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Abstract

In this paper we study the fundamental system-theoretic property of well-posedness
for several classes of hybrid dynamical systems. Hybrid systems are characterized by the
presence and interaction of continuous dynamics and discrete actions. Many different
description formats have been proposed in recent years for such systems; some proposed
forms are quite direct, others lead to rather indirect descriptions. The more indirect a
description form is, the harder it becomes to show that solutions are well-defined. This
paper intends to provide a survey on the available results on existence and uniqueness
of solutions for given initial conditions in the context of various description formats for
hybrid systems.

1 Introduction

Very broadly speaking, scientific modeling may be defined as the process of finding common
descriptions for groups of observed phenomena. Often, several description forms are possible.
To take an example from not very recent technology, suppose we want to describe the flight
of iron balls fired from a cannon. One description can be obtained by noting that such balls
approximately follow parabolas, which may be parametrized in terms of firing angle, cannon
ball weight, and amount of gun powder used. Another possible description characterizes
the trajectories of the cannon balls as solutions of certain differential equations. The latter
description may be viewed as being fairly indirect; after all it represents trajectories only
as solutions to some problem, rather than expressing directly what the trajectories are, as
the first description form does. On the other hand, the description by means of differential
equations is applicable to a wider range of phenomena, and one may therefore feel that it
represents a deeper insight. Besides, interconnection (composition) becomes much easier since
it is in general much easier to write down equations than to determine the solutions of the
interconnected system.
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There are many examples in science where, as above, an implicit description (that is, a
description in terms of a mathematical problem that needs to be solved) is useful and possibly
more powerful than explicit descriptions. Whenever an implicit description is used, however,
one has to show that the description is a “good” one in the sense that the stated problem has
a well-defined solution. This is essentially the issue of well-posedness.

In this article we are concerned with hybrid dynamical systems, that is, systems in which
continuous dynamics and discrete actions both occur and influence each other. Many different
description formats have been proposed in recent years for such systems; some proposed forms
are quite direct, others lead to rather indirect descriptions. The direct forms have advantages
from the point of view of analysis, but the indirect forms are often preferable from the
perspective of modeling (specification); examples will be seen below. The more indirect a
description form is, the harder it becomes to show that solutions are well-defined. This paper
intends to provide a survey on the available results on existence and uniqueness of solutions
for given initial conditions in the context of various description formats for hybrid systems.

We consider here systems in which the description of continuous dynamics is based on
ordinary differential equations; in particular, we do not consider delayed arguments, partial
differential equations, or stochastic differential equations. All of these settings require their
own notions of well-posedness. Even in the context of ordinary differential equations, there
are situations in which one is naturally led to the consideration of well-posedness problems
for systems with mixed boundary conditions (i.e. partly initial conditions, partly final condi-
tions); see [36, §3.5] for an example derived from an optimal control problem. Here however
we shall concentrate on initial value problems. Furthermore we only consider models that are
formulated in continuous time. Discrete-time models are often stated in explicit form so that
well-posedness is not much of an issue; that is not to say, of course, that implicit discrete-time
models would not be sometimes useful.

2 Model classes

We begin by introducing a number of description formats for hybrid systems.

2.1 The hybrid automaton model

Hybrid systems research is sometimes viewed as a merger between dynamical systems / control
theory on one side and computer science / automata theory on the other. It is therefore
natural to look for description forms that combine elements from both sides. One way is to
start with models that are used in computer science and to extend these with elements from
continuous system theory.

In computer science, direct description forms appear to dominate. A typical specification
of a finite automaton consists of a list of all states together with the transitions that may
occur from each of these states and the conditions under which these transitions may take
place. In more structured descriptions, such as Petri nets, the collection of states is not listed
explicitly, but there is still for each state a simple rule that defines the possible successor
states. Determinism (in the sense that a uniquely determined trajectory exists for a given
initial condition and, if applicable, a given input sequence) is not always required; for instance
if the model is to be used to prove a certain property and it is suspected that the proof will
not depend on certain details of the dynamics, it is very convenient to leave these details
unspecified. The discrete systems studied by computer scientists are often very large and so



a key issue is compositionality, that is, the feasibility of putting subsystems together to form
a larger system.

The hybrid automaton model as proposed in [2] may be described briefly as follows. The
discrete part of the dynamics is modeled by means of a graph whose vertices are called locations
and whose edges are transitions. The continuous state takes values in a vector space X. To
each location there is a set of trajectories, which are called activities in [2], and which represent
the continuous dynamics of the system. Interaction between the discrete dynamics and the
continuous dynamics takes place through invariants and transition relations. Each location
has an invariant associated to it, which describes the conditions that the continuous state
has to satisfy at this location. Each transition has an associated transition relation, which
describes the conditions on the continuous state under which that particular transition may
take place and the effect that the transition will have on the continuous state. Invariants and
transition relations play supplementary roles: whereas invariants described when a transition
must take place (namely when otherwise the motion of the continuous state as described in
the set of activities would lead to violation of the conditions given by the invariant), the
transition relations serve as “enabling conditions” that describe when a particular transition
may take place.

In the model of [2], transitions are further equipped with synchronization labels, which
express synchronization constraints between different automata. This construct allows the
introduction of a notion of parallel composition between two automata. The component
automata are assumed to have the same continuous state space, and the set of activities at
each location of the composition (which is a pair of locations of the component automata) is
the intersection of the sets of activities at the corresponding component locations.

The hybrid automaton model provides a particular description format for discrete dynam-
ics, obviously inspired by the finite automaton model. An alternative would in principle have
been to use the notion of a formal language. As for the continuous part of the dynamics, the
model of [2] does opt for a description at such a more general level, with no a priori selection
of a particular specification form. The “sets of activities” of [2] may be compared to the
“behaviors” of [42].

Various ramifications of the hybrid automaton model have been proposed in the literature.
Sometimes the notion of a transition relation is split up into two components, namely a guard
which specifies the subset of the state space where a certain transition is enabled, and a
Jjump function which is a (set-valued) function that specifies which new continuous states
may occur given a particular transition and a particular previous continuous state. Often
the hybrid automaton model is extended with a description format for continuous dynamics,
typically systems of differential equations. Versions of the hybrid automaton model which
include external inputs have been proposed for instance in [5,29,31].

2.2 Explicit state-space model

Many studies in continuous-variable control theory are based on the model &(t) = f(x(t), u(t))
where z(t) denotes a continuous state variable and w(t) is a continuous control variable. Often
one just writes & = f(x,u), suppressing the dependence of all variables on time. A model in
the same spirit for hybrid systems may be written down as follows:

T = f(xu%u?T) (1)

q = g(z,q,u,r) (2)



where x and u are continuous state and control variables as before, ¢ and r denote discrete
state and control variables, and superscript “+” is used to indicate “next state”. The function
g expresses updates of the discrete state which depend on the current values of both the
continuous and the discrete state, as well as on the continuous and discrete inputs.

We call the above model “explicit” even though the continuous dynamics is actually given
in terms of a problem, to wit a differential equation, since the model gives the time derivative
of the continuous state variable explicitly as a function of all variables in the system. The
discrete-state update is given explicitly as well. For such models, the well-posedness issue is
rather easy (if not trivial) because of the explicit nature, see for instance [6].

2.3 Differential inclusions

During the past decades, extensive studies have been made of differential equations with
discontinuous right hand sides; see in particular [17] and [38,39]. For a typical example,
consider the following specification:

where h is a real-valued function. A system of this form can be looked at either as a discon-
tinuous dynamical system or as a hybrid system of a particular form. The specification above
is obviously incomplete since no statement is made about the situation in which h(z) = 0.
One way to arrive at a solution concept is to adopt a suitable relazation. Specifically, in a
convez relaxation one would rewrite the equations (3) as

T € F(x) (4)
where the set-valued function F'(z) is defined by

Fe) ={fi(x)} (h(z)>0), F(z)={f2(2)} (h(zx)<0),
Fx) ={y[3aec0,1]s.t. y = afi(x) + (1 —a)fo(z)} (h(z)=0) (5)

where it is assumed (for simplicity) that f; and fo are given as continuous functions defined
on {z | h(z) > 0} and {z | h(x) < 0} respectively. The discontinuous dynamical system has
now been reformulated as a differential inclusion, and so solution concepts and well-posedness
results can be applied that have been developed for systems of this type [3]. Other methods
to obtain differential inclusions are proposed by Utkin (‘control equivalent definition’) and
Aizerman and Pyatnitskii (see also Section 8). In case the vector fields f;(z) are linear (i.e. of
the form A;z for some matrix 4;) and the switching surface is given by a linear function h,
then the system (3) is called a piecewise linear or multi-modal linear system (see Section 6).

2.4 Complementarity systems

Systems of the form (3) are sometimes known as variable-structure systems; they describe a
type of mode-switching. A similar mode-switching behavior is obtained from a class of systems
known as complementarity systems [10,20,22,35,37]. Equations for a complementarity system



may be written in terms of a state variable x and auxiliary variables v and z, which must be
vectors of the same length. Typical equations are:

= f(z,v) (6a)
z = h(z,v) (6b)
0<zLlv>0 (6¢)

where the last line means that the components of the auxiliary variables v and z should be
nonnegative, and that for each index ¢ and for each time ¢ at least one of the two variables
v;(t) and z;(t) should be equal to 0. Variables that satisfy such relations occur naturally in
various problems; think of current / voltage in connection with ideal diodes, flow / pressure in
connection with one-sided valves, Lagrange multiplier / slack variable in optimization subject
to inequality constraints, and so on. Like (3), the system (6) consists of a number of different
dynamical systems or “modes” that are glued together. The modes can be thought of as
discrete states. They correspond to a fixed choice, for each of the indices ¢, between the two
possibilities v; > 0, z; = 0 and v; = 0, z; > 0, so that a complementarity system in which
the vectors v and z have length m has 2" different modes. The specification (6) is in general
not complete yet; one has to add a rule that describes possible jumps of the state variable x
when a transition from one mode to another takes place.

The description (6) is implicit in the discrete variables. Suppose we are at a point where
a transition must occur because otherwise an inequality constraint would be violated. There
may or may not be a unique mode in which the differential equations of (6a), together with
the equality constraints in (6¢) that are implied by the given mode, produce a solution that
satisfies the complementary inequality constraints in (6¢) at least for some positive time
interval. If there is indeed a unique solution to this problem, then this mode is taken as
the successor state. In case this procedure can be successfully carried out at all points of
the continuous state space, the complementarity system can in principle be rewritten in
the explicit hybrid automaton format, but the representation that is obtained may be very
awkward.

3 Solution concepts

A description format for a class of dynamical systems only specifies a collection of trajectories
if one provides a notion of solution. Actually the term “solution” already more or less suggests
an implicit description format; in computer science terms, one may also say that a definition
should be given of what is understood by a run (or an execution) of a system description.
Formally speaking, description formats are a matter of syntax: they specify what is a well-
formed expression. The notion of solution provides semantics: to each well-formed expression
it associates a collection of functions of time. In the presentation of description formats above,
the syntactic and semantic aspects have not been strictly separated, for reasons of readability.
Here we review in a more formal way solution concepts for several of the description formats
that were introduced.

First, consider the hybrid automaton model. To simplify the situation somewhat, we con-
sider models without synchronization labels. The model is then specified by: a finite set Loc;
a finite-dimensional real vector space X; a mapping Act from the set Loc to the set P(X [0"’0))
of collections of functions from [0, 00) to X; a finite subset Edg of the set Loc x 25X*X x Loc;
and a mapping Inv from the set Loc to the set 2% of subsets of X. A run of the hybrid



automaton is defined to be a finite or infinite sequence ((do, ¢, vo, fo), (01, £1,v1, f1),...) of
elements of [0, 00) x Loc x X x X[0:°) such that the following conditions are satisfied for each
i=0,1,2,...:

fi € Act(¢;)

fi(0) = v;

for all 0 < ¢ < 0;, f(t) € Inv(¢;)

there exists (¢, u,¢') € Edg such that ¢ = ¢;, ¢/ = £; 11, and (fi(0;), viy1) € p.

Note that the numbers §; > 0 denote differences between event times (durations or dwell
times) rather than event times themselves. In the terminology of [2], a run is said to diverge
if > §; is infinite. A hybrid automaton is said to be nonzeno if all of its runs can be extended
to divergent runs. This terminology is focused in particular on the obstruction that may arise
when the sequence of ¢;’s is infinite but the sum »_ ¢; is finite; in this case the system exhibits
“live-lock” (an infinite number of events at one time instant) or a right accumulation of event

times. The solution concept of [2] does not allow for left accumulations of event times!.

As we have seen above, some hybrid systems can alternatively be viewed as differential
inclusions. The standard solution concept for differential inclusions is the following. A vector
function z(t) defined on an interval [a,b] is said to be a solution of the differential inclusion
& € F(x), where F(-) is a set-valued function, if z(-) is absolutely continuous and satisfies
x(t) € F(z(t)) for almost all ¢ € [a, b]. The requirement of absolute continuity guarantees the
existence of the derivative almost everywhere. One may note that the solution concept for
differential inclusions does not have a preferred direction of time, as opposed to the notion of
an execution for hybrid automata.

For complementarity systems one may develop several solution concepts, which may be
similar to the notion of a run for hybrid automata, or to the solution concept for differential
inclusions as discussed above. A solution concept of the first type can for instance be formu-
lated as follows. A triple (v,z,2) : [a,b) — R™T" T is gaid to be a forward solution of the
system (6) on the interval [a,b), if = is continuous on [a,b), there exists a sequence of time
points (to,t1,...) with tg = a, tj41 > t; for all j, and either ¢ty = b or lim; o t; = b, as well
as for each j = 0,1,... an index set I}, such that for all j the restrictions of z(-), v(-), and
z(+) to (t;,tj41) are real-analytic, and for all ¢ € (¢;,t;41) the following holds:

@(t) = fx(t),v(t), 2(t) = h(x(t), v(t))
zi(t) = 0 for i € I;, v;i(t) = 0 for i & I;
zi(t) = 0 for i € I;, v;i(t) > 0 for i € I;.

The definition requires that x-part of the solutions are continuous across events. For so-
called “high-index” systems, this requirement is too strong and one has to add jump rules that
connect continuous states before and after an event has taken place. Under suitable conditions
(specifically, in the case of linear complementarity systems and in the case of Hamiltonian
complementarity systems), a general jump rule may be given; see [20,37]. Another possibly

'An element ¢ of a set & is said to be a left (right) accumulation point if for all t’ >t (' < t) (t,t')NE
((t',t) N E) is not empty.



restrictive aspect of the definition lies in the fact that it assumes that the set of event times
is well-ordered? by the usual order of the reals, but not necessarily by the reverse order;
in other words, event times may accumulate to the right, but not to the left. This lack of
symmetry with respect to time can be removed by allowing the set of event times £ to be of
a more general type. For instance, one may require that &£ is closed and nowhere dense;? this
guarantees that the complement of £ is open and that for each event time 7 one can construct
sequences of non-event times converging to 7, both of which may be useful properties for other
parts of the definition. In particular, if solutions are assumed to be continuous across events
than the requirements listed below can be made applicable as such to maximal intervals
between events. Solutions that are obtained in this way are called hybrid solutions, because
the corresponding solution concept is still based on explicit reference to event times.

An alternative concept that foregoes explicit mention of events is the following one, which
turns out to be convenient for complementarity systems that satisfy a certain passivity con-
dition. A triple (x,v, z) € L™ is said to be an La-solution of (6) on the interval [0, T with
initial condition zg if for almost all ¢ € [a, b] the following conditions hold:

z(t) = w0+/0f(a?(s),v(s))ds

2(t) = h(z(t),0(t))
0<z(t) Lo(t) >0.

This definition is in the spirit of the definition given above for differential inclusions.

Some other solution concepts have been proposed in which solutions are defined as limits
of approximate solutions defined by some approximation scheme (“sampling solutions” [12],
“Euler solutions” [13]).

4 Well-posedness notions

In the context of systems of differential equations, the term well-posedness roughly means
that there is a nice relation between trajectories and initial conditions (or, more generally,
boundary conditions). There are various ways in which this idea can be made more precise,
so the meaning of the term may in fact be adapted to the particular problem class at hand.
Typically it is required that solutions exist and are unique for any given initial condition.
Both for the existence and for the uniqueness statement, one has to specify a function class
in which solutions are considered. The function class used for existence may be the same
as the one used for uniqueness, or they may be different; for instance one might prove that
solutions exist in some function class and that uniqueness holds in a larger function class. In
the latter situation one is able to show specific properties (the ones satisfied by the smaller
function class) of solution trajectories in the larger class. In case one is dealing with a
system description that includes equality and/or inequality constraints, it may be reasonable
to limit the set of initial conditions to a suitably chosen set of “feasible” or “consistent” initial
conditions.

If solutions exist and are unique, a given system description defines a mapping from
initial conditions to trajectories. In the theory of smooth dynamical systems, it is usually

2An ordered set S is said to be well-ordered if each nonempty subset of S has a least element.
3A closed subset of a topological space is nowhere dense if and only if its interior is empty.



taken as part of the definition of well-posedness that this mapping is continuous with respect
to suitably chosen topologies. In the case of nonsmooth and hybrid dynamical systems, it
frequently happens that there are certain boundaries in the continuous state space separating
regions of initial conditions that generate widely different trajectories. Therefore, continuous
dependence of solutions on initial conditions (at least in the sense of the topologies that are
commonly used for smooth dynamical systems) may be too strong a requirement for hybrid
systems.

One may also distinguish between various notions of well-posedness on the basis of the
time interval that is involved. For instance, in the context of hybrid automata, one may
say that a given automaton is non-blocking [25] if for each initial condition either at least
one transition is enabled or an activity during an interval of positive length is possible. If
the continuation is unique (the automaton is deterministic [25]), one may then say that the
automaton is initially well-posed. This definition allows a situation in which a transition from
location 1 to location 2 is immediately followed by a transition back to location 1 and so on
in an infinite loop, so that all §;’s in the definition of a run of the hybrid automaton are equal
to zero (livelock). A stronger notion is obtained by requiring that a solution exists at least on
an interval [0, £) with € > 0; system descriptions for which such solutions exist and are unique
are called locally well-posed. In computer science terminology, such systems “allow time to
progress”. Finally, if solutions exist and are unique on the whole half-line [0, c0), then one
speaks of global well-posedness.

5 Well-posedness of hybrid automata

As already mentioned above, a useful framework to describe hybrid dynamical systems is that
of a hybrid automaton, see [2,5,29,31,36]. Here, we adapt the description of Subsection 2.1
using the set-up as in [25,30] in which the set of activities is defined by ordinary differential
equations. Basically, a hybrid automaton merges the standard concepts of automata and
continuous-time dynamics, by associating to every discrete state or location ¢ € Loc of the
automaton a continuous-time dynamics* & = f,(z) generating the set Act(¢) for the continuous
state x. Furthermore, the continuous-time dynamics may induce discrete transitions in the
locations by specifying for every location ¢ a so-called location invariant Inv(¢), which is a
subset of the continuous state space X (taken to be R™ for simplicity), specifying the feasible
set of continuous states for the location ¢, in the sense that if exit of the continuous state
from the location invariant is imminent, then a transition to another location ¢ and / or a
reset of the continuous state x has to take place (or the system is in a deadlock). The discrete
transitions are given by a collection of edges F C Loc x Loc. For every discrete transition
(¢,0') € E a guard G(¢,0") C X is specified, defining enabling conditions on the continuous
state in order that the transition to ¢/ may take place. Another interplay between discrete
and continuous dynamics is provided by the reset relations R(¢,¢') C X x X, specifying for
every discrete transition (¢,¢') € E the continuous state reset from x € G({,¢') to 2’ € X
such that (z,2") € R(¢,¢"). In the terminology of Section 3, this means that

Edg= {({,v,v',0') € Loc x X x X x Loc| ((,¢') € E, ve G,1), (v,v') € R 1)}.

*A more general setting would allow differential and algebraic equations Fy(x,4) = 0 instead of ordinary
differential equations only.




Sometimes a set of initial (hybrid) states Init C Loc x X is given that restricts the possible
starting points of the executions.

Necessary and sufficient conditions for well-posedness of hybrid automata have been stated
in [30], see also [25,27]. Basically these conditions mean that transitions with non-trivial reset
relations are enabled whenever continuous evolution is impossible, - this property is called
non-blocking-, and that discrete transitions must be forced by the continuous flow exiting the
invariant set, no two discrete transitions can be enabled simultaneously, and no point = can
be mapped onto two different points ' # 2" by the reset relation R(¢,¢') - this property
is called determinism. We will formally state the results of [25,30] after introducing some
necessary concepts and definitions.

Definition 5.1 [25] A hybrid time trajectory 7 = {I;}¥ is a finite (N < 0o) or infinite
(N = o0) sequence of intervals of the real line, such that

o [; =[m,7]] with 7; < 7/ =741 for 0 < i < N;

o if N < o0, either Iy = [rn, Tj] with 7v < ) < c0.

Note that a hybrid time trajectory does not allow left accumulation points. The event
set £ := {0} U{2 | n € N} and the corresponding sequence of intervals cannot be rewritten
in terms of a hybrid time trajectory. Hence, the above definition excludes implicitly specific
Zeno behaviour.

We say that the hybrid time trajectory 7 = {I;}Y is a prefix of 7' = {J;}M, and write
7 < 7/, if they are identical or 7 is finite, M > N, I; = J; fori = 0,1,...,N—1, and Iy C Jy.
In case 7 is a prefix of 7/ and they are not identical, T is a strict prefix of 7’.

Definition 5.2 An execution x of a hybrid automaton is a collection x = (7, A, §) with 7 a
hybrid time trajectory, A : 7 — Loc and = : 7 — X, satisfying

e (A(70),&(70)) € Init (initial condition);

e for all 7 such that 7; < 7/, { is continuously differentiable and A is constant for ¢ € [7;, 7],
and {(t) € Inv(A(t)) and £(t) = fr)(£(t)) for all t € [, 7]) (continuous evolution); and

e for all i, e = (A(7)),N(7i41)) € E, &(7]) € G(e) and (z(7]),x(1i+1)) € R(e) (discrete

evolution).

An execution x = (7, A, &) is called finite, if 7 is a finite sequence ending with a closed
interval, infinite, if 7 is an infinite sequence or if ). (7/ — 7;) = oo, and mazimal if it is
not strict prefix of any other execution of the hybrid automaton. We denote the set of all
maximal and infinite executions of the automaton with initial state (¢o, xg) € Init by H%[O 70)
and ’H(Oo ) respectively.

Lo,x0

Definition 5.3 A hybrid automaton is called non-blocking, if H(OZ) 20) is non-empty for all
(o, zg) € Init. Tt is called deterministic, if Hé\go 20) contains at most one element for all
(fo,{L‘o) € Init.

These well-posedness concepts are similar to what we called initial well-posedness as they
do not say anything about livelock or the continuation beyond accumulation points of event
times.



To simplify the characterization of non-blocking and deterministic automata, the following
assumption has been introduced in [25,30].

Assumption 5.4 The vector field fy(-) is globally Lipschitz continuous for all £ € Loc. The
edge (¢,¢') is contained in E if and only if G(¢,¢') # @ and « € G(¢, ) if and only if there is
an 2’ € X such that (x,2') € R((,0).

The first part of the assumption is standard to guarantee global existence and uniqueness
of solutions within each location given a continuous initial state. The latter part is without
loss of generality as can easily be seen [30].

A state ((,2) is called reachable, if there exists a finite execution (7,\,¢) with 7 =
{[m, 7}N.y and (A\(74),&(7h)) = (£,&). The set Reach C Loc x X denotes the collection
of reachable states of the automaton.

The set of states from which continuous evolution is impossible is defined as

Out = {(y, x0) € Loc x X | Ve > 03t € [0,¢) 4, 4,(t) & Inv(ly)}
in which x4, 5,(-) denotes the unique solution to & = fy,(z) with z(0) = zo.

Theorem 5.5 [25,30] A hybrid automaton is non-blocking, if for all (¢,x) € Reach U Out,
there exists (£,0') € E withx € G(£,£'). In case the automaton is deterministic, this condition
is also necessary.

Theorem 5.6 A hybrid automaton is deterministic, if and only if for all (£,x) € Reach
o ifx e G YL) for some (£,0') € E, then (¢,x) € Out;
o if (0,0') € E and (¢,0") € E with ¢! # 10", then x & G, )NG((,¢"); and
o if ((,0') € E and x € G(£,{'), then there is at most one ' € X with (z,2") € R(,1').

As a consequence of the broad class of systems covered by the results in this section, the
conditions are rather implicit in the sense that for a particular example the conditions cannot
be verified by direct calculations (i.e. are not in an algorithmic form). Especially, if the model
description itself is implicit (e.g. variable structure systems or complementarity models) these
results are only a start of the well-posedness analysis as the hybrid automaton model and
the corresponding sets Reach and Out have to be determined first. However, some explicit
characterizations of the set Out as can be found in [25,30] might be convenient in this respect.
In the next sections, we will present results that can be checked by direct computations.

The extension of the initial well-posedness results for hybrid automata to local or global
existence of executions are awkward as Zeno behaviour is hard to characterize or exclude, and
continuation beyond Zeno times is not easy to show. Relaxations play a crucial role in this
respect [25]. In case the location can be described as a function of the continuous state (like
for complementarity systems or differential equations with discontinuous right-hand sides)
you are able to define an evolution beyond the Zeno time by proving that the (left-)limit of
the continuous state exists at the Zeno point. Continuation from this limit follows then again
by initial or local existence.
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6 Well-posedness of multi-modal linear systems

A problem of considerable importance is to find necessary and sufficient conditions for well-
posedness of multi-modal linear systems

T = Az, fzel
T = Aox, fzely xzeR"”

(7)
r = Ayz, ifzxedl,

where C; are certain subsets of R™ having the property that

CtuCuU---UC. =R"

(8)

int C; Nint C; = @, 1#£ ]

This situation may naturally arise from modeling, as well as from the application of a switching
linear feedback scheme (with different feedback laws corresponding to the subsets C;). Of
course, even more general cases may be considered, or, instead, extra conditions may be
imposed on the subsets C;. Note that the first condition in (8) is a necessary (but not
sufficient) condition for existence of solutions for all initial conditions and the second one is
necessary (but again not sufficient) for uniqueness (unless the vector fields are equal on the
overlapping parts of the regions C;).
A particular case of the above problem which has been investigated in depth is the bimodal
linear case
r = Alx, Cx = 0
xeR" (9)
& = Asx, Cx<0
under the additional assumption that both pairs (C, A1) and (C, A2) are observable.

The solution concept that is employed is the extended Carathéodory solution, that is a
function z : [to,t1] — R™, which is absolutely continuous on [tg, 1], satisfies

t
(t) = x(to) + ) fa(r))dr, (10)

where f(z) is the (discontinuous) vector field given by the right-hand side of (9), and there
are no left-accumulation points of event times on [to, ¢;].

Notice that Filippov solutions involving sliding modes are not extended Carathéodory
solutions. Moreover, note that if f(x) is continuous then necessarily there exists a K such
that Ay = As + KC, and f is automatically Lipschitz continuous, implying local uniqueness
of solutions.

Before stating the main result we introduce some notation. First we define the n x n
observability matrices corresponding to (C, A;), respectively (C, As) :

C C
CAl C’142
Wy = . , Wa:i= ) (11)
CAP cAy

11



(by assumption they both have rank n). Furthermore we define the following subsets of the
state space R" :

St = {z e R"W;z > 0}

i=1,2 (12)
S; = {zeR"W;z <0}
where > denotes lexicographic ordering, that is, x = 0 or x = 0 if the first component of
x that is non-zero is positive. Furthermore, x < 0 iff —x > 0. Then the following result
from [24] can be stated:

Theorem 6.1 The bimodal linear system (9) is well-posed if and only if one of the following
equivalent conditions are satisfied

(a) S;US,; =R"
(b) S NSy ={0}
(c) WQWI_I 15 a lower-triangular matriz with positive diagonal elements.

Remark 6.2 Clearly, we may also interchange the indices 1 and 2 in the conditions (a), (b),
().

Possible extensions to non-invertible observability matrices, the multi-modal situation, as
well as to modification of the sets Cx > 0, Cx < 0, are discussed in [23,24]. An interesting
application of Theorem 6.1 to a switching control scheme is the following:

Proposition 6.3 [24] Consider the linear system © = Ax + Bu, = € R" u € R, with
switching feedback
v = Flz, Cx>0
(13)
u = Ihr Cr<0

Let p be the relative degree of the system defined by the triple (Cy, A + BF1,B). Then the
controlled system is well-posed if and only if

F,—F = a1C+aC(A+BF)+-+a,C(A+ BF)P™!
+ ~C(A+ BF)

for certain constants a1, o, - , 0,7y, with v such that yC'(A + BF)P~'B > —1.

7 Complementarity systems

Within specific application domains of complementarity systems, the question of well-posedness
has already received ample attention. For instance, in the context of unilaterally constrained
mechanical systems (see e.g. [4,7,28,32]) and projected dynamical systems [15,21,33] several
results are available.

12



7.1 Linear complementarity systems

As the interconnection of a continuous, time-invariant, linear system and complementarity
conditions, a linear complementarity system (LCS) can be given by

#(t) = Az(t) + Bu(t) (14a)
y(t) = Cx(t) + Du(t) (14b)
0<u(t) Lyt =0. (14c)

where z(t) € R™, u(t) € R™, y(t) € R™, and A, B, C and D are matrices with appropriate
sizes. We denote (14a)-(14b) by (A, B,C, D) and (14) by LCS(A, B,C, D).

One may look at LCS as a dynamical extension of the linear complementarity problem
(LCP) of mathematical programming. See [14] for an excellent survey on the LCP.

Problem 7.1 LCP(q, M): Given an m-vector ¢ and m X m matrix M find an m-vector z
such that

220 (15a)
w:=q+Mz>0 (15b)
Tw=0. (15¢)

We say z solves (or is a solution of) LCP(q, M), if z satisfies (15). The set of solutions of
LCP(q, M) is denoted by SOL(q, M). Some definitions are introduced next.

Definition 7.2 A matrix M € R™*™ is called
e nondegenerate if its principal minors detMj; for I C {1,...,m} are nonzero.
e a P-matriz if all its principal minors are positive.
e positive (nonnegative) definite® if 7 Mz > 0 (> 0) for all 0 # 2 € R™.

Note that every positive definite matrix is a P-matrix, but the converse is not true.
However, every symmetric P-matrix is also positive definite.

Definition 7.3 The dual cone of a given nonempty set S C R™, denoted by ¥, is given by
{veR™ | vTw >0 for all w € S}.

The final ingredient of our preparation is the “index” of a rational matrix.

Definition 7.4 A rational matrix H(s) € R*!(s) is said to be of index k if it is invertible as
a rational matrix and s™* H~1(s) is proper. It is said to be totally of index k if all its principal
submatrices are of index k.

With a slight abuse of terminology, we say that a linear system X(A, B, C, D) is (totally)
of index k, if its transfer function is (totally) of index k.

5Note that the matrix is not assumed to be symmetric.
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7.1.1 Linear complementarity systems with index 1

We will start investigating well-posedness of LCS for which the underlying linear system is
totally of index 1. First, we define a solution concept for such LCS. First the definition of
event times set is in order.

Definition 7.5 A set £ C R, is called an admissible event times set if it is closed and
countable, and 0 € £. To each admissible event times set £, we associate a collection of
intervals between events 7¢ = {(t1,t2) C R, | t1,t2 € EU {oo} and (t1,t2) N E = T}

Note that both left and right accumulations® of event times are allowed by the above
definition. Next, we define the hybrid solution concept. Later on, we will compare it with
the solution concepts mentioned in Section 3.

Definition 7.6 A quadruple (€, u,z,y) where € is an admissible event times set, and (u, x,y) :
R, — R™T"™ ig said to be a hybrid solution of LCS(A, B, C, D) with the initial state z, if
x(0) = g, x is continuous on R, and the following conditions hold for each 7 € 7¢:

1. The triple (u,z,y)|, is analytic.

2. For all £ € 7, it holds that

Moreover, we say that a hybrid solution (€, u, z,y) is nonredundant if there does not exist a
t € & and t',t" with t/ <t < t” such that (u,z,y) is analytic on (¢',t"”). Without loss of
generality we will only consider nonredundant solutions from now on.

Definition 7.7 An admissible event times set & is said to be left (right) Zeno free if it does
not contain any left (right) accumulation points. A hybrid solution is said to be left (right)
Zeno free if the corresponding event times set is left (right) Zeno free. It is said to be left
(right) Zeno if it is not left (right) Zeno free, and non-Zeno if it is both left and right Zeno
free.

The following proposition summarizes the relations between forward, Lo and hybrid solutions.

Proposition 7.8 [10] Consider a LCS(A, B,C, D). The following statements hold.

1. If (E,u,z,y) is a left Zeno free hybrid solution of LCS(A, B,C, D) for some initial state
then (u,x,y) is a forward solution of LCS(A, B,C, D) with the same initial state.

2. Suppose that D + C (oI — A)~'B is a nondegenerate matriz for all sufficiently large o.
If (E,u,z,y) is a hybrid solution of LCS(A, B,C, D) for some initial state then (u,x,y)
is an Lo solution of LCS(A, B,C, D) with the same initial state.

6An element ¢ of an admissible set £ is said to be a left (right) accumulation point if for all t' >t (' < t)
(t,t)YNE ((t',t) NE) is not empty.
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Note that a left Zeno free hybrid solution is not necessarily a forward solution as a forward
solution can in principle not be defined beyond a right-accumulation point (although an
extension may be formulated including this possibility).

The following theorem provides sufficient conditions for well-posedness in the sense of
existence and uniqueness of LCS with index 1.

Theorem 7.9 [10] Consider a LCS(A, B,C, D) with (A, B,C, D) is totally of index 1.
Suppose that D + C(ol — A)"'B is a P-matriz for all sufficiently large 0. There exists
a left Zeno free hybrid solution of LCS(A, B,C, D) with the initial state xo if and only if
LCP(Cxy, D) is solvable. Moreover, if such a solution exists it is left Zeno free unique, i.e.
there is mo other left Zeno free solution.

7.1.2 Linear passive complementarity systems

When the underlying system X(A, B, C, D) is passive (in the sense of [41]) we call the overall
system (14) a linear passive complementarity system (LPCS). For a detailed study on LPCS,
the reader may refer to [11]. As shown in [10, Lemma 3.8.5], the passivity of the system
(under some extra assumptions) implies that it is of index 1. Hence, Theorem 7.9 is applicable
to LPCS. Additionally, it can be shown that there are no left Zeno solutions for LPCS as
formulated in the following theorem.

Theorem 7.10 [10] Consider a LCS(A, B, C, D) with ¥(A, B, C, D) being passive, (A, B,C')
being minimal and col(B, D + DT) := < D —|—BDT > of full column rank. Let Qp = {z |
z solves LCP(0,D)}. There exists a hybrid solution of LCS(A, B,C, D) with the initial state
xo if and only if Cxg € Qp. Moreover, if a solution exists it is unique’ and left Zeno free.

Observe that if (£,S,u,z,y) is a solution of LCS(A, B, C, D) then (£,S,t + eftu(t),t —
ePla(t),t — ePly(t)) is a solution of LCS(A+pl, B, C, D). This correspondence makes it possi-
ble to apply the above theorem to a class of nonpassive systems. Indeed, even if ¥(A, B, C, D)
is not passive (A + pI, B,C, D) may be passive for some p . In this case, we say that
Y(A,B,C, D) is passifiable by pole shifting (PPS). Necessary and sufficient conditions for
PPS property have been given in [10, Theorem 3.4.3]. By using those conditions, we can
state the following extension of Theorem 7.10.

Theorem 7.11 [10] Consider a LCS(A, B, C, D) with (A, B, C) minimal and col(B, D+DT)
full column rank. Let E be such that ker E = {0} and im E = ker (D + DT). Suppose that
D is nonnegative definite and ETCBE is symmetric positive definite. There exists a hybrid
solution of LCS(A, B,C, D) with the initial state xo if and only if Cxy € QF,. Moreover, if a
solution exists it is unique’ and left Zeno free.

The PPS property can be employed to rule out right Zeno solutions as well. Indeed, the
systems for which PPS property is an invariant under time-reversion do not exhibit Zeno
behavior at all. Necessarily, such a system has a positive definite definite feedthrough term.
This very particular case is worth stating separately.

"It can also be shown that this solution is unique in Ls.
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Theorem 7.12 [10] Consider a LCS(A, B, C, D) with (A, B, C) is minimal and D is positive
definite. There exists a unique non-Zeno hybrid solution of LCS(A, B,C, D) for all initial
states.

Note that Zeno states (i.e., the states at the accumulation points) are well-defined due
to the fact that the xz-part of a hybrid solution is uniformly continuous under the condition
(A, B,C, D) being totally of index 1. Intuitively, the most natural candidates for Zeno states
are equilibrium states, in particular the zero state, of the system. The following theorem
indicates that the zero state cannot be a Zeno state for linear complementarity systems of
index 1.

Theorem 7.13 [9] Consider a LCS(A, B,C, D) with ¥(A, B,C, D) is totally of index 1.
Then, the zero state is not a right Zeno state.

7.2 Piecewise linear systems

As is well-known (see for instance [16]), piecewise linear relations may be described in terms of
the linear complementarity problem. In the circuits and systems community (see e.g. [26,40])
the complementarity formulation has already been used for static piecewise linear systems;
this subsection may be viewed as an extension of the cited work in the sense that we consider
dynamic systems. For the sake of simplicity, we will focus on a specific type of piecewise
linear systems, namely linear saturation systems, i.e., linear systems coupled to saturation
characteristics. They are of the form

z(t) = Az(t) + Bu(t) (16a)
y(t) = Cz(t) + Du(t) (16b)
(u(t),y(t)) € saturation; (16¢)

where z(t) € R, u(t) € R™, y(t) € R™, A, B, C and D are matrices of appropriate sizes,
and saturation; is the curve depicted in Figure 1 with e} — et > 0 and f¢ > fi. This curve is
formally described by the set
{(v,2) eR? | (v="¢b and 2z < f3) or (v =—¢€} and z > f}) or
() Sv<eyand (ff = fr)ey + (e — eb)(z = f3)}. (17)
We denote the overall system (16) by SAT(A, B, C, D). Note that relay characteristics can be

obtained from saturation characteristics by setting fi = fi. We adopt the solution concept
defined for LCS to saturation systems as follows.

Definition 7.14 A quadruple (£,u,z,y) where £ is an admissible event times set, and
(u,z,y) : Ry — R™™ s said to be a hybrid solution of SAT(A, B,C, D) with the ini-
tial state xq if £(0) = z¢ and the following conditions hold for each 7 € 7¢:

1. The triple (u,z,y)|, is analytic.
2. For all t € 7 and ¢ € m, it holds that
#(t) = Az(t) + Bu(t)
y(t) = Cx(t) + Du(t)
(u;i(t),yi(t)) € saturation;
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Figure 1: Saturation characteristic

Note that if in Definition 7.14 the PL curve saturation; is replaced by the complementarity
conditions (14c) we obtain Definition 7.6.

One may argue that the saturation characteristic is a Lipschitz continuous function (pro-
vided that f{ — fi > 0) and hence existence and uniqueness of solutions follow from the theory
of ordinary differential equations. The following example shows that this is not correct in
general if the feedthrough term D is nonzero.

Example 7.15 Consider the single-input single-output system

T=u (18)
y=x—2u (19)
where u and y restricted by a saturation characteristic with e; = —f] = —eg = fo = % as

shown in Figure 1. Let the periodic function % : R, — R be defined by
172 ifo<t<1

a(t) =< —1/2 if1<t<3

172 if3<t<4

and u(t — 4) = @(t) whenever t > 4. By using this function define 2 : R, — R as

and y: R, — R as

It can be verified that (—a, -2, —7g), (0,0,0) and (4, z, ) are all solutions of SAT(0, 1,1, —2)

with the zero initial state.

~—

As illustrated in the example, the Lipschitz continuity argument does not work in general
when fi > fi. Also in the case, where fi = fi this reasoning does not apply. The following
theorem gives a sufficient condition for the well-posedness of linear systems with saturation
characteristics.

Theorem 7.16 [10] Consider SAT(A, B,C, D). Let R = diag(e},—e!) and S = diag(fi—f}).
Suppose that G(o)R — S is a P-matrix for all sufficiently large o. Then, there ezists a unique
left Zeno free hybrid solution of SAT(A, B,C, D) for all initial states.
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7.3 Variations and generalizations

Up to this point, we have presented results on global well-posedness of complementarity
systems in which the z-part of the solutions is continuous. In this subsection, the available
variations and/or generalizations of those results will be mentioned briefly.

Earlier work on complementarity systems mainly focused on initial and local well-posedness
issues (in the sense described in Section 4) including the possibility of re-initializations (state
jumps). In these studies the issue of irregular initial states had to be tackled, i.e., the states
for which there is no solution in the senses defined so far for complementarity systems. A
distributional framework was used to obtain a new solution concept (see [20] for details).
Sufficient conditions for local well-posedness have been provided for LCS [20,35], Hamiltonian
complementarity systems with one complementarity constraint [35], and a class of nonlin-
ear complementarity systems [22,37]. The result in [20] for LCS with multiple constraints
is presented next. Consider the LCS(A, B,C, D) with Markov parameters H = D and
H'=CA™1B,i=1,2,... and define the leading row and column indices by

nj = inf{i € N| Hfj #0}, pj:=inf{i e N| H}, # 0},

where j € {1,...,k} and inf @ := oco. The leading row coefficient matriz M and leading
column coefficient matriz N are then given for finite leading row and column indices by

H
M = : and N := (H]} ... H}})
HP*

Theorem 7.17 [20] If the leading column coefficient matriz N and the leading row coefficient
matriz M are both defined and P-matrices, then LCS(A, B,C, D) has a unique local left Zeno
free solution on an interval of the form [0,€) for some € > 0. Moreover, live-lock (an infinite
number of events at one time instant) does not occur.

In another related paper [19], it has been shown that the initial well-posedness prob-
lem comes down to checking existence and uniqueness of a family of linear complementarity
problems.

First steps in the direction of getting global well-posedness results for LCS with external
inputs are due to [11] for LPCS and [8], where the underlying linear system is of index 1.

8 Differential equations with discontinuous right-hand sides

Differential equations of the form

a(t) = f(t,x(t)) (20)
with f being piecewise continuous in a domain G and with the set M of discontinuity points
having measure zero, received quite some attention in the literature. Major roles have been
played in this context by Filippov [17,18] and Utkin [39]. As mentioned in Subsection 2.3,
solution concepts have been defined by replacing the basic differential equation (20) by a

differential inclusion of the form
i(t) € F(t, (1)), (21)

where F' is constructed from f. The solution concept is then inherited from the realm of
differential inclusions [3].
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Definition 8.1 The function = : Q — R" is called a solution of the differential inclusion (21),

if = is absolutely continuous on the time-interval Q and satisfies @(t) € F(t,x(t)) for almost
all t € Q.

There are several ways to transform f into F' and we will restrict ourselves to the two
most famous ones and briefly discuss an alternative transformation proposed by Aizerman
and Pyatnitskii [1]. For further details see [17].

In the convex definition [17,18] the set F,(t,x) is taken to be the smallest convex closed
set containing all the limit values of the function f(¢,%) for z — x, t =t and (¢,%) & M.

The control equivalent definition proposed by Utkin [39] (see also [17, p. 54]) applies to
equations of the form

z(t) = f(t,z(t),ur(t, x), ..., u.(t,x)), (22)

where f is continuous in its arguments, but w;(¢, ) is a scalar-valued function being discontin-
uous only on a smooth surface S; given by ¢;(x) = 0. We define the sets U;(t, z) as {u;(t,z)}
when z ¢ S; and in case z € S; by the closed interval with end-points u; (¢,z) and u;' (¢, z).
The values u; (t,2) and u; (¢, z) are the limiting values of the function u; on both sides of the
surface S; which we assume to exist. The differential equation (22) is replaced by (21) with
Fy(t,x) = f(t,z,Uy(t,x),...,U(t,x)).

Remark 8.2 In case F,(t,z) is chosen as the smallest convex closed set containing Fy(t, ),
then the general definition of Aizerman and Pyatnitskii [1] is obtained. In case f is linear
in uq,...,u, and the surfaces Sy, ..., S, are all different and at the point of intersection the
normal vectors are linearly independent, all the before mentioned definitions coincide, i.e.
F,=F,=F..

The well-posedness results of the differential equation (20) or (22) can now be based on
the theory available for differential inclusions (see [3,17] and the references therein).

Let A, B be two non-empty closed sets in a metric space with metric d. The distance
between A and B may be characterized by the following quantities

A, B) = sup inf d(a,
B(A.B) = sup inf (o)

Oé(A, B) = maX(B(Av B)? 5(37 A))

A set-valued function F' is called upper semicontinuous at po, if B(F(p), F(po)) — 0 if p —
po, or stated differently, if for all £ > 0 there is a § > 0 such that ||p — pp|| < J implies
F(p) C F(po) + B, where B denotes the unit ball. F is called continuous at the point po, if
a(F(p), F(po)) = 0if p — po. F is called (upper semi)continuous on a set D, if F' is (upper
semi)continuous in each point of the set D.

Definition 8.3 We say that the set-valued map F'(t,z) satisfies the basic conditions, if
o for all (¢,z) € G the set F(t,x) is nonempty, bounded, closed and convex
e [ is upper semicontinuous in ¢, x.

The following result is described on page 77 of the monograph [17].
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Theorem 8.4 [17, Thm. 2.7.1 + 2.7.2] If F(t,x) satisfies the basic conditions in the domain
G, then for any point (tg,zo) € G there exists a solution of the problem

@(t) € F(t,x(t)), x(to) = o (23)

If the basic conditions are satisfied in a closed and bounded domain G, then each solution can
be continued on both sides up to the boundary of the domain G.

In combination with the following result Theorem 8.4 proves the existence of solutions for
the differential inclusions related to F,, F}; and F..

Theorem 8.5 [17, p. 67] The sets Fy(t,z), Fy(t,x) and F.(t,x) are nonempty, bounded and
closed. Fy(t,x) and F.(t,x) are also convex. Fy is upper semicontinuous in x, and Fy, and F,
are upper semicontinuous in t, x.

Together Theorem 8.4 and 8.5 now show the existence of solutions when Filippov’s convex
definition is used under the condition that f is time-invariant. In case f is not time-invariant,
additional assumptions are needed to arrive at F' being upper semicontinuous in ¢ as well (see
page 68 in [17]). For the definition of Aizerman and Pyatnitskii (i.e. using F.) existence of
solutions is guaranteed. In case Fy(t,x) is convex for all relevant (¢, x) (e.g. if the conditions
mentioned in Remark 8.2 are satisfied), then existence follows as well. If the convexity
assumption is not satisfied, the existence result still holds if upper semicontinuity is replaced
by continuity [17, p. 79]. In fact, the two major cases studied in [3, Ch. 3] are related to these
two situations: (i) the values of F' are compact and convex and F' is upper semicontinuous;
and (ii) the values of F' are compact, but not necessarily convex and F' is continuous.

Now we will discuss the issue of uniqueness. Right uniqueness (in Filippov sense) holds
for the differential equation (20) at the point (¢g, x¢), if there exists t; > to such that each two
solutions of this equation satisfying the initial condition z(tg) = x¢ coincide on the interval
[to, t1] or on the interval on which they are both defined. Right uniqueness holds for a domain
D if from each point (¢g,z¢) € D right uniqueness holds.

Not too many uniqueness results are available in the literature. The most useful result
given in [17] is related to the following situation. Let the domain G C R™ be separated by
a smooth surface S into domains G~ and GT. Let f and % be continuous in the domains
G~ and G up to the boundary such that f~(t,z) and f*(¢,x) denote the limit values
of the function f at (t,z), z € S from the regions G~ and G, respectively. We define
h(t,z) = fH(t,x) — f~(t,x) as the discontinuity vector over the surface S. Moreover, let n
be the normal vector to S directed from G~ to G™.

Theorem 8.6 Consider the differential equation (20) with f as above. Let S be a twice con-
tinuously differentiable surface and suppose that the function h is continuously differentiable.
If for each t € (a,b) and each point x € S at least one of the inequalities n™ f~(t,z) > 0
or nT fT(t,x) < 0 (possibly different inequalities for different x and t) is fulfilled, then right
uniqueness holds for (20) in the domain G for t € (a,b) in the sense of Filippov.

As mentioned in [36], the criterion above clearly holds for general nonlinear systems, but
needs to be verified on a point-by-point basis. Alternatively, the result in Section 7.2 is more
straightforward to check as it requires the computation of the determinants of all principal
minors of the transfer function of the underlying linear system, and determine the signs of the
leading Markov parameters. However, that theory is restricted to piecewise linear systems
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and uses a different solution concept. Hence, uniqueness is not proven in the Filippov sense,
but in the forward (or left Zeno free) sense.

The difference between Filippov, forward (or left-Zeno hybrid solutions) and extended
Carathéodory solutions will be discussed in the context of the class of systems for which all
these concepts apply. In particular, we will study

x(t) = Az(t) + Bu(t); y(t) = Cx(t), (24)
in a closed loop with the relay feedback

u(t) = —sgn(y(t)). (25)

Note that in context of Theorem 7.16, we are dealing with the situation in which R = 27
and S = 0. Note also that F, = F}, = F, for such linear relay systems and the corresponding
solution concepts coincide and will be referred to as “Filippov solutions” from now on.

The difference between the forward solutions and Filippov solution is related to Zeno
behaviour and is nicely demonstrated by an example constructed by Filippov [17, p. 116],
which is given by

1 = —ui+ 2u9 (26a)
Lo = —2u] — Ua (26b)
yio= (26¢)
Y2 = T2 (26d)
up = —sgn(yi) (26e)
uy = —sgn(ys) (26f)

This system has besides the zero solution (which is both a Filippov and a forward solution)
an infinite number of other trajectories (being Filippov, but not forward solutions) starting
from the origin. The nonzero solutions leave the origin due to left-accumulations of the relay
switching times and are Filippov solutions, but are not forward solutions. However, Filippov’s
example does not satisfy the conditions for uniqueness given in Section 7.2. Hence, it is not
clear if the conditions in Section 7.2 are sufficient for Filippov uniqueness as well.

2

Figure 2: Trajectory in the phase plane of (26).
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This problem is studied in [34] for the case where (24) is a single-input-single-output
(SISO) system. The theory of Section 7.2 states that the positivity of the leading Markov
parameter H” with H' = CA*"'B, i =1,2,... and p = min{i | H* # 0} implies uniqueness
in forward sense.

Theorem 8.7 [34] Consider the system (24)-(25). The following statements hold for the
relative degree p being 1 or 2.

p =1 The system (24)-(25) has a unique Filippov solution for all initial conditions if and
only if the leading Markov parameter HP is positive.

p =2 The system (24)-(25) has a unique Filippov solution for initial condition x(0) = 0 if
and only if the leading Markov parameter HP is positive.

Moreover, in case H' = CB > 0 Filippov solutions do not have left-accumulations of relay
switching times.

Interestingly, the above theorem presents conditions that exclude particular types of Zeno
behaviour.

Up to this point, one might hope that the positivity of the leading Markov parameter is
also sufficient for Filippov uniqueness for higher relative degrees. However, in [34] a counter-
example is presented of the form (24)-(25) with (24) being a triple integrator. This relay
system has one forward solution (being identically zero) starting in the origin (as expected,
as the leading Markov parameter is positive), but has at least two Filippov solutions of which
one is the zero solution and the other starts with a left-accumulation point of relay switching
times. This example can also be considered in the light of Section 6 in the form

mode 1: &= Az, if y=Cx>0 (27)
mode 2: &= Aoz, if y=Cx<0
with
010 O 01 00
001 0 0010
A= 000 -1 | Ag = 000 1| C=(1000) (28)
000 O 0000

Imura and Van der Schaft [24] use an extended Carathéodory solution concept for this type of
systems and present necessary and sufficient conditions for existence and uniqueness (see also
Section 6). As this solution concept does not allow for sliding modes and left-accumulation
points of event times, the above system does not have any extended Carathéodory solution
starting from the initial state (0,0,0,1)” as can easily be seen (see also Theorem 6.1).

In summary, the triple integrator connected to a (negative) relay forms a nice comparison
between the three mentioned solution concepts; for the system (27) with (28) and zy =
(0,0,0,1)T, there exist [34]

e 1o extended Carathéodory solution,
e one forward solution, and

e infinitely many Filippov solutions.
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For specific applications in discontinuous feedback control the Filippov solution concept
allows trajectories, which are not practically relevant for the stabilization problem at hand.
So-called Euler (or sampling) solutions seem to be more appropriate in this context [12,13].
Also in this case the discontinuous dynamical system is replaced by a differential inclusion
with the difference that a particular choice of the controller is made at the switching surface.
This choice determines which trajectories are actually Euler solutions by forming the limits
of certain numerical integration routines (see [12,13] for more details).

In Section 2.10 of [17] some further results can be found on uniqueness. The most general
result in [17] for uniqueness in the setting of Filippov’s convex definition uses the exclusion
of left-accumulation points as one of the conditions to prove uniqueness. Unfortunately, it is
not clear how such assumptions should be verified. As a consequence, Theorem 8.7 is quite
useful. In [17, Sec. 2.8] one can also find some results on continuous dependence of solutions
on initial data.

9 Summary

Well-posedness problems arise in hybrid systems theory as a consequence of the use of implicit
descriptions and of solution concepts that are based on relaxations. Examples show that
the well-posedness issue is considerably more complex in hybrid systems than in continuous
systems, as a result of a number of factors including the possible presence of sliding modes,
the interaction of guards and invariants, and the occurrence of left or right accumulations
of event times. Description formats that are based on implicit or relaxed specifications are
typically connected to particular subclasses of hybrid systems, and so there is no general
theory of well-posedness of hybrid systems; however, the questions that need to be answered
are similar in each case. This article has surveyed several description formats and solution
concepts that are used for hybrid systems. We have concentrated on well-posedness in the
sense of existence and uniqueness of solutions, without requiring continuous dependence on
initial conditions. A selection of results available in the literature has been presented for the
subclasses of multi-modal linear systems, complementarity systems, and differential equations
with discontinuous right-hand sides.
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