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Oblique Projected Dynamical Systems and
Incremental Stability Under State Constraints
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Abstract—Projected dynamical systems (PDS) are dis-
continuous dynamical systems obtained by projecting a
vector field on the tangent cone of a given constraint set.
As such, PDS provide a convenient formalism to model
constrained dynamical systems. When dealing with vec-
tor fields, which satisfy certain monotonicity properties,
but not necessarily with respect to usual Euclidean norm,
the resulting PDS does not necessarily inherit this mono-
tonicity, as we will show. However, we demonstrate that
if the projection is carried out with respect to a well-
chosen norm, then the resulting “oblique PDS” preserves
the monotonicity of the unconstrained dynamics. This
feature is especially desirable as monotonicity allows to
guarantee important (incremental) stability properties and
stability of periodic solutions (under periodic excitation).
These properties can now be guaranteed based on the
unconstrained dynamics using “smart” projection instead
of having to carry out a difficult a posteriori analysis on a
constrained discontinuous dynamical system. To illustrate
this, an application in the context of observer re-design is
presented, which guarantees that the state estimate lies in
the same state set as the observed state trajectory.

Index Terms—Stability of hybrid systems, constrained
control, switched systems, hybrid systems, observers for
nonlinear systems.

I. INTRODUCTION

AN IMPORTANT class of (discontinuous) dynamical
systems is formed by so-called projected dynamical

systems introduced by Dupuis and Nagurney [10] and further
developed by Nagurney and Zhang [16]. These systems are
described by differential equations of the form

ẋ(t) = �K(x(t),−F(x(t)) − g(t)), (1)

where F is a vector field, g ∈ Lloc
1 a locally integrable external

input, K is a closed convex set, and �K is a projection operator
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that prevents the solutions from moving outside the constraint
set K (see Section III below for a precise definition). These
systems are used for studying the behaviour of oligopolis-
tic markets, urban transportation networks, traffic networks,
international trade, agricultural and energy markets, see [16]
for an overview, and more recently also in control and opti-
misation [6], [11], [12], [14], [20]. The projection operator
is used to guarantee satisfaction of state constraints by the
corresponding PDS, i.e.,

x(t) ∈ K for all t ∈ R≥0, (2)

which might not hold for the non-projected original dynamics

ẋ = −F(x) − g(t). (3)

An important question that arises is how to guarantee desir-
able (incremental) stability properties for the PDS (1). Clearly,
one approach could be to study the PDS a posteriori, see,
e.g., [16, Ch. 3] or the recent papers [11], [21] using, e.g.,
local analysis of the stability of equilibria or Lyapunov-based
approaches. However, this requires the analysis of discontin-
uous dynamical systems as in (1), which might be hard. Here
we are aiming for a different route that aims at preserving
the stability properties of the original system (3). In the lat-
ter case, stability properties that can be established through
rather standard Lyapunov-based analysis for smooth differen-
tial equations as in (3), would then be automatically transferred
to the PDS. Instrumental in our approach is the role of
monotonicity, which is an important concept in the study of
differential inclusions. There is a large body of literature on the
use of maximal monotonicity in mathematics [4], [15], [18],
and in recent years this property was also exploited in the con-
text of non-smooth and hybrid systems, see, e.g., the recent
survey article [8]. Estimation and control-related problems for
such systems have also been of interest, see, e.g., [7], [14],
[21], [22]. Variants of monotonicity are often used to imply
the asymptotic stability, incremental stability and convergence
exploiting quadratic Lyapunov functions. We will show in this
letter, how this implication can be used to preserve these prop-
erties under state constraint information (2) by PDS as in (1)
using a suitable projection operation �K .

Next to establishing desirable (incremental) stability prop-
erties for oblique PDS, we also demonstrate the use of
these results in a recently popular observer re-design problem
exploiting state constraint information of the to-be-observed
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dynamics, see [2], [3]. The objective is to re-design an avail-
able unconstrained observer such that its original stability
properties for the estimation error dynamics are preserved,
while additionally guaranteeing that the estimated state lies
in a prescribed constraint set, in which also the observed
state lies. In [3] this problem was considered for discrete-
time systems, while recently and independently in [2] also
continuous-time versions were developed. We provide here an
alternative perspective on this problem for a smaller set of
nonlinear observers than considered in [2]. However, we do
not require inflation of the set K as in [2] and provide a more
basic solution.

II. PRELIMINARIES

The following notation will be used in this letter. Lloc
1 and

Lloc∞ denote the sets of locally integrable functions and locally
essentially bounded functions on R≥0 := [0,∞) taking values
in R

n (where we assume that n ∈ {1, 2, . . .} is clear from the
context). The graph gr(P) of a set-valued mapping P : Rn ⇒
R

n is given by {(x, x∗) ∈ R
n × R

n | x∗ ∈ P(x)}. For the
standard inner product in R

n and the corresponding Euclidean
norm, we write 〈· | ·〉 and | · |, respectively. We will also use
a “weighted” inner product and corresponding norm for R

n

based on a symmetric positive definite matrix P denoted by
〈· | ·〉P and | · |P, respectively. They are given by 〈x | y〉P =
x	Py and |x|2P = x	Px for x, y ∈ R

n. A set-valued mapping
P : Rn ⇒ R

n is called monotone, if 〈x−y | x∗−y∗〉 ≥ 0 for all
(x, x∗) ∈ gr(P) and all (y, y∗) ∈ gr(P). It is called α-strongly
monotone for α > 0, if 〈x − y | x∗ − y∗〉 ≥ α|x − y|2 for all
(x, x∗) ∈ gr(P) and all (y, y∗) ∈ gr(P). We call P strongly
monotone, if it is α-strongly monotone for some α > 0. We
call P maximal monotone, if P is monotone and there is no
other monotone map P ′ : Rn ⇒ R

n such that gr(P) ⊆ gr(P ′)
and gr(P) �= gr(P ′). In words, P is maximal monotone, if it
is monotone and it is not possible to add one or more points
to the graph of P without destroying monotonicity. Similar
notions can be defined by changing the inner product and norm
to 〈· | ·〉P and |·|P, respectively, which we call P-monotonicity,
(α-)strongly and maximal P-monotonicity. Given a set K ⊆ R

n

for x ∈ K we define the normal cone of K at x as NK(x) =
{s ∈ R

n | 〈s | k − x〉 ≤ 0 for all k ∈ K}. The tangent cone to a
set K ⊂ R

n at a point x ∈ K, denoted by TK(x), is the set of
all vectors w ∈ R

n for which there exist sequences {xi}i∈N ∈ K
and {τi}i∈N, τi > 0 with xi → x, τi ↓ 0 and i → ∞, such that
w = limi→∞ xi−x

τi
. For an invertible matrix S ∈ R

n×n we write
S−	 for (S−1)	 = (S	)−1.

III. OBLIQUE PROJECTIONS AND PDS

A. Oblique Projections

We are interested in oblique projections using a non-
Euclidean metric, which are induced by a positive definite
matrix P = P	. The projection of a vector x ∈ R

n onto a
closed, convex and non-empty set K ⊆ R

n, denoted by PP
K(x),

is defined as

PP
K(x) = argmin

z∈K
|z − x|P. (4)

For the operator PP
K , we define its directional derivative as

�P
K(x; v) = lim

δ→0

PP
K(x + δv) − PP

K(x)

δ
. (5)

When P = I, we adopt the notation PK and �K , respectively,
resulting in the standard “Euclidean” projection and PDS as
in (1). For the description of conventional PDS with P = I,
we use different formulations involving the operator PK and
�K ; see for example [8, Sec. 2.5], and equivalence between
them is observed by noting that, for each δ > 0, v ∈ R

n, and
x ∈ K,

PK(x + δv) = x + δPTK(x)(v) + o(δ), (6)

where limδ→0
o(δ)
δ

= 0. Hence, �K(x; v) = PTK(x)(v). We first
establish a similar equivalence in Proposition 1 for oblique
projections for which we use the following lemma.

Lemma 1: Let S ∈ R
n×n be an invertible matrix and R =

R	 ∈ R
n×n be positive definite, then

1) TK(S−1x) = S−1TSK(x) for all x ∈ SK,
2) NSK(Sy) = S−	NK(y) for all y ∈ K,
3) 〈v, w〉S	RS = 〈Sv, Sw〉R and |v|S	RS = |Sv|R and |w|R =

|S−1w|S	RS for all v, w ∈ R
m.

Proof: Statements 1) and 2) follow by using the defini-
tions of the tangent cone and normal cone, and corresponding
algebraic manipulations, just as Statement 3).

Proposition 1: Let K ⊆ R
n be non-empty, closed and con-

vex, and P = P	 ∈ R
n×n positive definite. For each x ∈ K,

and v ∈ R
n, it holds that PP

TK(x)(v) = �P
K(x; v).

Proof: Using Lemma 1 with R = P, S = P−1/2 yields

PP
K(x) = argmin

z∈K
|z − x|P = argmin

z∈K
|P1/2(z − x)|,

so that

PP
K(x) = P−1/2PP1/2K(P1/2x). (7)

In particular, for each x ∈ K and v ∈ R
n, we have

PP
K(x + δv) = P−1/2PP1/2K(P1/2x + δP1/2v)

= x + P−1/2δPTP1/2K(P1/2x)(P
1/2v) + o(δ)

= x + P−1/2δPP1/2TK(x)(P
1/2v) + o(δ)

= x + δPP
TP

K(x)
(v) + o(δ),

where we used (6), Lemma 1, and (7) with K replaced by
TK(x), respectively. The desired equality is then obtained by
the definition of �P

K in (5).

B. Oblique PDS

We will now describe oblique PDS, see also [11], where
this terminology was used, based on (3), where g ∈ Lloc

1 and
F : Rn → R

n is a continuous function. Without any further
restrictions on F and g, the state trajectory x(t) may take arbi-
trary values in R

n. Given a non-empty, closed, and convex set
K, if it is desired that

x(t) ∈ K for all t ∈ R≥0, (8)

one way to modify (3) is to consider the oblique PDS

ẋ = �P
K(x,−F(x) − g(t)) = PP

TK(x)(−F(x) − g(t)), (9)
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where P = P	 is a positive definite matrix. We emphasise that
the second equality follows from Proposition 1.

Definition 1: A solution to (9) for a given g ∈ Lloc
1 is a

locally absolutely continuous (AC) function x : R≥0 → K
that satisfies (9) almost everywhere.

Note that for any choice of P, due to the projection on the
tangent cone TK(x), the right-hand side of (9) takes values
in TK(x). Thus, for any x(0) ∈ K a corresponding solution
trajectory remains inside K, i.e., (8) is satisfied. As such, P
can be seen as a free design parameter, and for each positive
definite P = P	 constraint satisfaction is guaranteed. In fact, if
F has certain monotonicity properties, then the operator x �→
�K(x,−F(x)) does not necessarily have the such desirable
monotone properties as well, as we will show with an example
in Section IV-C. For preserving monotonicity properties of F
under the projection operator (and with that other desirable
system-theoretic properties, see Section IV), the metric of the
projection has to be carefully chosen (through smart choice of
P), as we will see in the next subsection.

C. From P-Monotonicity to Monotonicity

Our basic motivation for studying oblique PDS lies in the
desire to preserve monotonicity properties of the unconstrained
vector field F. In what follows, we assume that the origi-
nal “unconstrained” dynamics (3) satisfies a P-monotonicity
property, as stated next.

Assumption 1: The function F : R
n → R

n in (9) is
continuous and α-strongly P-monotone for α ≥ 0.

To study the monotonicity of (9) under Assumption 1, we
start by considering a similarity transformation of system (9)
by introducing x = Sx. This gives

ẋ = S argmin
v∈TK(S−1x)

|v + F(S−1x) + g|P

= S argmin
v∈TK(S−1x)

|Sv + SF(S−1x) + Sg|S−T PS−1

= S argmin
v with Sv∈TSK(x)

|Sv + SF(S−1x) + Sg|S−T PS−1

= argmin
w∈TSK(x)

|w + SF(S−1x) + Sg|S−T PS−1

= argmin
w∈TKS

(x)
|w + F(x) + g|S−T PS−1

= �S−T PS−1

KS
(x,−FS(x) − gS) with

KS = SK, FS(x) = SF(S−1x), gS = Sg. (10)

In the special case of S = P
1
2 (which is the case also studied

in [5], [7], [21] for related system classes), we obtain

ẋ = �K(x,−F(x) − g) with

K = P
1
2 K, F(x) = P

1
2 F(P− 1

2 x), g = P
1
2 g (11)

and the projection in (11) uses the standard Euclidean norm
| · |. For the system (11), we can now write several equivalent
forms as proposed in [6], see also [8], [12]. One particular
form, which allows us to see the monotonicity properties of the
operator on right-hand side of (11), is the differential inclusion
(DI) with normal cone operator, described as

ẋ ∈ −F(x) − g(t) − NK(x), (12)

which, under specific conditions is intimately coupled to the
PDS (11), see [6] and also [8], [12], in the sense that the
solutions to the PDS (11) and the DI (12) are equivalent. In
fact, it can be shown that, for each x ∈ K, the least norm
element of −F(x)−g−NK(x) coincides with �K(x,−F(x)−g).
Formally, for each x ∈ K and v ∈ R

n (see [6, Corollary 2])

�K(x, v) = argmin
w∈v−NK(x)

|w|. (13)

Theorem 1: Let K ⊂ R
n be a non-empty, closed, convex

set. If F : Rn → R
n is maximal and α-strongly monotone for

α ≥ 0, then the map x �→ F(x) + r + NK(x) is maximal and
α-strongly monotone for each r ∈ R

n. Moreover, the solutions
to (11) and (12) coincide for given g ∈ Lloc

1 and x(0) ∈ K. In
fact, both systems have the same unique solution.

Proof: The proof essentially follows the proof of [6, Th. 1],
building upon [4], of which the essential steps are recalled
here for completeness. Note that for a non-empty, closed and
convex set K, x �→ NK(x) + r is maximal monotone. By
assumption, x �→ F(x) is α-strongly and maximal monotone
with domain equal to R

n. Their sum is, hence, maximal and α-
strongly monotone [19, Corollary 12.44]. Therefore, (12) has
a unique solution [4], which corresponds to the least norm
element of the operator on the right-hand side of (12). It is
shown in [6, Th. 1], that the right-hand side of (11) is exactly
the least norm element of the right-hand side of (12), and
hence system (11) also admits a unique solution, which coin-
cides with the solution of (12) for the same values of x(0) ∈ K
and locally integrable g.

D. Well-Posedness of (9)

Using the result of Theorem 1, we can now study the exis-
tence and uniqueness of solutions to (9). To do so, we basically
show that certain properties of F translate to relevant properties
of F, which are needed in Theorem 1. The next proposi-
tion shows that FS (and hence F) indeed inherit appropriate
monotonicity properties from F.

Proposition 2: Consider a positive definite symmetric
matrix P ∈ R

n×n, an invertible matrix S ∈ R
n×n and a set-

valued mapping G : R
n ⇒ R

n. Let G : R
n ⇒ R

n be given
by G(x) = SG(S−1x) for x ∈ R

n. Then G is (α-strongly) P-
monotone if and only if G is (α-strongly) S−TPS−1-monotone.
Moreover, G is maximal P-monotone if and only if G is
maximal S−TPS−1-monotone.

Proof: Let G be α-strongly P-monotone. Take (x, x∗) and
(y, y∗) ∈ grG. Hence, x∗ ∈ SG(S−1x) and y∗ ∈ SG(S−1y)
and thus S−1x∗ ∈ G(x) for x = S−1x and S−1y∗ ∈ G(y) for
y = S−1y. Using this, we obtain

〈x − y | x∗ − y∗〉S−T PS−1 = 〈S−1(x − y) | S−1(x∗ − y∗)〉P

= 〈x − y | S−1x∗ − S−1y∗〉P

Clearly from this identity it follows that if G is (α-strongly)
P-monotone, then G is (α-strongly) S−TPS−1-monotone. The
converse can be proven by noting that G(x) = S−1G(Sx) and
taking G as G and S as S−1 in the above. Moreover, note that
(xa, x∗

a) can be added to grG without destroying S−TPS−1-
monotonicity if and only if (S−1xa, S−1x∗

a) can be added to
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grG without destroying P-monotonicity. This proves the last
statement.

Hence, F is α-strongly and maximal P-monotone if and only
if F : x �→ P

1
2 F(P− 1

2 x) is α-strongly and maximal monotone,
which is a key property for the existence of solutions to (11)
and (12) according to Theorem 1. Interestingly, we can trans-
form (12) back to the original coordinates x = P− 1

2 x, which
yields

ẋ ∈ −F(x) − g(t) − P−1NK(x). (14)

Corollary 1: Consider a non-empty closed convex set K ⊂
R

n, and let F satisfy Assumption 1. Then solutions to (9)
and (14) exist, are unique (given g ∈ Lloc

1 and x(0) ∈ K)
and coincide. Moreover, the mapping x �→ P−1NK(x) as in
the PDS (9) is maximal P-monotone and the mapping x �→
F(x) + r + P−1NK(x) is maximal P-monotone and α-strongly
P-monotone for each r ∈ R

n. Finally, for each r ∈ R
n the

mapping

x �→ −�P
K(x,−F(x) − r) = − argmin

w̃∈−F(x)−r−NK(x)
|w̃|P (15)

is α-strongly P-monotone (but not necessarily maximal P-
monotone).

Proof: Since F is α-strongly P-monotone, F in the PDS (11)
is α-strongly monotone according to Proposition 2. Moreover,
due to continuity and single-valuedness of F (Assumption 1)
F is continuous and single-valued (and already monotone),
hence, F is maximal monotone, see [19, Example 12.7].
Application of Theorem 1 now gives that solutions of (11)
and (12) exist, are unique (given g and x(0)) and coincide.
Transforming (11) and (12) back to original coordinates, leads
to (9) and (14), respectively, with the same conclusions on the
solutions. Using Proposition 2 and (strong/maximal) mono-
tonicity properties of x �→ NK(x) and x �→ F(x) + NK(x)
shows that x �→ P−1NK(x) is maximal P-monotone and that
x �→ F(x) + r + P−1NK(x) is maximal and α-strongly P-
monotone. The last statement follows then due to (13) and
α-strong P-monotonicity of x �→ F(x) + r + P−1NK(x).

IV. CASE STUDIES: INCREMENTAL STABILITY, PERIODIC

STEADY-STATE SOLUTIONS AND EXAMPLE

In this section, we provide certain relevant properties
that PDS (9) inherits, if the mapping F satisfies strong P-
monotonicity properties, and the oblique projection associated
to P is used. Moreover, we will provide an example, which
demonstrates that these properties do not hold, if another
projection (not matching the monotonicity of F) is used, under-
lying the importance of selecting the projection operator in the
design of PDS with care.

A. Incremental Stability

Let us consider a dynamical system

ẋ = f (x, d) (16)

and assume that for each d ∈ Lloc∞ ⊂ Lloc
1 and each x(0) = ξ

the systems has a unique locally absolutely continuous solu-
tion of which the value at time t ∈ R≥0 is denoted by x(t, ξ, d).

We recall the following definition of incrementally global
asymptotic stability (δGAS) from [1].

Definition 2 [1]: The system (16) is incrementally globally
asymptotically stable (δGAS), if there exists a KL-function β

such that for all ξ, η ∈ R
n and all d ∈ Lloc∞

‖x(t, ξ, d) − x(t, η, d)‖ ≤ β(‖ξ − η‖, t) for all t ∈ R≥0. (17)

It is incrementally input-to-state stable (δISS), if there exists
a KL-function β and K-function γ such that for all ξ, η ∈ R

n

and all d1, d2 ∈ L∞ it holds for all t ∈ R≥0 that

‖x(t, ξ, d1) − x(t, η, d2)‖ ≤ β(‖ξ − η‖, t) + γ (‖d1 − d2‖∞). (18)

We are now interested in studying the preservation of δGAS
and δISS properties, established for (3) using quadratic-type
δGAS/ISS Lyapunov functions, in the PDS (9). In particu-
lar, we assume that Assumption 1 is satisfied for α > 0,
which implies that V(x1, x2) = (x1 − x2)

	P(x1 − x2) is
a δGAS/ISS Lyapunov function for (3) thereby establishing
δGAS and δISS (see [1] and the proof below). Note that, under
Assumption 1, existence and uniqueness of locally AC solu-
tions to the PDS (9) is guaranteed given g ∈ Lloc∞ and initial
state x(0) ∈ K.

Theorem 2: Consider (9) with F satisfying Assumption 1
for α > 0 and a non-empty closed convex set K. Then (9) is
δGAS and δISS.

Proof: For two solutions x(·) = x(·, ξ, g1) and y(·) =
x(·, η, g2) to the PDS (9) for ξ, η ∈ R

n and g1, g2 ∈ Lloc∞ ,
it holds almost everywhere that (omitting t)

d

dt
|x − y|2P
= 2(x − y)	P[�P

K(x,−F(x) − g1) − �P
K(y,−F(y) − g2)]

= 2(x − y)	P[−F(x) − g1 − P−1nx + F(y) + g2 + P−1ny]

≤ −α|x − y|2P + |g1 − g2|P|x − y|P,

where nx ∈ NK(x(t)), ny ∈ NK(y(t)). We used α-strong P-
monotonicity of F and monotonicity of x �→ NK(x), next to
the Cauchy-Schwartz inequality. From these inequalities, it is
easy to derive δGAS by taking g1 = g2 = g, which yields
|x(t) − y(t)|2P ≤ e−αt|x(0) − y(0)|2P for all t ∈ R≥0. Moreover,
also δISS can be obtained following standard ISS arguments,
see also [1, Th. 2].

Remark 1: Other properties such as uniform/exponential
and input-to-state convergence a Demidovich, see [17] and
the original work of Demidovich [9] also hold for the PDS (9)
under Assumption 1.

B. Periodic Steady-State Solutions

Under Assumption 1 (and thus strong P-monotonicity of
the original unconstrained dynamics (3)), we obtain δGAS
and δISS of the P-oblique PDS (9) as shown in the previous
subsection. As discussed in [1] for locally Lipschitz dynam-
ics (16), the δISS property implies that the solutions to (16)
for periodic input signals d asymptotically tend to a periodic
function of the same period. As the right-hand side of our
PDS (9) is not locally Lipschitz (in fact, it is not even contin-
uous), we cannot directly rely on this result. Instead we can
use [4, Th. 3.14], however, which uses input functions g of
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bounded variation. Here we present a different and more com-
pact proof than the one presented in [4] for g ∈ Lloc

1 . The proof
exploits Banach’s fixed point theorem, which sheds some light
on the key principles.

The existence and uniqueness of locally AC solutions given
x(0) ∈ K and g ∈ Lloc

1 , discussed in the previous subsection
show that for a fixed g and T > 0 we can consider the mapping
x(0) ∈ K �→ x(T) ∈ K along trajectories of (9), which we
denote by T : K → R

n (assuming g is clear from the context
and fixed on [0, T]). Interestingly, for T > 0 the map T is
a contraction in the sense that there is a 0 ≤ ρ < 1 such
that |T (x) − T (x′)|P ≤ ρ|x − x′|P, for all x, x′ ∈ K, see [13].
Indeed, note that the α-strong P-monotonicity for α > 0 gives
for two different solutions x and y of (9) d

dt |x(t) − y(t)|2P ≤
−α|x(t) − y(t)|2P almost everywhere. Hence, using Grönwall’s
lemma, we obtain for all t ∈ R≥0

|x(t) − y(t)|2P ≤ e−αt|x(0) − y(0)|2P (19)

thereby establishing the contractivity of T with 0 <

ρ = e− α
2 T < 1 using the norm | · |P.

Interestingly, the facts that T is a contraction and K is
invariant under T , i.e., T (K) ⊂ K, immediately gives via
Banach’s fixed point theorem that there is a unique x̄ ∈ K such
that T (x̄) = x̄. Hence, if g ∈ Lloc

1 and periodic with period T
(i.e., g(t) = g(t + T) for all t ∈ R≥0), exactly one periodic
solution exists with period T . In addition, this periodic solu-
tion is (uniformly) GAS; any other trajectory of the oblique
PDS (9) converges to this periodic solution when time goes
to infinity (as in δGAS of the PDS). Hence, to any T-periodic
input function there exists a unique T-periodic steady-state
response, which is a solution to (9), to which all other state
trajectories (exponentially) converge when time goes to infin-
ity. These periodic solutions can be computed using, e.g., the
time-stepping methods in [13].

C. An Illustrative Example

For linear systems ẋ = Ax − g the (δ)GAS properties are
equivalent to A being Hurwitz (all real parts of the eigenvalues
strictly negative) and thus to the existence of a P = P	 > 0
with A	P + PA < 0, i.e., V(x) = 1

2 x	Px is a quadratic
(δISS) Lyapunov function. Clearly, this indicates that the map
F(x) = −Ax satisfies the strong P-monotonicity property.
A straightforward consequence of the above section is now
that, if ẋ = Ax is (δ)GAS, (δ)GAS of ẋ = �P

K(x, Ax − g)

is preserved, if the oblique projection is carried out with
the norm corresponding to a quadratic Lyapunov function
of ẋ = Ax. Note that in case projection is not carried
according to a quadratic Lyapunov function of ẋ = Ax, the
(incremental) stability properties are not necessarily preserved.
We illustrate this based on a slightly modified system used
in [16, Example 3.2].

Example 1: Consider A =
(−1 −4

1 0

)
, which has eigen-

values −1
2 ±

√
15
2 and, hence, is Hurwitz. Take K as the convex

cone {x ∈ R
2 | Hx ≥ 0} with H =

(−1 −2
1 −2

)
, where the

inequalities hold entry-wise in Hx ≥ 0.

Fig. 1. Simulations of standard Euclidean PDS (trajectory escaping
to infinity) and an oblique PDS (trajectory converging to the origin) for
x(0) = [−2 − 1]	.

We consider now the standard “Euclidean” PDS ẋ =
�K(x, Ax) and the oblique PDS ẋ = �P

K(x, Ax) using P =(
0.6250 0.1250
0.1250 2.6250

)
, which satisfies A	P + PA = −I < 0.

We observe that the simulations in Fig. 1 for initial state
x(0) = [−2 − 1]	 display completely different behaviour.
Where the trajectory corresponding to the oblique PDS nicely
converges to the origin, when time goes to infinity (as expected
due to GAS of the origin for PDS), the trajectory of the
Euclidean PDS moves infinitely far away from the origin.
Clearly, for this Euclidean PDS the origin turns out to be
unstable. In addition, note that for constant (zero) input g ≡ 0,
the oblique PDS has a unique (constant) steady-state response
(zero solution), while the Euclidean PDS does not (unbounded
solution). This shows that GAS of the origin and δGAS is not
preserved if a “wrong” �K is used, i.e., the “wrong” norm in
computing the projection.

V. OBSERVER DESIGN WITH CONSTRAINTS

As an application of the previous results, let us consider the
problem of designing observers for the plant

ẋ = −F(x) − g(t), y = h(x), (20)

where information is available that the relevant state trajecto-
ries evolve in a set K ⊆ R

n, i.e., x(t) ∈ K for all t ∈ R≥0,
and it is desired that the state estimates x̂(t) also respect the
same constraints, so x̂(t) ∈ K for all t ∈ R≥0, see [2], [3]
for various motivations of this problem. Here, x(t) ∈ R

n and
y(t) ∈ R

p are the state and measured output at time t ∈ R≥0,
and g ∈ Lloc

1 . F and h are continuous.
To construct an observer for (20), one possible design pro-

cedure is to ignore that x(t) ∈ K for all t (at first) and to
construct an observer for the unconstrained system (20) having
good convergence properties of the estimation error dynamics
e = x̂ − x. Many observer designs are available for this task.
However, the estimated state for this (unconstrained) observer
is not guaranteed to always lie in the set K and, in fact,
might move very far away from it (e.g., consider the so-called
“peaking phenomenon” for high-gain observers). Therefore,
we aim here for a re-design of such an unconstrained observer
preserving certain strong monotonicity (and with that δGAS)
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properties, while, in addition, having state estimates x̂(t) ∈ K
for all t ∈ R≥0.

To do so, suppose an unconstrained observer of the form˙̂x = −F(x̂)−g+L(y(t)−h(x̂)) is available with L the observer
gain such that e = x − x̂ converges exponentially to zero with
convergence rate β/2 > 0 as implied by:

Assumption 2: There are β > 0 and a positive-definite P =
P	 such that for all x, x̂

〈x − x̂ | −F(x) + F(x̂) − L[h(x) − h(x̂)]〉P ≤ −β|x − x̂|2P. (21)

Note that this assumption indeed guarantees that

|x(t) − x̂(t)|P ≤ exp(−(β/2)t)|x(0) − x̂(0)|P. (22)

To preserve the β/2-convergence rate, but also satisfy x̂(t) ∈
K, t ∈ R≥0, we propose to re-design the observer to

˙̂x = �P
K(x̂,−F(x̂) − g(t) + L(y(t) − h(x̂))). (23)

Theorem 3: For a given non-empty closed, convex set K ⊂
R

n, consider the system (20) with observer (23), and assume
that Assumption 2 holds. For all locally AC solutions of (20)
satisfying x(t) ∈ K, t ≥ 0, it holds that

1) a unique locally AC solution x̂ to (23) exists for any
x̂(0) ∈ K and x̂(t) ∈ K for all t ≥ 0, and

2) |x(t) − x̂(t)|P ≤ exp(−(β/2)t)|x(0) − x̂(0)|P.

Proof: The observer (23) can be rewritten as

˙̂x = �P
K(x̂,−[F(x̂) + Lh(x̂)] − v(t)) (24)

where v(t) := g(t) − Lh(x(t)) defines an Lloc
1 -function (due

to continuity of h and x locally AC). Note that a slight
rearrangement of (21) gives

〈x − x̂ | F(x) + Lh(x) − [F(x̂) + Lh(x̂)]〉P ≥ β|x − x̂|2P. (25)

and thus x �→ F(x) + Lh(x) is β-strongly and maximal P-
monotone (using continuity and single-valuedness of F, h).
Hence, the solution to the DI equivalent of (24), i.e.,

˙̂x ∈ −[F(x̂) + Lh(x̂)] − v(t) − P−1NK(x̂) (26)

given v and x̂(0) ∈ K exists, is unique and coincides with the
solution to (24) and thus (23), according to Corollary 1. Since
x �→ F(x) + Lh(x) + P−1NK(x) is β-strongly P-monotone due
to Corollary 1 and x is also a solution to (26), arguments as
in Section IV-A establish statement 2).

VI. CONCLUSION

We demonstrated how monotonicity properties of nonlin-
ear dynamics can be preserved under state constraints that
are enforced by projection. It is important that the projec-
tion in the resulting oblique PDS is chosen in line with the
monotonicity property of the unconstrained dynamics, as oth-
erwise the monotonicity might be lost as shown in an example.
Beneficially, the monotonicity used in this letter leads to global
asymptotic stability, incremental global asymptotic stability
and incremental input-to-state stability. Although the latter
system-theoretic notions are of independent interest, we also
showed the applicability of our results to the redesign of an
observer having state estimates in a given set. As our results
are currently based on adopting quadratic Lyapunov functions

to establish (incremental) stability properties, it is of interest
to see if extensions to other types of Lyapunov functions are
possible.
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