00), M(o0)) (provided the limits exist) [7].

The strength of these theorems is that existence and
uniqueness of solutions to RCP is related to existence
and uniqueness of solutions to LCPs. Many solvability
results on LCPs are well documented in the literature
(see [2]). These results can be applied to get existence
and uniqueness results for RCPs and consequently to
initial solutions of linear complementarity systems. In
the next section we demonstrate the possibilities of the
developed theory resulting in sufficient conditions for
well-posedness of linear relay systems.

6 Linear relay systems

In this section we consider systems given by

(t)
y(?)

with u(t), z(t), y(t) taking values in R¥, R™ R re-
spectively, and A, B, C, D matrices of appropriate di-
mensions. Each pair (—u;, ;) is connected by an ideal
relay with characteristic as given in figure 1 (note the
minus sign in front of —u;). The vectors d; and ds € R*
in this figure are constant vectors with

Ax(t) + Bu(t)
Cx(t) + Du(t)

(12a)
(12b)

Il

d1 20, ds 20, dy+d2 > 0. (13)

The solution concept we use for these relay systems
is the convez definition or equivalent control definition
(which is equivalent for systems linear in u) as intro-
duced by Filippov [3]. In [3, 8] examples have been given
that show that solutions of such relay systems may be
nonunique. In this section, we will specify sufficient
conditions for well-posedness as in Definition 4.2.

In [8], it has been shown that by introducing some
auxiliary variables the system description can be cast
into a complementarity system with corresponding ra-
tional complementarity problem RCP(q(s), M(s)) with

rational matrices D;(s) where the diagonal elements are equal to
some (negative, zero or positive) power of s



_ui

)y — Y:

"(dq)j,

Figure 1: The i-th relay characteristic.

M(s) = (GJ@ (14a)

T G

G1(s)
~G~ YT (8)zo + 1d4
Q(s) = ( G-l(i)%—v(i)lo + %"dz > , (14b)

where zq is the initial condition of (12) and

T(s) :=
G(s)

C(sT — A)7!
C(sZ - A)™'B+D.

We assume that G(s) is invertible as a rational ma-
trix. The RCP{q(s), M(s)) has a (unique) solution if
and only if the system (12) with initial condition z¢ has
a (unique) initial solution (up to germ equivalence).

Note that for any fixed ¢ € R, M(o) is not a P-
matrix. According to Theorem 3.1 this implies that
LCP(g, M (o)) does not have a unique solution for all
arbitrary vectors ¢. In [8] the special structure of ¢(o)
and M (o) as in (14) has been exploited to prove the
following result.

Theorem 6.1 [8] Let 0 € R be fized. If G(o) is a P-
matriz, then the LCP(q(0), M (o)) with q(s) and M(s)

as in (14) has a unique solution for each zy.

As a corollary of the theorems 5.6 and 5.8, we get
the following statement.

Lemma 6.2 If G(o) is a P-matriz for all 0 > o for
some o € R, then RCP(q(s), M(s)) with q(s) and M(s)

as in (14) has a unique solution for all zg.

As a consequence of Theorem 5.1 and Theorem 5.4,
we get the main result of this subsection.

Theorem 6.3 If G(o) is @ P-matriz for all ¢ > og
for some 0g € R, then for all xy there exist initial so-
lutions of the relay system (12) with initial siate zy,
and all these initial solutions are unique up to germ-
equivalence. The global solution of the relay system
given an wnitial state is unique.
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Hence, from each initial state zy an initial solution
exists and is unique. In fact, it is easily shown that each
initial solution is smooth. This is based on the fact that
u;(t) is bounded in the interval {—(d);, (d1);] and thus
infinite values like in impulsive parts cannot occur. As
a consequence, we have the following theorem.

Theorem 6.4 If G(c) is a P-matriz for all o > oq for
some oo € R, then the relay system (12) is well-posed.

Note that for linear relay systems no jumps occur
and hence, the global state trajectory is continuous in
time.

7 Conclusions

In this paper we studied existence and uniqueness of
initial solutions for a subclass of hybrid systems called
linear complementarity systems. On one side the exis-
tence/uniqueness of initial solutions was related to ex-
istence/uniqueness of solutions to RCP. On the other
side existence/uniqueness of solutions to RCP was re-
lated to properties of a series of corresponding LCPs.
Combining these results with well documented litera-
ture on LCPs, we gave sufficient conditions for (local)
well-posedness of linear relay systems. This application
demonstrated the strength of the developed theory.
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