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A solution to gain loss in hybrid integrator-gain systems
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Abstract— Hybrid integrator-gain systems (HIGS) are non-
linear control elements that are designed to primarily operate as
integrators in so-called integrator mode. Switching to gain mode
occurs only when needed to keep sign equivalence between the
input and output signals of the control element, thereby aiming
for phase advantages. In order to guarantee the integrator
mode to be the primary mode of operation, in this paper a
combined pre- and post-filtering approach is studied. Such
an approach offers a solution to the problem of gain loss
that occurs when the HIGS switches too often between its
modes. Typically, this happens in the presence of dominant
high-frequency contributions in the input to the HIGS. Along
the discussion on pre- and post-filtering, measurement results
are presented from a high-performance industrial stage system.

Index Terms— advanced motion control, hybrid integrator-
gain systems, nonlinear PID control, wafer scanners.

I. INTRODUCTION

Hybrid integrator-gain systems (abbreviated with HIGS)
are nonlinear elements that have been successfully used in
PID control [3]. On the basis of these elements, integrators
have been synthesized that (from a describing function point
of view) have similar magnitude characteristics as simple
linear integrators, but with phase advantages of up to 51.85
degrees. This value is also found in reset control systems
and relates to the Clegg integrator [11]. Different from reset
systems, however, HIGS do not admit discontinuous changes
of the integrator states thereby avoiding discontinuities.
As such, the study of accumulations of reset times (cf.
Zeno behaviour), or avoiding such accumulations by time-
regularizations, becomes irrelevant for HIGS [12].

Since the high-precision motion industry primarily uses
the frequency domain for its PID control design, dedicated
HIGS elements have been developed using frequency-domain
reasonings. Examples of such elements are the HIGS lowpass
filter [4] and the HIGS-PID controller in [5], the latter
exploiting a simple hybrid integrator. Other nonlinear inte-
grators found in the literature, some of which more attuned
to time-domain reasonings, are the variable gain integrator
in [8], the (filtered) split-path nonlinear integrator in [10],
and fractional-order reset control in [2] to name a few. Many
nonlinear integrators, if not all, rely on the frequency content
of their input in generating effective outputs. That is, in
the absence of the superposition principle, high-frequency
contributions in the input compromise the ability of the
nonlinear integrator to generate sufficient gain in rejecting
additionally present low-frequency contributions. To avoid
such a gain loss, in this paper a pre- and post-filtering
approach [9], [7] is studied for a HIGS. The approach is
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considered sufficiently generic to allow for extension to
various other types of nonlinear integrators, including the
ones mentioned earlier.

The strictly technological contributions are: (i) a pre- and
post-filtering HIGS design, (ii) a measure to conclude if the
describing function provides an accurate and thus meaningful
description for frequency-domain characterization in the case
of multi-sine input, and (iii) measurement results from an
industrial stage system that demonstrate the effectiveness of
pre- and post-filtering for HIGS-PID control design.

The paper is further organized as follows. In Section II,
a brief description of HIGS will be given, which is used in
Section III for integrator design. In Section IV, the HIGS
is shown to result in gain loss when subjected to a multi-
sine input. Section V presents a solution to this problem in
the form of pre- and post-filtering. In Section VI, time-series
measurements from an industrial stage system are presented.
These measurements showcase the effectiveness of the pre-
and post filtering when used in a HIGS-PID control design.
This paper is concluded with Section VII.

II. HYBRID INTEGRATOR-GAIN SYSTEMS

Consider a simple integrator described in time-domain by
T = w;e, with state z, input e, output v = x, integrator
frequency w;, and the initial condition 2(0) = 0. In compar-
ison, the piecewise linear system 7(-) referred to as HIGS
is defined by

jf‘h = Whe, if (e) €, U) S IF‘int

H(é, e,u) == xp, =kpe, if (ée,u)€Fopin (1)

U = Th,

with state xj,, input e with corresponding time derivative é,
control output u, parameters wy, € [0,00) and k;, € [0, 00)
representing the integrator frequency and gain value, respec-
tively, and with the initial condition x,(0) = 0. Furthermore,

F:= {(e,u) € R?|eu > 1u2} ()
kr,
indicates the sector in which (1) operates, with F;,; and
IF4ain denoting the sets where either integrator mode (primar-
ily within the sector) or gain mode (on the sector boundary
u = kpe) is active, see [3], [S] for more details, namely

Fie = {(é,e,u) €R®|(e,u) € F} \ Fyain, ()
Fain = {(é&,e,u) € R%(e,u) €F A 4)

u = kpe A wh62 > khée} .
In gain mode the dependency of #(-) on é is shown by
wpe? > kpée, which assures that HIGS can only switch to
integrator mode if its vector field points toward the interior

of the sector in (2). H in (1) is homogeneous in the sense
that any constant o multiplied with input e scales the output
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u with the same «, ie, ae — au, o € R. Moreover,
H satisfies sign{e} = sign{u}, i.e., its input and output
e,u always have equal sign. The latter gives a clear phase
advantage over a simple (linear) integrator when evaluated
in the frequency domain using its describing function, see
for example [3], [5].

III. HYBRID INTEGRATOR DESIGN

In PID control, simple integrators are used for mainly two
reasons: (i) to improve low-frequency disturbance rejection
properties of the closed-loop system, and (ii) to remove DC
error. Regarding the latter, the integrator needs to sustain a
DC level of its state , which is generally not possible with
‘H in (1). Namely, the value of state x; (and thus the output
u) inevitably becomes zero as soon as the input e reaches
zero. This poses a problem, for example, when one needs to
levitate a motion system toward a desired levelling position.

To address this issue, consider the hybrid integrator design
C" as depicted in Fig. 1 with integrator frequency w;.
Without loss of generality we choose k;, = 1 and include this
gain later on as part of the loop gain of the overall controller
of which C* is just a particular element. The extra (simple)

wit J |
| [1+45 /7] cH!

Fig. 1: Block diagram of the HIGS configuration C*.

integrator ensures that cH, having two states x; and x, can
sustain a DC output level through its secondary state variable
x. The extra forward path with gain w; ' /|14 45/ is used
to ensure that the simple integrator is dominant in the low-
frequency range, while H is dominant in the high-frequency
range. The gain value w;, ' /|1+4; /7| stems from describing
function analysis [5], and results in w; being the overall gain
of the interconnection C*t.
Now consider the simplified multi-sine input e as

e(t) = sin(wt) + esin(9wt), w = 27f, (5)

with f denoting the base frequency component for which
we desire 7 to mainly operate in integrator mode, 9f a
(parasitic) frequency component, and amplitude € € R>q. In
frequency-domain, the properties of C** from Fig. 1 can be
studied (to some extent) by its describing function. Namely,
for H in (1) consider the describing function

N (jw) = a1(w) + jb1(w) (6)
with Fourier coefficients
7/ w
a1(w) = Q—W/ u(t) sin(wt)dt
T Jo
7/ w
by (w) = 2%/ u(t) cos(wt)dt, (7
0

where u(t) denotes the output of H for e := sin(wt), i.e., € =
0; for explicit expressions of the Fourier coefficients a4 (w)

and by (w) in the case of HIGS from (1), see [5] and the
references therein. Considering the configuration in Fig. 1,
the describing function N°* for C* becomes

) 1 jw;
N (jw) = N (jw <wZ Z). 8
(jw) (jw) o T34 (8)
In the Bode diagram of Fig. 2, for w; = wy, = 27 rad-s7 1,
N (jw) in (8) is shown (in red) together with the frequency
response function of a simple (linear) integrator C(jw) =
w; /jw (in black). The figure shows that N'°* (jw) has ampli-

20

|C(jw), N (jw)| in dB

-20
10°

-38.15F

{C(jw), N (jw)} in deg

107! 10° 10°
w/(2m) in Hz

Fig. 2: Bode diagram of the describing functions C(jw), N* (jw).

tude characteristics that approximately match the amplitude
characteristics of the simple integrator C(jw), ie., having
a slope of minus 20 dB per decade. However, the phase
characteristics of N°*(jw) show a clear advantage in the
sense of less phase lag than the minus 90 degrees associated
with the linear integrator. In fact, the phase lag of N* (jw)
approaches -38.15 degrees for w — oo, which corresponds
to the phase lag associated with a Clegg integrator [11].
The crossover frequency from -90 degrees of the linear
integrator toward -38.15 degrees of a Clegg integrator is
determined by wj, and can be tuned almost independently
from the amplitude characteristics, which is considered a
useful feature of the HIGS design in Fig. 1.

IV. PROBLEM DESCRIPTION

For HIGS, the validity of the describing function
N (jw) in (8), and its associated phase advantages, hinges
crucially on the input signal e being harmonic. # is a nonlin-
ear element that (in principle) does not support superposition.
Its output satisfies u(t, e1 + ea) # u(t, e1) + u(t, e2), where
u(t, e) denotes the response of #H to input e with ¢(0) = 0.
Therefore, one should be careful in using describing function
analysis for non-harmonic input signals.

To illustrate this, consider the input e in (5) to the hybrid
integrator C** from Fig. 1 with ¢ € {0,1}. The resulting
outputs u are shown in Fig. 3 at f = 1 Hz. The figure
shows time-series simulations with the hybrid integrator C*
(in red, "HIGS’) and with the simple integrator C(s) = w;/s
(in black, ’linear’). Both integrators are subject either to a
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Fig. 3: Time series simulations of output 3 from C (black) or C**
(red) to input e (dashed black); harmonic input (left, e = 0) versus
multi-sine input (right, € = 1).

single harmonic input e := e;1(t) = sin(wt), i.e., (5) with
e = 0 (left figure), or a multi-sine input e := ey (t) + ea(t),
i.e., (5) with € = 1 (right figure). For € = 0, it is clear that
the hybrid integrator is able to generate an output y(¢,eq)
that contains mainly the frequency contents of the input e;
at f = 1 Hz but with a phase advantage compared to the
linear integrator. For ¢ = 1, and due to superposition, the
simple integrator captures the contribution at f = 1 Hz
in its output irrespective of the presence of the additional
contribution of the parasitic frequency component at f = 9
Hz. As such, y(t, e;+e2) = y(t, e1)+y(t, e2). For the hybrid
integrator C*, however, the contribution at f =1Hz is not
well captured. In fact, H in (1) is switching more frequently
to gain mode due to the parasitic frequency component at
f =9 Hz, which limits integration of the 1 Hz component.
The result is a gain loss by a factor 4 in the output y, clearly
indicating that y(¢,e; + e2) # y(¢t,e1) + y(t, e2).

As shown in the previous example, early switching to
gain mode in the presence of high-frequency components
will render the hybrid integrator less effective for the also
present low-frequency components as a result of gain loss.
As a consequence, low-frequency components, for which the
integrator is designed to provide disturbance rejection, are
less suppressed. This is shown in more detail in Fig. 4 by

3 o5 oA
2

o ‘
107" 10° 10°
w/(2m) in Hz

Fig. 4: Gain factor x(w) for C* with ¢ € {0,0.5,1}.

depicting the gain factor x(w), which is defined as

@ (w) + jbi(w)
wlw) = a1<w>+jb1<w>"

with @, (w), by (w) the first Fourier coefficients obtained from
taking the Fourier transform of output y, and a; (w) + jb1 (w)
the describing function N'°* (jw) in (8). For input e in (5),
K represents the magnitude of the frequency-dependent ratio
between the actual first harmonic components in y to e :=
e1 + ex with € € R and the ones predicted based on the
describing function, for which it holds that e := e; with
e = 0. In Fig. 4, it can be seen that ¢ > 0 corresponds to
smaller x(w) values at high frequencies. This associates with
gain loss of C*. The figure also shows that smaller values for
€, in this case € = 0.5, lead to more accurate approximation
of the gain when using N°* (jw), because x — 1 for € — 0.
This is in line with the filter hypothesis [6] that admits small
distortions of the harmonic input while still guaranteeing the
validity of the describing function A“* (jw) in (8). Remark
that in open loop and for some specific input signals, the
solution x(w) can be found analytically. For general input
signals, however, one needs to reside to numerical solutions.

(€))

V. PRE- AND POST-FILTERING

As a solution to the problem of gain loss in hybrid
integrators under multi-sine input, we introduce pre- and
post-filtering. Consider the filter configuration as depicted in
Fig. 5, where the hybrid integrator C** from Fig. 1 is pre-

Fig. 5: Block diagram of C** with pre- and post-filtering.

multiplied with transfer function F(s) and post-multiplied
with the inverse F~1(s) to obtain the modified HIGS con-
figuration C*. Pre- and post-filtering assures that the loop
transfer connecting the output y to the input e, which is
generally determined by the plant and the additional linear
controller part, remains unchanged. Stability properties of
the closed-loop system thus remain unchanged. Note that
we either assume that the inverse filter F~*(s) is bi-proper,
i.e., |[F~1(s)] = co for w — oo and ¢y € R, or that we
can approximate it by a (bi-)proper function F(s) such that
IF(s)-F(s)—1loo <1 with 0 < ¢1 < 1 sufficiently small.
As a result of filtering the input e, the nonlinear operation H
in (1) will use the filtered input € instead and thus will induce
a different nonlinear output y. The nonlinear distortion of
the input signal by HIGS can be seen as the generation
of (undesired) higher harmonics. The key point being that
pre-filtering can avoid the nonlinear distortion to take place
in HIGS, while pre- and post-filtering together preserve the
properties of the loop transfer connected to HIGS. The post
filter, subsequently, cannot amplify contributions that are no
longer being generated. For F(s) # 1, the post-filtering
operation based on F~1(s) will render the output y slightly
different from g. Note that in the case of the simple integrator
C(s) = w;/s pre- and post-filtering is generally not useful,
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and that for the nonlinear integrator C’*, pre- and post-
filtering has no effect on the describing function N* (jw)
in (8).

To study the effect of the filtering approach in Fig. 5,
consider the transfer function of a notch filter given by

§2 + 2B,Wpp8 + w2
F(s) = 5 B gp
52 + 2Bpwpps + ws,
with wpp, = 927 rad, 8, = 0.01, 8, = 0.1, and proper

inverse F~!(s). For ¢ € {0,1}, the outputs y of C™ are
shown in Fig. 6 at f = 1 Hz. Different from Fig. 3, Fig. 6

e=0

(10)

einm,yin N
einm,yin N

————input e
m— linear
ey HIGS

time in seconds time in seconds

Fig. 6: Time series simulation of output y from C (black) or C**
(red) to input e (dashed black); harmonic input (left, ¢ = 0) versus
multi-sine input (right, € = 1).

does show for € = 1 the characteristic contribution at f = 1
Hz in the output y of the hybrid integrator.

The effect in terms of the gain factor x(w) for this new
controller configuration is shown in Fig. 7. It can be seen that
for € € {0,0.5,1} gain distortion remains within 5% of the
gain expected from the describing function A“* in (8) and
depicted in Fig. 2, thus effectively solving for the problem
of gain loss. Namely, filtering the parasitic contribution at
9 Hz in e from (5) with the notch filter from (10) induces
a filtered input € to H(-) that is highly harmonic and thus
preserves the contribution at 1 Hz in its output . The output
y, however, does slightly differ from the hybrid integrator
output y := ¢ with ¢ = 0 and F(s) = 1. This is mainly
because H does generate contributions at 9 Hz, so-called
nonlinear distortions, that are amplified by F~!(s) when
using (10). This also explains why the curve of x(w) at e = 0
no longer resembles a straight line with gain one as was the
case with C* in Fig.4.

The choice for pre- and post-filters is not restricted to the
example in (10). In practice, the input e is generally non-
harmonic and may contain an arbitrary amount of frequency
components. Other filters like skew notch, lowpass or the
bandpass-type may then provide a more appropriate choice.
Regardless the choice of filters, the design philosophy re-
mains the same: F(s) is chosen such that the filtered input
signal € triggers the switching behavior of C* in a desired

1.05

0.95 :
107" 10° 10'
w/(27) in Hz

Fig. 7: Gain factor x(w) for C** with € € {0,0.5,1}.

manner. Also, the justification for applying the operation
F~1(s) on output 7, which could lead to amplification of
higher harmonics, should be in accordance with the filter
hypothesis. This renders the choice for pre- and post-filters
dependent on (i) the system, (ii) the controller configu-
ration/arrangement, and (iii) the spectral properties of the
exogenous inputs.

VI. CASE STUDY ON A WAFER STAGE SYSTEM

In order to demonstrate the effectiveness of pre- and post-
filtering in a HIGS-PID control design, consider the example
of a wafer scanner. Wafer scanners arguably perform one of
the most challenging steps in the production of microchips,
namely exposing a chip topology obtained from a reticle onto
the photo-resistive layers of a silicon wafer. For a general
description of the control of wafer scanners, see [1].

Here, we focus on the servo control of the short-stroke
wafer stage in scanning y-direction. A simplified motion
control scheme is depicted in Fig. 8, where the wafer stage

urf

Crr(s) ;

r e Ufo

O—Cn {} O——

P(s)

Fig. 8: Block scheme of a controlled wafer stage.

plant is represented by P(s), the input to the plant consists of
a force disturbance d, and two control signals uy¢s and u gy,
while the measured output y is subtracted from the reference
r to form the feedback error signal e; the reference r is input
to the feedforward controller Cs¢(s), which is designed to
approximate the inverse of P(s), and which is needed to
achieve nano-scale tracking performance under acceleration
levels up to 45 m/s?; the servo error signal e is input to
the feedback controller Cy;, {-} and is designed to achieve
disturbance rejection under robust stability constraints.

For wafer stage feedback control, it is common practice
to use a linear controller of the form

4
Crp(s) = Cpial(s)Cip(s) [ [ Cni(s), (1)
i=1
i.e., the series interconnection of a PID filter
W S
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with gain k, and corner frequencies w; and wgy for its inte-
grator and differentiator, respectively, a second-order lowpass
filter of the form

Cip(s) =

2
wlp

52 + 2Bwips + wi,

13)

with cut-off frequency w;, and dimensionless damping coef-
ficient /3, and multiple notch filters of the form

wy 52 + 2B,w.s + w?
Cni(s)={-2 dudd z € {1,2,3,4
n,z(s) <w§> <82+26pwp8+w% 716{7 ;9 }
(14)

with w,,w, the frequencies associated with the zeros and
poles, respectively, and 3., 3, the corresponding (dimension-
less) damping coefficients. With the purpose of providing
an intuitive feeling for the performance level that is com-
mon for an industrial wafer stage feedback control system,
the (measured) input sensitivity function S(jw) = (1 +
Crp(jw)P(jw))~! of a representative robust linear control
design is shown in Fig. 9 (black curve) by means of its
magnitude characteristics. The frequency response functions

oh

9

o 20

5

I+

g 40+
linear PID
HIGS-PID

-60 : :
10° 102 108

frequency in Hz

Fig. 9: Bode magnitude plots of the sensitivity functions with linear
PID control (black) and HIGS-PID control (red).

are obtained (partly) from closed-loop identification of the
sampled data system with a sampling frequency of 5 kHz
and associate with a bandwidth (magnitude of the open-loop
frequency response at 0 dB) of 236 Hz.

Let us also adopt a hybrid PID controller C% in a similar
manner as (11) but with the difference that the integrator in
Cpia(s) in (12) is replaced by the respective HIGS counter-
part such as discussed in Section IIl. A frequency-domain
representation of C}'é is given (in an approximative sense)
by the describing function

NE(5) = Cu(5)NJE(3)Cip(5) with § = jw, (15)
with
NI(3) =Ky (1 +NCH(s)+S) (16)
wd

the describing function of the HIGS-PID filter. Note that
NC#(5) refers to (8) with w, = w; = 100 - 27 rad/s.
Similar to the linear controller, the hybrid PID controller
is tuned for maximum bandwidth, in this case 280 Hz, while
satisfying robust stability constraints. Differently, however,
these constraints are embedded in a quasi-linear loop-shaping

procedure that exploits the describing function from (15); see
for example [5]. The resulting quasi-linear input sensitivity
function S* (jw) = (1 + N} (jw)P(jw)) " is also depicted
in Fig. 9 and indicated by the red curve. It is important
to realize that the pre- and post-filters as discussed in
Section V cancel out in (15), and, therefore, do not affect
the characteristics of S™(jw) such as shown in Fig. 9.
Note also that although the bandwidth with hybrid PID
control is increased from 236 Hz to 280 Hz, the phase
advantages of the HIGS integrator are mainly exploited for
w < w; < Wy In fact, around the bandwidth w =~ wy,, the
controlled wafer stage represents a double-integrator system
that still needs D-action to obtain proper encirclement of
the point (—1,0). Though, with hybrid PID control such a
D-action can typically be shifted toward higher frequencies,
i.e., inducing less amplification of high-frequency noise.

A. Measurement results: without pre- and post-filtering

To study the results of pre- and post-filtering through
time-domain measurement results, we first focus on the case
without pre- and post-filtering, i.e., Fig. 5 with F(s) = 1.
By evaluating the cumulative power spectral densities of
the measured closed-loop signals e with either the linear
PID control design (in black) or the HIGS-PID control
design (in dashed red), Fig. 10 shows inferior low-frequency

[9)]
T

N
T

w
T

¢PSD {e} in nm
N
\
\

linear

= = HIGS without filtering -

HIGS with filtering

0 | |

10° 102 10°
frequency in Hz

[N

Fig. 10: Measured cumulative power spectral densities (cPSD) of
the servo error e(t) with or without pre- and post-filtering.

disturbance rejection properties for the hybrid PID control
design. In the comparison the exogenous input 7, i.e., the
setpoint, is highly reproducible and constitutes for the main
part of the frequency contents in e despite the presence of an
appropriate feedforward control design. This is different for
the exogenous input d that stems from multiple noise sources
and that is generally non-reproducible. Its contribution how-
ever constitutes a minor part of the frequency contents in e.
The result shown in Fig. 10 is not in accordance with the
sensitivity analysis from Fig. 9. The discrepancy between
linear PID and HIGS-PID performance without filtering is
particularly visible at low frequencies. In fact, a significant
gain loss is found in the frequency range below 200 Hz.
Observe that gain loss is not evaluated as done previously
through x in (9), because the measurement results refer to
data resulting from tracking a wafer scanning profile, which
is done using a non-periodic input. In accordance with the
discussion from Section IV, it is hypothesized that frequency
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contributions in e above 200 Hz induce too-frequent switch-
ing (or chattering) of the hybrid PID controller to gain mode.
This is supported by Fig. 11, which depicts time-domain

— input HIGS
output HIGS
switching sequence

0 0.01 0.02 0.03 004 005 0.06 007 0.08 0.09 0.1
time in seconds

Fig. 11: Time-domain measurements of HIGS’ input (black) and
output (red) for the HIGS-PID controller without pre- and post
filtering.

measurements of the input and output signals of H in (1)
and associated with the HIGS in the PID controller. It can be
seen that switching between integrator mode and gain mode
occurs for the HIGS-PID controller at a frequency of about
750 Hz, which is too high for the integrator to be effective
for disturbances below 200 Hz.

B. Measurement results: with pre- and post-filtering

As a solution to gain loss consider the hybrid PID control
design with pre- and post-filtering in which F(s) from Fig.
5 is chosen as a second-order lowpass filter of the form

w2

F(s) = u

52 + 2Bpwpps + w2,

A7)

with wy,, = w!, B, = 1. The inverse of (17) is non-proper,
but can be approximated by a (bi-proper) skew notch filter
with its poles placed at a higher frequency than its zeros.
The choice for (17) is motivated by the design argument to
let the HIGS-PID controller operate (and thus switch) on
frequency content below 200 Hz. Of course, the mitigation
of the problem with F'(s) is less effective should either the
exogenous inputs 7, d have more high-frequency components
or the existing high-frequency components become more
dominant. In this sense the choice for F(s) depends on the
considered application.

In Fig. 10, also the result of hybrid PID control with pre-
and post-filtering is shown through the solid red curve. It can
be seen that the result is well in line with the expectations
raised from the sensitivity plots from Fig. 9. This demon-
strates that the describing function-based sensitivity function
for the considered wafer stage example only provides an
accurate frequency-domain reflection of the nonlinear closed-
loop system behavior for the case of pre- and post-filtering.
It should be remarked that tuning of the parameters wy, 3
toward robust performance is done in the time domain, based
on the spectral content of e.

For the given pre- and post-filters, Fig. 12 shows the
measured time-series of the input and output signals of # in
(1) and associated with the HIGS-PID controller. It can be
seen that switching between integrator mode and gain mode
for the HIGS-PID controller is (i) well-balanced between
both modes, (ii) at a sufficiently low rate, and (iii) with the
appropriate spectral content, when compared to Fig. 11.

input HIGS
0.5 e output HIGS
switching sequence

0 001 002 003 004 005 006 007 008 009 0.1
time in seconds

Fig. 12: Time-domain measurements of HIGS’ input (black) and
output (red) for the HIGS-PID controller with pre- and post filtering.

VII. CONCLUSIONS

Improved low-frequency disturbance rejection with hybrid
integrators hinges on the distribution of the spectral content
in the input signal to the HIGS elements. The presence
of dominating high-frequency components may induce too-
frequent switching to gain mode, which results in gain loss
of its simple integrator. A solution to overcome gain loss
in hybrid control designs is proposed in the form of pre-
and post-filtering. Appropriate selection and tuning of the
pre- and post-filters allows for a well-balanced switching
behaviour of HIGS, restoring its gain to the level obtained
from first-order describing function analysis. Wafer stage
measurement results demonstrate the need for pre- and post-
filtering in practice for increased effectiveness of the HIGS-
PID design on low-frequency disturbance rejection.
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