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Abstract: In this paper a linear bandpass filter is compared to a hybrid integrator-gain based bandpass
filter regarding its usefulness in active vibration isolation. Vibration isolation refers to a form of skyhook
damping in which a velocity output signal from a system having structural dynamics is fed back to a
controller, the latter having bandpass characteristics. At those frequencies where the controller passes
the input signal (after gain multiplication) a force proportional to velocity is obtained that can be used
to provide active damping to the system, i.e., damping of one (or more) of its structural modes. Outside
this frequency band the controller input signal is attenuated, which is often desirable in view of incorrect
sensor information at low frequencies and/or to avoid amplification of high-frequency noise. In this
context, the use of a hybrid integrator-gain system will be studied regarding its possible phase advantages
compared to linear integrators. These advantages stem from the control design itself, in the sense that by
design the control output force signal and the input velocity error signal have equal sign. In the context
of vibration control, an enhanced transient (closed-loop) response is obtained, i.e., less overshoot and
reduced settling times, but at the cost of increased rise times.

1. INTRODUCTION

The traditional trade-off between (a) enhanced low-frequency
disturbance suppression, and (b) a desired transient response
using linear integral control (Feuer et al., 1997) forms an
excellent showcase for hybrid integrator-gain systems (Deenen
et al., 2017), or further abbreviated as HIGS. HIGS consist of an
integrator mode and a gain mode that together with switching
logic guarantee that the input and output of the hybrid integrator
are of equal sign. Despite the fact that the concept of phase
is only well-defined for linear systems, HIGS have a clear
phase advantage over linear integrators. Namely from quasi-
linear frequency domain analysis, it follows that the phase lag
associated with HIGS does not exceed 38.15 degrees. This
value is also found with first-order reset elements that originate
from Clegg’s integrator (Beker et al., 2004; Zaccarian et al.,
2011; Van Loon et al., 2017). Reset controllers achieve this
nice phase behavior by discontinuous control signals, while the
HIGS induces continuous control outputs.

In terms of performance, a control design based on HIGS can
be particularly useful in high-precision mechatronic systems,
e.g., the control of wafer scanners used in the production of mi-
crochips (Oomen et al., 2014). In such systems reduced phase
lag can be used to enhance frequency-domain characteristics
like bandwidth giving improved low-frequency disturbance re-
jection properties of the closed-loop system, see for example
Heertjes et al. (2018) for an experimental demonstration. In
this paper, however, HIGS is used to improve the (time-domain)
transient response (Zheng et al., 2000). In the context of active
vibration isolation, i.e., skyhook damping of resonances related
to suspension (or structural) modes, the phase advantages asso-
ciated with HIGS can be exploited, as we will show, to improve
properties like overshoot and settling times.

Next to performance analysis, stability of the closed-loop hy-
brid system can, for example, be studied using a linear matrix
inequality (LMI) based approach for the case of having multiple
nonlinearities, which can be seen as a non-trivial extension of
the work by Nešić et al. (2008) and Aangenent et al. (2009).
In this regard, we also would like to mention the works of
Beker et al. (2004) and Carrasco et al. (2010) for other inter-
esting approaches in the context of reset control systems. In
this paper, however, we will use a passivity-based argument
in a Lyapunov-like context similar to Van Loon et al. (2017);
Deenen et al. (2017).

The main contribution of this paper is the introduction of a
HIGS bandpass filter. In active vibration isolation when damp-
ing suspension modes (often through skyhook damping, see, for
example, Li & Goodall (1999)) linear bandpass filters are fre-
quently used either on direct velocity measurements, for exam-
ple with geophones, or on the integrated output of accelerom-
eters as in Van der Poel et al. (2007); Tjepkema et al. (2011).
In such cases, a bandpass filter operation allows for skyhook
damping – gain multiplied with a velocity input (Preumont,
2011) – in a limited frequency band while avoiding (a) low-
frequency deterioration of the passive isolation properties due
to poor sensor information, and (b) high-frequency sensitivity
of the closed-loop system in the presence of noise. To mimic
a bandpass operation, the HIGS-based bandpass filter features
a series connection of two nonlinear filters. In the first filter,
the output of one HIGS is subtracted from unity feedthrough
thereby generating a nonlinear filter operation with highpass
properties. In the second filter, a sole HIGS is used, which
has lowpass properties. As a second contribution, comparison
studies are conducted in which skyhook damping is applied
through numerical simulations by using either a linear bandpass
filter or a HIGS bandpass filter. Three well-known transient
performance measures are evaluated being overshoot, settling
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in a Lyapunov-like context similar to Van Loon et al. (2017);
Deenen et al. (2017).

The main contribution of this paper is the introduction of a
HIGS bandpass filter. In active vibration isolation when damp-
ing suspension modes (often through skyhook damping, see, for
example, Li & Goodall (1999)) linear bandpass filters are fre-
quently used either on direct velocity measurements, for exam-
ple with geophones, or on the integrated output of accelerom-
eters as in Van der Poel et al. (2007); Tjepkema et al. (2011).
In such cases, a bandpass filter operation allows for skyhook
damping – gain multiplied with a velocity input (Preumont,
2011) – in a limited frequency band while avoiding (a) low-
frequency deterioration of the passive isolation properties due
to poor sensor information, and (b) high-frequency sensitivity
of the closed-loop system in the presence of noise. To mimic
a bandpass operation, the HIGS-based bandpass filter features
a series connection of two nonlinear filters. In the first filter,
the output of one HIGS is subtracted from unity feedthrough
thereby generating a nonlinear filter operation with highpass
properties. In the second filter, a sole HIGS is used, which
has lowpass properties. As a second contribution, comparison
studies are conducted in which skyhook damping is applied
through numerical simulations by using either a linear bandpass
filter or a HIGS bandpass filter. Three well-known transient
performance measures are evaluated being overshoot, settling
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Abstract: In this paper a linear bandpass filter is compared to a hybrid integrator-gain based bandpass
filter regarding its usefulness in active vibration isolation. Vibration isolation refers to a form of skyhook
damping in which a velocity output signal from a system having structural dynamics is fed back to a
controller, the latter having bandpass characteristics. At those frequencies where the controller passes
the input signal (after gain multiplication) a force proportional to velocity is obtained that can be used
to provide active damping to the system, i.e., damping of one (or more) of its structural modes. Outside
this frequency band the controller input signal is attenuated, which is often desirable in view of incorrect
sensor information at low frequencies and/or to avoid amplification of high-frequency noise. In this
context, the use of a hybrid integrator-gain system will be studied regarding its possible phase advantages
compared to linear integrators. These advantages stem from the control design itself, in the sense that by
design the control output force signal and the input velocity error signal have equal sign. In the context
of vibration control, an enhanced transient (closed-loop) response is obtained, i.e., less overshoot and
reduced settling times, but at the cost of increased rise times.

1. INTRODUCTION

The traditional trade-off between (a) enhanced low-frequency
disturbance suppression, and (b) a desired transient response
using linear integral control (Feuer et al., 1997) forms an
excellent showcase for hybrid integrator-gain systems (Deenen
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logic guarantee that the input and output of the hybrid integrator
are of equal sign. Despite the fact that the concept of phase
is only well-defined for linear systems, HIGS have a clear
phase advantage over linear integrators. Namely from quasi-
linear frequency domain analysis, it follows that the phase lag
associated with HIGS does not exceed 38.15 degrees. This
value is also found with first-order reset elements that originate
from Clegg’s integrator (Beker et al., 2004; Zaccarian et al.,
2011; Van Loon et al., 2017). Reset controllers achieve this
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HIGS induces continuous control outputs.
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e.g., the control of wafer scanners used in the production of mi-
crochips (Oomen et al., 2014). In such systems reduced phase
lag can be used to enhance frequency-domain characteristics
like bandwidth giving improved low-frequency disturbance re-
jection properties of the closed-loop system, see for example
Heertjes et al. (2018) for an experimental demonstration. In
this paper, however, HIGS is used to improve the (time-domain)
transient response (Zheng et al., 2000). In the context of active
vibration isolation, i.e., skyhook damping of resonances related
to suspension (or structural) modes, the phase advantages asso-
ciated with HIGS can be exploited, as we will show, to improve
properties like overshoot and settling times.

Next to performance analysis, stability of the closed-loop hy-
brid system can, for example, be studied using a linear matrix
inequality (LMI) based approach for the case of having multiple
nonlinearities, which can be seen as a non-trivial extension of
the work by Nešić et al. (2008) and Aangenent et al. (2009).
In this regard, we also would like to mention the works of
Beker et al. (2004) and Carrasco et al. (2010) for other inter-
esting approaches in the context of reset control systems. In
this paper, however, we will use a passivity-based argument
in a Lyapunov-like context similar to Van Loon et al. (2017);
Deenen et al. (2017).

The main contribution of this paper is the introduction of a
HIGS bandpass filter. In active vibration isolation when damp-
ing suspension modes (often through skyhook damping, see, for
example, Li & Goodall (1999)) linear bandpass filters are fre-
quently used either on direct velocity measurements, for exam-
ple with geophones, or on the integrated output of accelerom-
eters as in Van der Poel et al. (2007); Tjepkema et al. (2011).
In such cases, a bandpass filter operation allows for skyhook
damping – gain multiplied with a velocity input (Preumont,
2011) – in a limited frequency band while avoiding (a) low-
frequency deterioration of the passive isolation properties due
to poor sensor information, and (b) high-frequency sensitivity
of the closed-loop system in the presence of noise. To mimic
a bandpass operation, the HIGS-based bandpass filter features
a series connection of two nonlinear filters. In the first filter,
the output of one HIGS is subtracted from unity feedthrough
thereby generating a nonlinear filter operation with highpass
properties. In the second filter, a sole HIGS is used, which
has lowpass properties. As a second contribution, comparison
studies are conducted in which skyhook damping is applied
through numerical simulations by using either a linear bandpass
filter or a HIGS bandpass filter. Three well-known transient
performance measures are evaluated being overshoot, settling
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time, and rise time (Skogestad & Postlethwaite, Section 2.4.2,
2005).

The remainder of the paper is organized as follows. In Section
2, a small introduction is given on HIGS. In Section 3, the
HIGS bandpass filter is introduced, which, in Section 4, will be
used in an active vibration control setting as a means to provide
skyhook damping. In Section 5, simulation results are discussed
for parameter studies involving a range of skyhook damping
values. In Section 6, conclusions and recommendations are
given for further research particularly in the direction of HIGS-
based control design.

2. HYBRID INTEGRATOR-GAIN SYSTEM

The hybrid integrator-gain system H (or HIGS) is given by the
following state-space representation of its differential-algebraic
equations:

H (e,u, ė) :=




ẋh = ωhe, if (e,u, ė) ∈ F1

xh = khe, if (e,u, ė) ∈ F2
u = xh,

(1a)
(1b)
(1c)

with state xh ∈ R, input e ∈ R with corresponding time deriva-
tive ė ∈ R, control output u ∈ R, parameters ωh ∈ [0,∞) and
kh ∈ (0,∞] representing the integrator frequency and gain value,
respectively, and with F1 and F2 denoting the regions where
the different subsystems are active. The input signal e is as-
sumed to be continuous and piecewise differentiable. Moreover,
the initial condition is assumed to be zero, i.e., xh(0) = 0. H in
(1) is input amplitude independent and designed to mainly op-
erate in integrator mode (1a). Its input-output relation, however,
is constrained to a [0,kh]-sector when (e,u, ė) ∈ F , where

F :=
{
(e,u, ė) ∈ R3 | eu ≥ 1

kh
u2}. (2)

When the integrator dynamics (1a) tend to violate the sector
constraint, a switch to the gain mode dynamics (1b) is enforced,
leading to the definition of subset F2. The resulting sets are
defined by

F1 := F \F2,

F2 :=
{
(e,u, ė) ∈ F | u = khe ∧ ωhe2 > khėe

}
.

(3)

(4)

Note that the condition ωhe2 > khėe implies that u̇ in gain mode
is smaller than u̇ in integrator mode, in which case the system
is constrained to gain mode to avoid sector violation.

Apart from the time-domain properties of H resulting from
(1), its frequency-domain properties can be studied by describ-
ing function analysis. Consider e(τ) to be a sinusoidal input:

e(τ) = êsin(τ), (5)
with τ = ωt, ω ≥ 0, t ∈ R≥0 and amplitude ê ∈ R. It can be
shown, see Heertjes et al. (2018), that the describing function
D( jω) ∈ C of H in (1) between input e and output u is given
by

D( jω) =
a1 +b1 j

ê
, (6)

where a1,b1 ∈C are the Fourier coefficients of the fundamental
harmonic, which are given by

a1 =
ê

2π

{ωh

ω
(cos(2γ)−4cos(γ)+3)

+kh (2(π − γ)+ sin(2γ))}

b1 =
ê

2π

{ωh

ω
(4sin(γ)− sin(2γ)−2γ)

−kh (1− cos(2γ))} ,

(7)

and where the switch instant γ is defined by

γ = 2arctan(ωkh/ωh). (8)
Note that γ → π gives

lim
γ→π

D( jω) =
ωh

jω

{
1+

4 j
π

}
, (9)

which resembles a 20dB/decade amplitude decay similar to a
linear integrator, but with a phase lag of only ≈ 38.15 degrees
due to the extra imaginary-valued constant 4/π . It is essentially
this phase advantage over linear systems that we want to exploit
in HIGS-based control design for improved transient response.

3. HIGS-BASED BANDPASS FILTER DESIGN

Before presenting the HIGS-based bandpass filter design, first
consider the following linear bandpass filter in Laplace domain:

Cbp(s) =
u(s)
e(s)

=

lowpass︷ ︸︸ ︷
ωl p

s+ωl p
· s

s+ωhp︸ ︷︷ ︸
highpass

, (10)

with ωhp = 2π × 0.1 rad · s−1 and ωl p = 2π × 10 rad · s−1 the
filter’s cut-off frequencies. In (10), ωhp is chosen at a frequency
beyond which the sensor information becomes valid. ωl p >
ωhp > 0 can be used to reduce the sensitivity of the closed-loop
system to noise by lowering the gain at high frequencies. Note
that in the interval [ωhp,ωl p], (10) approximates unity gain.

Given (10), consider the block diagram in Fig.1, which rep-
resents the hybrid bandpass filter Hbp, i.e., the HIGS-based
equivalent of (10) with H1,H2 from (1) with kh,1 = kh,2 =

H1(·)

H2(·)∑
−

e

u1

Hbp(·)

e1 u

Fig. 1. Block diagram of a HIGS-based bandpass filter.

1, ωh,1 = ωhp/(2α) rad · s−1, ωh,2 = ωl p/α rad · s−1, and α =
|1+4 j/π| a scaling constant that follows from (9).

To illustrate the behavior of both bandpass filters, i.e., Cbp and
Hbp, consider the time responses as shown in Fig. 2, which
are the result of a sinusoidal input as in (5) with ê = 1 and
with ω ∈ {2π ×1/20,2π,2π ×20} rad ·s−1 (gray curves). First
observe that by choice of its parameter ωh,1, the integrator in
H1 is fast enough to invoke the integrator mode for the case
ω = 2π × 1/20 rad · s−1, which is shown in the upper part of
the figure. At t ≈ 6.4 seconds, H1 switches from integrator
mode to gain mode, which means its output becomes equal to its
input e, i.e., the input to H2 becomes zero, which subsequently
yields the output u to be zero too. At t = 10 seconds, e
changes sign and H1 switches back to integrator mode. For the
cases ω = 2π rad · s−1 and ω = 2π × 20 rad · s−1, the input
signal to H2, i.e., e− kh,1H1(e,u, ė) ≈ e, reflects a too slow
contribution of H1. Conversely, by choice of its parameter ωh,2,
the integrator in H2 is too fast for the cases ω = 2π×1/20 rad ·
s−1 and ω = 2π rad · s−1. As a result, H2 largely operates
in gain mode. For the case ω = 2π rad, i.e., the middle part
of the figure, this means that since e− kh,1H1(e,u, ė) ≈ e by
virtue of H1 and because H2 ≈ 1, the output u ≈ e. For the
case ω = 2π × 20 rad · s−1, i.e., the lower part of the figure,
it can be seen that for t ∈ [0.05,0.07] seconds, H2 operates
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Fig. 2. Time series simulations of the output u of a linear
bandpass filter in (10) (dashed-black) and the HIGS-based
bandpass filter from Fig. 1 (red) to a sinusoidal input e
(gray) with ω ∈ {2π ×1/20,2π,2π ×20} rad · s−1.

in integrator mode, whereas during t ∈ (0.07,0.08) seconds,
it operates in gain mode. For all responses, observe that the
hybrid behavior of the HIGS-based bandpass filter (red curves)
effectively results in mimicking either phase lead (upper part)
or phase lag (lower part) while avoiding unequal signs of the
pair (e,u). The latter is clearly not the case for the response of
the linear bandpass filter (dashed black curves). It can also be
observed that the maximum absolute values of the responses,
i.e., ‖u‖∞, are similar for Hbp and Cbp. As a final observation,
note that the linear responses include a transient effect that is
clearly gone (by design) in the HIGS-based responses as soon
as e crosses zero, i.e., in Fig. 2 e(0) = 0.

In frequency domain, the HIGS-based bandpass filter can be
evaluated in an approximate manner using the following de-
scribing function 1 :

Dbp( jω)≈ (1−D1( jω))D2( jω), (11)

where D1( jω),D2( jω) follow from (6) and (7) with the pa-
rameter values given in the discussion part of Fig 1. Note that
(11) does not necessarily represent the true describing function
D̄bp of Hbp but gives an approximation. The approximation,
however, is in full accordance with the earlier observations that

lim
ω→0

D̄bp( jω) = (1−D1( jω)) and

lim
ω→∞

D̄bp( jω) = D2( jω).
(12)

The frequency response functions of Dbp( jω) from (11), the
true describing function D̄bp( jω) derived from time-series
simulations and the computation of the first Fourier coefficients,
and Cbp( jω) from (10) are depicted in the Bode diagram
of Fig. 3. First, it can be observed that Dbp( jω) represents
an excellent approximation of D̄bp( jω). At low frequencies,
Dbp( jω) induces 20 dB/decade extra decay compared to the
linear first-order highpass filter in (10) but with having a similar
phase lead of 90 degrees, i.e., a clear manifestation of defying
Bode’s gain-phase relation. From a mathematical perspective,

1 For a HIGS element H , it can be shown that at least 88% of its output
power associates with the fundamental harmonic thereby limiting the possibly
detrimental effects of higher harmonics in the excitation of structural modes.
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Fig. 3. Bode diagram of linear bandpass filter Cbp( jω) (dashed
black) and the describing function of the HIGS-based
bandpass filter Dbp( jω) (red).

this behavior can be understood by considering the limit case
of 1−D1( jω) for ω → 0, i.e.,

lim
ω→0

(1−D1( jω))) = lim
ω→0

(
16α2

3π
ω2

ω2
hp

j

)
, (13)

which, being a purely positive imaginary number propor-
tional to ω2, explains the observed 40 dB/decade amplifica-
tion and 90 degrees phase lead. Second, in the interval ω ∈
2π · [0.1,10] rad · s−1, both filters attempt at passing through
unity gain. The linear filter Cbp( jω), however, exhibits inferior
phase characteristics compared to Dbp( jω). Third, for ω → ∞
it follows that Dbp( jω) → D2( jω), hence (12), thereby in-
ducing 51.85 degrees less phase lag than its linear counterpart
Cbp( jω).

4. ACTIVE VIBRATION ISOLATION USING
HIGS-BASED SKYHOOK DAMPING

The favorable properties of a HIGS-based bandpass filter de-
sign, as discussed in the previous section, are used in this sec-
tion in the context of active vibration isolation. In particular, a
skyhook damping control strategy will be studied that attempts
at improving the dynamics associated with a weakly damped
suspension mode. A simple second-order mass-damper-spring
system will be used that in its essence is encountered in many
engineering applications, for example, the active vibration iso-
lation system as considered in Beijen et al. (2018) and which
is used in the wafer scanning industry to isolate the optics and
measurement systems.

For a second-order mass-damper-spring system with mass m,
damping coefficient b, and stiffness coefficient k, the control
schematics are depicted in the right part of Fig.4 while a me-
chanical analogy is given in the left part of the figure. Output
y denotes the displacement of the payload, while ẏ denotes the
corresponding ‘skyhook’ velocity, which is obtained (after in-
tegration) by measurement using an accelerometer placed atop
the payload. The mass-damper-spring system is supported by
a structure whose displacement is denoted by x. This structure
is assumed to be rigid and independent from whatever forces
are being exerted on it, be it spring forces Fk = ky−kx, damper
forces Fb = bẏ− bẋ, or control forces Fc. To obtain skyhook
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Fig. 4. Block diagram of a HIGS-based skyhook damper design
applied to a mass-damper-spring system (right part of the
figure) along with its mechanical analogy (left part of the
figure).

damping, the control forces Fc, which are applied to the pay-
load, for instance, by using linear synchronous motors (LSMs),
feature the multiplication of the signal u with a skyhook gain
β , i.e., Fc = βu. Herein, u represents the bandpass filtered ve-
locity ẏ, which, in accordance to earlier notation, equals ẏ := e,
with e the control input of the bandpass filters, i.e., (10) for
the linear filter Cbp(s) and Fig.1 for the HIGS filter operation
Hbp(e,u, ė).

In frequency-domain, the transfer from input x to output y,
also known as the transmissibility function, often expresses the
sensitivity of an isolated payload to floor vibrations. That is,
if the mass-damper-spring system is considered to be simply
mounted to the floor. To accommodate for the nonlinear case,
where a frequency response function description does not exist,
we define the magnitudes of the transmissibility function as
ratios of the root-mean-square (RMS) values of the steady-
state periodic responses y(t) = y(t +T ) over period time T =
2π/ω > 0 divided by the RMS-values of an harmonic input
x(t) = x(t + T ) = sin(ωt). Note that we have not guaranteed
periodicity of y, for example, by guaranteeing the closed-loop
system with HIGS to be convergent. At this point, we assume
that every periodic input x(t) = x(t + T ) induces a unique
periodic response y(t) = y(t + T ) with the same period time
T . Since √

1
T

∫ T

0
sin2(2πt/T )dt =

1
2

√
2, (14)

for all T > 0, the nonlinear transmissibility function T̄ in terms
of magnitude can be defined as

T̄ (ω) =

√
2
T

∫ T

0
y2(t)dt, T =

2π
ω

> 0. (15)

Note that for the linear case, this definition yields identical mag-
nitude characteristics as obtained from the corresponding fre-
quency response functions T̃ ( jω) = y( jω)/x( jω). Also note
that for the nonlinear case, (15) represents an alternative to de-
scribing function analysis in which the full nonlinear response
is considered including all harmonics, However, (15) no longer
provides any phase information. Given (15), the magnitude plot
of the transmissibility function is shown in Fig. 5. In this figure,
three cases are considered: (a) the passive system with no con-
trol force, i.e., Fc(t) = 0 (gray), (b) the linear skyhook damped
system with Fc(s)=Cbp(s)e(s) (black), and (c) the HIGS-based
skyhook damped system with Fc(t) =Hbp(e(t)) (red). It can be
seen that with a skyhook dimensionless (active) damping coef-
ficient of ζ̄ = β/(2m

√
k/m) = 1 both linear and HIGS-based

control designs seemingly achieve identical damping in their
steady-state responses, which can be efficiently computed using
the mixed time-frequency-domain algorithm from Pavlov et al.
(2013). The latter, under the assumption that the closed-loop
system is convergent. Note that the small deterioration in trans-
missibility both prior and beyond the resonance frequency such
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Fig. 5. Nonlinear Bode magnitude plot of (a) the passive system
with Fc(t) = 0 (gray), (b) the linear skyhook damped
system with Fc(s) = Cbp(s)e(s),β = 1 (black), and (c)
the amplitude-independent HIGS-based skyhook damped
system with Fc(t) = Hbp(e(t),u(t), ė(t)),β = 1 (red); the
transmissibility is defined as the ratio of the RMS-values
of the steady-state responses divided by the RMS-values
of a sinusoidal input e = sin(ωt).

as occurring with the linear control design and being the result
of phase lag induced by the high- and low-pass filters does
hardly occur with the HIGS-based design. Differences between
the linear and the HIGS-based control design are expected to
become more pronounced in the transient response, which will
be studied in the next section. Before that a few comments are in
order given (a) the nonlinear context of the HIGS-based control
design in Section 2 and (b) the approximative nature of the
describing function analysis in Section 3.
Remark 1. Observe that the closed-loop system presented in
Fig. 4 can be rearranged into Lur’e form, in which the linear
transfer G (s) from −Fc to e, given by

G (s) =
e(s)

−Fc(s)
=

s
ms2 +bs+ k

, (16)

is used in feedback with the nonlinear HIGS-based bandpass fil-
ter Hbp(e,u, ė). Often, for such systems containing a dynamic
nonlinearity in the feedback loop, a circle-criterion-like argu-
ment is used for asserting closed-loop stability, see e.g., Van
Loon et al. (2017) and Deenen et al. (2017). The key aspects
in such an argument are (i) the nonlinearity satisfies a sector
constraint, and (ii) the nonlinear element in isolation is input-to-
state stable (ISS). For the HIGS bandpass filter such properties
can be shown as follows.

By invoking properties of a single HIGS it can be concluded
that the HIGS-based bandpass filter satisfies the sector condi-
tion

u2 ≤ Hbp(e,u, ė)e ≤ e2. (17)
Indeed, since by design the output u1 =H1(e,u1, ė) always has
the same sign as the input e and is upper bounded in absolute
magnitude by |e|, it follows that e1 := e−H1(e,u1, ė) always
has the same sign as e, i.e., ee1 ≥ 0. Furthermore, since e1 is the
input to the second HIGS, it follows that (e−H1(e,u1, ė))u ≥
u2 and thus eu ≥ eu− u1u ≥ u2 in which the fact is used that
ue1 ≥ 0, and therefore u1u = H1(e,u1, ė)u ≥ 0. The upper
bound in (17) follows from the inequality

(e−H1(e,u1, ė))
2 ≥ (e−H1(e,u1, ė))u, (18)
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Fig. 2. Time series simulations of the output u of a linear
bandpass filter in (10) (dashed-black) and the HIGS-based
bandpass filter from Fig. 1 (red) to a sinusoidal input e
(gray) with ω ∈ {2π ×1/20,2π,2π ×20} rad · s−1.

in integrator mode, whereas during t ∈ (0.07,0.08) seconds,
it operates in gain mode. For all responses, observe that the
hybrid behavior of the HIGS-based bandpass filter (red curves)
effectively results in mimicking either phase lead (upper part)
or phase lag (lower part) while avoiding unequal signs of the
pair (e,u). The latter is clearly not the case for the response of
the linear bandpass filter (dashed black curves). It can also be
observed that the maximum absolute values of the responses,
i.e., ‖u‖∞, are similar for Hbp and Cbp. As a final observation,
note that the linear responses include a transient effect that is
clearly gone (by design) in the HIGS-based responses as soon
as e crosses zero, i.e., in Fig. 2 e(0) = 0.

In frequency domain, the HIGS-based bandpass filter can be
evaluated in an approximate manner using the following de-
scribing function 1 :

Dbp( jω)≈ (1−D1( jω))D2( jω), (11)

where D1( jω),D2( jω) follow from (6) and (7) with the pa-
rameter values given in the discussion part of Fig 1. Note that
(11) does not necessarily represent the true describing function
D̄bp of Hbp but gives an approximation. The approximation,
however, is in full accordance with the earlier observations that

lim
ω→0

D̄bp( jω) = (1−D1( jω)) and

lim
ω→∞

D̄bp( jω) = D2( jω).
(12)

The frequency response functions of Dbp( jω) from (11), the
true describing function D̄bp( jω) derived from time-series
simulations and the computation of the first Fourier coefficients,
and Cbp( jω) from (10) are depicted in the Bode diagram
of Fig. 3. First, it can be observed that Dbp( jω) represents
an excellent approximation of D̄bp( jω). At low frequencies,
Dbp( jω) induces 20 dB/decade extra decay compared to the
linear first-order highpass filter in (10) but with having a similar
phase lead of 90 degrees, i.e., a clear manifestation of defying
Bode’s gain-phase relation. From a mathematical perspective,

1 For a HIGS element H , it can be shown that at least 88% of its output
power associates with the fundamental harmonic thereby limiting the possibly
detrimental effects of higher harmonics in the excitation of structural modes.
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Fig. 3. Bode diagram of linear bandpass filter Cbp( jω) (dashed
black) and the describing function of the HIGS-based
bandpass filter Dbp( jω) (red).

this behavior can be understood by considering the limit case
of 1−D1( jω) for ω → 0, i.e.,

lim
ω→0

(1−D1( jω))) = lim
ω→0

(
16α2

3π
ω2

ω2
hp

j

)
, (13)

which, being a purely positive imaginary number propor-
tional to ω2, explains the observed 40 dB/decade amplifica-
tion and 90 degrees phase lead. Second, in the interval ω ∈
2π · [0.1,10] rad · s−1, both filters attempt at passing through
unity gain. The linear filter Cbp( jω), however, exhibits inferior
phase characteristics compared to Dbp( jω). Third, for ω → ∞
it follows that Dbp( jω) → D2( jω), hence (12), thereby in-
ducing 51.85 degrees less phase lag than its linear counterpart
Cbp( jω).

4. ACTIVE VIBRATION ISOLATION USING
HIGS-BASED SKYHOOK DAMPING

The favorable properties of a HIGS-based bandpass filter de-
sign, as discussed in the previous section, are used in this sec-
tion in the context of active vibration isolation. In particular, a
skyhook damping control strategy will be studied that attempts
at improving the dynamics associated with a weakly damped
suspension mode. A simple second-order mass-damper-spring
system will be used that in its essence is encountered in many
engineering applications, for example, the active vibration iso-
lation system as considered in Beijen et al. (2018) and which
is used in the wafer scanning industry to isolate the optics and
measurement systems.

For a second-order mass-damper-spring system with mass m,
damping coefficient b, and stiffness coefficient k, the control
schematics are depicted in the right part of Fig.4 while a me-
chanical analogy is given in the left part of the figure. Output
y denotes the displacement of the payload, while ẏ denotes the
corresponding ‘skyhook’ velocity, which is obtained (after in-
tegration) by measurement using an accelerometer placed atop
the payload. The mass-damper-spring system is supported by
a structure whose displacement is denoted by x. This structure
is assumed to be rigid and independent from whatever forces
are being exerted on it, be it spring forces Fk = ky−kx, damper
forces Fb = bẏ− bẋ, or control forces Fc. To obtain skyhook
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Fig. 4. Block diagram of a HIGS-based skyhook damper design
applied to a mass-damper-spring system (right part of the
figure) along with its mechanical analogy (left part of the
figure).

damping, the control forces Fc, which are applied to the pay-
load, for instance, by using linear synchronous motors (LSMs),
feature the multiplication of the signal u with a skyhook gain
β , i.e., Fc = βu. Herein, u represents the bandpass filtered ve-
locity ẏ, which, in accordance to earlier notation, equals ẏ := e,
with e the control input of the bandpass filters, i.e., (10) for
the linear filter Cbp(s) and Fig.1 for the HIGS filter operation
Hbp(e,u, ė).

In frequency-domain, the transfer from input x to output y,
also known as the transmissibility function, often expresses the
sensitivity of an isolated payload to floor vibrations. That is,
if the mass-damper-spring system is considered to be simply
mounted to the floor. To accommodate for the nonlinear case,
where a frequency response function description does not exist,
we define the magnitudes of the transmissibility function as
ratios of the root-mean-square (RMS) values of the steady-
state periodic responses y(t) = y(t +T ) over period time T =
2π/ω > 0 divided by the RMS-values of an harmonic input
x(t) = x(t + T ) = sin(ωt). Note that we have not guaranteed
periodicity of y, for example, by guaranteeing the closed-loop
system with HIGS to be convergent. At this point, we assume
that every periodic input x(t) = x(t + T ) induces a unique
periodic response y(t) = y(t + T ) with the same period time
T . Since √

1
T

∫ T

0
sin2(2πt/T )dt =

1
2

√
2, (14)

for all T > 0, the nonlinear transmissibility function T̄ in terms
of magnitude can be defined as

T̄ (ω) =

√
2
T

∫ T

0
y2(t)dt, T =

2π
ω

> 0. (15)

Note that for the linear case, this definition yields identical mag-
nitude characteristics as obtained from the corresponding fre-
quency response functions T̃ ( jω) = y( jω)/x( jω). Also note
that for the nonlinear case, (15) represents an alternative to de-
scribing function analysis in which the full nonlinear response
is considered including all harmonics, However, (15) no longer
provides any phase information. Given (15), the magnitude plot
of the transmissibility function is shown in Fig. 5. In this figure,
three cases are considered: (a) the passive system with no con-
trol force, i.e., Fc(t) = 0 (gray), (b) the linear skyhook damped
system with Fc(s)=Cbp(s)e(s) (black), and (c) the HIGS-based
skyhook damped system with Fc(t) =Hbp(e(t)) (red). It can be
seen that with a skyhook dimensionless (active) damping coef-
ficient of ζ̄ = β/(2m

√
k/m) = 1 both linear and HIGS-based

control designs seemingly achieve identical damping in their
steady-state responses, which can be efficiently computed using
the mixed time-frequency-domain algorithm from Pavlov et al.
(2013). The latter, under the assumption that the closed-loop
system is convergent. Note that the small deterioration in trans-
missibility both prior and beyond the resonance frequency such
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Fig. 5. Nonlinear Bode magnitude plot of (a) the passive system
with Fc(t) = 0 (gray), (b) the linear skyhook damped
system with Fc(s) = Cbp(s)e(s),β = 1 (black), and (c)
the amplitude-independent HIGS-based skyhook damped
system with Fc(t) = Hbp(e(t),u(t), ė(t)),β = 1 (red); the
transmissibility is defined as the ratio of the RMS-values
of the steady-state responses divided by the RMS-values
of a sinusoidal input e = sin(ωt).

as occurring with the linear control design and being the result
of phase lag induced by the high- and low-pass filters does
hardly occur with the HIGS-based design. Differences between
the linear and the HIGS-based control design are expected to
become more pronounced in the transient response, which will
be studied in the next section. Before that a few comments are in
order given (a) the nonlinear context of the HIGS-based control
design in Section 2 and (b) the approximative nature of the
describing function analysis in Section 3.
Remark 1. Observe that the closed-loop system presented in
Fig. 4 can be rearranged into Lur’e form, in which the linear
transfer G (s) from −Fc to e, given by

G (s) =
e(s)

−Fc(s)
=

s
ms2 +bs+ k

, (16)

is used in feedback with the nonlinear HIGS-based bandpass fil-
ter Hbp(e,u, ė). Often, for such systems containing a dynamic
nonlinearity in the feedback loop, a circle-criterion-like argu-
ment is used for asserting closed-loop stability, see e.g., Van
Loon et al. (2017) and Deenen et al. (2017). The key aspects
in such an argument are (i) the nonlinearity satisfies a sector
constraint, and (ii) the nonlinear element in isolation is input-to-
state stable (ISS). For the HIGS bandpass filter such properties
can be shown as follows.

By invoking properties of a single HIGS it can be concluded
that the HIGS-based bandpass filter satisfies the sector condi-
tion

u2 ≤ Hbp(e,u, ė)e ≤ e2. (17)
Indeed, since by design the output u1 =H1(e,u1, ė) always has
the same sign as the input e and is upper bounded in absolute
magnitude by |e|, it follows that e1 := e−H1(e,u1, ė) always
has the same sign as e, i.e., ee1 ≥ 0. Furthermore, since e1 is the
input to the second HIGS, it follows that (e−H1(e,u1, ė))u ≥
u2 and thus eu ≥ eu− u1u ≥ u2 in which the fact is used that
ue1 ≥ 0, and therefore u1u = H1(e,u1, ė)u ≥ 0. The upper
bound in (17) follows from the inequality

(e−H1(e,u1, ė))
2 ≥ (e−H1(e,u1, ė))u, (18)
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and by exploiting the fact that u and H1(e,u1, ė) have equal
sign and the magnitude of the second HIGS’ output is bounded
by its input, that is |u| ≤ |e−H1(e,u1, ė)|.
ISS of the HIGS bandpass filter in isolation is shown here by
first showing that a single HIGS is ISS. Second, it is shown
that the combination of two separate Lyapunov functions (each
associated with one HIGS element) yields one ISS Lyapunov
function for the bandpass filter as a whole.
Lemma 1. The HIGS element as presented in (1) is ISS.

Proof: consider the quadratic function

S̃(xh) =
1
2

x2
h. (19)

When (1) operates in the integrator mode, one has
˙̃S(xh) =ωhexh

=−ωhx2
h +ωhx2

h +ωhexh

≤−ωhx2
h +ωh(1+ kh)e2,

(20)

where the last inequality follows from the fact that e2 ≥ 1
kh

eu.
Moreover, when (1) operates in the gain mode, one has

˙̃S(xh) =xhkhė = k2
heė

≤khωhe2 =−ωhx2
h +ωhx2

h +ωhexh

≤−ωhx2
h +ωh(1+ kh)e2,

(21)

where once again the sector condition together with the switch-
ing criteria (u = xh = khe and ωhe2 > khėe) have been used.
Thus, (20) and (21) yield the same upper bound on the time
derivative of S̃(xh) along the trajectories of (1). It can therefore
be concluded that a HIGS element as presented in (1) is ISS
(Sontag & Wang, 1995). �

As shown above, the HIGS admits a quadratic function S̃(xh) =
1
2 x2

h with time-derivative
˙̃S ≤−ωhx2

h +ρexh, (22)
where ρ =ωh(1+kh)> 0. By choosing a function S(xh1,xh2) =
1
2 (x

2
h1 + x2

h2), for the interconnection in Fig. 1, (22) leads to

Ṡ ≤−(ωh,1x2
h1 +ωh,2x2

h2)+ρ12exh1 +ρ12(e− xh1)xh2, (23)
with ρ12 = (ωh,1 +ωh,2)(1+kh). One can subsequently use the
fact that xh1xh2 ≥ 0 to conclude

Ṡ ≤−(ωh,1x2
h1 +ωh,2x2

h2)+ρ12e(xh1 + xh2). (24)
Moreover, since by construction of the HIGS, one has exh2 ≤
e(e− xh1) and thus

e(xh1 + xh2)≤ exh1 + e(e− xh1) = e2.

As a result, it holds true that

Ṡ ≤−(ωh,1x2
h1 +ωh,2x2

h2)+ρ12e2, (25)
i.e., an ISS Lyapunov function for the isolated hybrid band-pass
filter Hbp is obtained.

Using the previously discussed properties and by realizing that
G (s) is Hurwitz and strictly positive real, i.e., ℜ{G (s)} ≥ 0
for all s ∈ C, Theorem 1 in Deenen et al. (2017) can be
applied to conclude closed-loop stability for all β > 0. Remark
that, in general, G (s) will not be positive real, for example
in the presence of higher-order dynamics or delays. In that
case, an evaluation of ℜ{G (s)} ≥ −1/βmax for some 0 <
β ≤ βmax can be performed in order to guarantee closed-loop
stability for a subset of values of β . In the case that βmax
resulting from such an evaluation appears too restrictive for
the HIGS-based design to be effective, other options can be

surveyed. Among these options are: (i) the introduction of extra
filtering of Fc as to obtain more desirable stability properties of
G (s), i.e., loopshaping to obtain G ∗(s) = G (s)Fc(s), possibly
at the loss of performance obtained in the absence of such
filtering, i.e., Fc(s) = 1, and (ii) studies on piecewise quadratic
(or more general) Lyapunov functions. Regarding the latter
note that the circle criterion essentially exploits a common
quadratic Lyapunov function and in that sense may yield a too
conservative assessment of the closed-loop system.

5. TRANSIENT BEHAVIOR

To study the transient behavior of the (nonlinearly) controlled
mass-damper-spring system in Fig. 4 consider the step re-
sponses shown in Fig. 6, which are obtained for different
(dimensionless) active damping gains ζ̄ ∈ {0.05,1,5}, where
ζ̄ = β/(2m

√
k/m). In the examples, the system parameter

Fig. 6. Time series simulations of the output u of a linear
bandpass filter in (10) (dashed-black) and the HIGS-based
bandpass filter from Fig.1 (red) to a step input (gray).

values are chosen as m = 1 kg, k = m× (2π)2 N/m, and b =

2m
√

k/mζ , with ζ = 0.05 the dimensionless passive damping
coefficient. Remark that the suspension frequency ωs =

√
k/m

corresponds to the design of Hbp and its parameters ωh,1,ωh,2,
the latter being based on ωl p = ωs/10 and ωhp = 10ωs. For
a unity step in x, the response y shows identical behavior for
ζ̄ = 0.1 regarding linear and HIGS-based skyhook damping.
For the larger values ζ̄ = 1 and ζ̄ = 10, the HIGS-based con-
trol design demonstrates responses with less overshoot, faster
settling times, but possibly slower rise times.

These observations are confirmed by the more detailed param-
eter studies underlying Fig. 7. The upper part of the figure
depicts overshoot as the percentage by which the largest value
|y(to)| exceeds the final value y(t f ) with to denoting the time
instant when the maximum response occurs on t ∈ [0, t f ) with t f
the final time instant. The middle part considers rise time being
the first time instant tr on t ∈ [0, t f ) where |y(tr)| ≤ 0.9|y(t f )|,
i.e., where y(t) reaches 90% of its final value y(t f ) for the
first time. The lower part considers settling time being the
time instant ts ∈ [0, t f ) after which |y(t)| remains within 5%
of its final value |y(t f )| for t > ts. From Fig. 7, the following
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Fig. 7. Parameter studies for different values of the dimension-
less skyhook gain ζ̄ ∈ [0.1,10].

observations can be made. The HIGS-design only seems ef-
fective for sufficiently large skyhook gain values ζ̄ . For small
values of ζ̄ both the linear and the HIGS-based control design
show similar transient behavior in the considered metric. For
ζ̄ > 0.5 improvements in overshoot as a result of the HIGS-
based design become apparent. At ζ̄ = 10 overshoot is reduced
with a factor of ten when compared to the linear control de-
sign. While overshoot unequivocally improves when using the
HIGS-based design, the rise time, see the middle part of the
figure, deteriorates. This is the result of upper bounding the
integral action by gain in the HIGS design. On the contrary,
settling times are significantly reduced, almost by a factor of
4 for an active damping coefficient of ζ̄ = 10. Note that in
high-precision mechatronics rise times are less important than
settling times. Also note that for the example, it does not seem
useful to use ζ̄ > 1 as the overshoot is already minimal at ζ̄ = 1
and the rise and settling times only worsen for larger values.

6. CONCLUSION

This paper discusses a hybrid control design for applying ac-
tive skyhook damping in a vibration isolation context. For
large enough required active damping values, typically beyond
dimensionless damping coefficient values of 0.5, the hybrid
control design leads to reduced overshoot and settling times.
For small active damping values, where both linear as well as
hybrid control yields comparable performance, one can better
reside to linear control design as to avoid introducing unnec-
essary complexity. Though overshoot and settling times gen-
erally improve by using the hybrid control design, rise time
unequivocally deteriorates as a result of the hybrid control
design itself in which the output of its integrators is always
upper-bounded by a gain times its input. Future work will
focus on an experimental demonstration. Also, the observation
that the HIGS design seems able to avoid frequency-domain
deterioration due to phase lag associated with the linear filter
design, i.e., a manifestation of Bode’s sensitivity integral, will
be further examined.
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observations can be made. The HIGS-design only seems ef-
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based design become apparent. At ζ̄ = 10 overshoot is reduced
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sign. While overshoot unequivocally improves when using the
HIGS-based design, the rise time, see the middle part of the
figure, deteriorates. This is the result of upper bounding the
integral action by gain in the HIGS design. On the contrary,
settling times are significantly reduced, almost by a factor of
4 for an active damping coefficient of ζ̄ = 10. Note that in
high-precision mechatronics rise times are less important than
settling times. Also note that for the example, it does not seem
useful to use ζ̄ > 1 as the overshoot is already minimal at ζ̄ = 1
and the rise and settling times only worsen for larger values.
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large enough required active damping values, typically beyond
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control design leads to reduced overshoot and settling times.
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erally improve by using the hybrid control design, rise time
unequivocally deteriorates as a result of the hybrid control
design itself in which the output of its integrators is always
upper-bounded by a gain times its input. Future work will
focus on an experimental demonstration. Also, the observation
that the HIGS design seems able to avoid frequency-domain
deterioration due to phase lag associated with the linear filter
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