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Abstract

This paper gives an introduction to the field of dynamical complementarity systems. A summary
of their main applications and properties together with connections to other hybrid model classes is
provided. Moreover, the main mathematical tools which allow one to lead studies on complementar-
ity systems are presented briefly. Many examples illustrate the developments. The available results
on modelling, simulation, controllability, observability and stabilization are presented and further
suggestions for reading can be found in this overview.

1 Introduction

In many technical and economic applications one encounters systems of differential equations and in-
equalities. For a quick roundup of examples, one may think of the following: motion of rigid bodies
subject to unilateral constraints; switched electrical networks; optimal control problems with inequality
constraints in the states and/or controls; dynamical systems with piecewise linear characteristics, such as
saturation functions, dead zones, relays, Coulomb friction, and one-sided springs; dynamic versions of
linear and nonlinear programming problems; and dynamic Walrasian economies. In many of these appli-
cations a prominent role is played by a special combination of inequalities, which is similar to the linear
complementarity problem (LCP) [31] of mathematical programming. Coupling such “complementarity
conditions” to differential equations leads to dynamical extensions of the LCP that are called comple-
mentarity systems (CS) [45,92,93]. These systems have already a long history within various application
fields like unilaterally constrained mechanical systems [22, 39, 65, 74, 75, 82, 88]. The main aim of the
current paper is to introduce complementarity systems to readers who are unaware of what they are and
what physical or abstract systems they are able to model, it presents their main features and results, which
have already been obtained in the domain of systems and control theory. It has to be noted that there is a
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considerable inherent complexity in systems of differential equations and inequalities, since nonsmooth
trajectories and possibly jumps have to be taken into account. Actually, the combinations of differential
or difference equations and inequalities gives rise to systems that switch between modes on the basis of
certain inequality constraints and that behave within each mode as ordinary differential systems. This
“multi-modal” way of thinking is natural in a number of applications: in the study of Coulomb friction,
one has the transition between stick mode and slip mode; in the study of electrical networks with ideal
diodes, there is the transition between the conducting and the blocking mode of each diode; and in the
context of dynamic optimization, one has mode transitions when an inactive constraint becomes active,
or vice versa. A similar point of view may be found in the literature on hybrid systems encompassing
both continuous and discrete dynamics, which have recently been a popular subject of study both for
computer scientists and for control theorists. Actually, the class of complementarity systems has con-
nections to various other class of hybrid dynamical models; as shown in [50] in discrete time strong
links exist to piecewise linear and affine systems [96], min-max-plus-scaling systems [34] and mixed
logic dynamic systems [8] and in continuous-time evolutional variational inequalities [41], differential
inclusions , piecewise smooth systems [38], projected dynamical systems [35,84] and so on.

For the previously mentioned classes several system and control theoretic issues such as existence and
uniqueness of solutions (well-posedness), controllability, observability, stability and feedback control are
difficult to settle due to the hybrid behavior. CS have the great advantage of being large enough in terms
of applications, and being small enough in order to allow one to lead deep and complete theoretical
investigations (which is much more difficult for larger classes of hybrid systems). Given the wealth
of possible applications it is of interest to overcome these difficulties. Roughly speaking, what makes
dynamical complementarity systems so specific is that tools from complementarity problems and convex
analysis are at the core of their study. This is clearly not the case for some other classes of hybrid systems.
Moreover, it is important when dealing with CS to keep the right mathematical formalisms in order not
to lose these particular features. This is the message that this paper (see also [22]) tries to transmit.

2 Complementarity Modelling

Since the word complementarity is so important in the context of this paper and the systems under study
are the dynamical extension of it, let us start by introducing some basic tools of complementarity analysis.
Later on we shall see how convex analysis, monotone multi-valued mappings, and other tools interfere
with complementarity.

2.1 Complementarity problems

In mathematical programming a key role is played by a special combination of inequalities and equations
that is called the linear complementarity problem (LCP), which is defined as follows.

Definition 2.1 LCP(q, M): Given an m-vector g and an m x m matrix M find an m-vector A such that

A20; w=qg+MX>0; NTw=0. (1)



The LCP(q, M) can equivalently be written as
0<ALg+MA>o0, (2

where the notation w L A expresses the orthogonality between w and A and the inequalities should be
interpreted componentwise. An interesting generalization of the linear complementarity problem is the
so-called “cone complementarity problem”, which has been mentioned for instance in [31, p. 31]).

Definition 2.2 LCP¢(g, M): Let C be a cone and C* = {z|z"v < 0, Vo € C} its polar cone® [51,91].
Given an m-vector g and an m x m matrix M find an m-vector A such that

ANeC, w=qg+MrxeC; Mg+ M) =0. (3)

We say that the LCP¢(g, M) is solvable if such a A exists. In this case, we also say that A solves (is a
solution of ) LCP¢(q, M). The set of all solutions of LCP¢(q, M) is denoted by SOL¢(g, M). If C = R}
then LCP¢(—g, —M) becomes the ordinary LCP(gq, M) defined in Definition 2.1.

The LCP and its extensions play a key role in many economic and engineering areas [37] and an
extensive literature [31,83] is available on this problem. After introducing its dynamical generalizations
in the next section, we will go into more details of the application areas.

2.2 Complementarity systems

In this paper we focus on a class of nonsmooth dynamical systems, which can one hand be interpreted
as a specific class of hybrid dynamical systems and on the other as a dynamical extension of the LCP
or cone complementarity problem mentioned above. These systems are called complementarity systems
(CS)and can be formulated in a general form by

T = f(z,t,u,\) (4a)
y =((z,u, ) (4b)
C*>w LA €ecC (4c)
glw, \,u,z,t) =0 (4d)
State x re-initialization rule, (4e)

where x € IR" is the state of the system, ¢ is the time, y € IR? is some measurable output signal
available for feedback and specified through the mapping ¢, u € IR is a control signal to be chosen
in some admissible set ¢/, the slack variable A € IR™ and the signal w € IR™ constitute a pair of

In the cone complementarity problem [31, p. 31] one uses the dual cone, which is defined as {z|z7v > 0, Vv € C}.
Note that this is just a matter of convention as LCP¢(—g, —M) would then coincide with the cone complementarity problem
as defined in [31, p. 31].



complementary variables as indicated in (4c), where A(-) is some function. Just as in the definition
of the complementarity problem, the symbol L means that w and A()\) have to be orthogonal. The
cones C and C* = {z|z"v < 0, Vo € C} are a pair of polar convex cones. For a given z, ¢ and u, the
equations (4c)-(4d) generalize the notion of LCP¢(q, M) in definition 2.2 into a nonlinear variant defined
by C and the functions g and A. In fact, even the state re-initialization rule may often be written in a
complementarity framework, as we shall see. The necessity of a state re-initialization rule is obvious if
one considers some of the application domains of CS being constrained mechanical systems (impacts),
switched circuits (“short circuits” and “sparks”), and optimal control problems in which the adjoint
variable may jump. Similar as for smooth systems, to specify a particular trajectory one has to give an
initial time 7 and an initial state z, i.e. z(7y) = zo.

In many applications (and actually most of the examples in the paper) the set C can be taken as the
positive cone R'?. Note that in this case C* = —Ry and hence, we obtain the description (where we
drop the time dependence, and the output equations and added a minus to obtain w € R..)

z = f(z,u,\) (5a)
w = g(z,u,\) (5b)
0<w L A0, (5¢)
State x re-initialization rule. (5d)

Note that the inequalities need to be interpreted componentwise. The system (5) can be considered as
a smooth dynamical system given by (5a)-(6) with a feedback loop between A and w via a non-smooth
nonlinearity (a multivalued mapping) as in Figure 1. More details will be given in sections 4.2.1 and
7.4 on such interconnections (see in particular figure 16. The input » and output y = ¢(z,u, A) are still
free and can be used for control purposes. Moreover, if f and ¢ are linear, we obtain so-called linear
complementarity systems (LCS) [45,92, 93] given by

t = Az + BMA+ Eu (6a)
w = Czr+ DA+ Fu (6b)
0w L A>=0. (6¢)

2.3 A subclass of hybrid dynamical systems

A way to consider CS is to use a hybrid point of view. Indeed, take for instance the system (5). The
conditions (5¢) state that w(2)TA(t) = -1, w;(£)Ai(t) = 0 and consequently, for all times ¢ and for
all = 1,...,m it holds that w;(t) = 0 or \;(¢) = 0. The set of indices I C {1,...,m} for which
w;(t) = 0 at time ¢ is called the mode or active index set. Note that the active index set may change
during the time evolution of the system. The system may therefore switch from one “operation mode” to
another. To define the dynamics of (5) completely, one has to specify what the effect of mode switches
will be on the state variables (which is given partly by the re-initialization rule). The system has 2™
modes. Each mode is characterized by the active index set I C {1,...,m}, which indicates that w; = 0,



w:f(z,u,)\)

w = g(z,u,A)

Figure 1: A multivalued and nonsmooth feedback loop.

1 €1,and \; = 0,1 ¢ I. For each such mode the laws of motion are given by systems of differential and
algebraic equations (DAEs). Specifically, in mode I they are given by

#(t) = flat),u(?),A(?)) (7a)
w(t) = g(z(t),u(t), A)) (7b)
wi(t) = 0,1€l (7c)
Ai(t) = 0,5¢1 (7d)

In this way we get into the realm of multi-modal or hybrid system for which the hybrid automaton
model is a widely accepted unifying modelling framework. In [1] hybrid automata are described as
follows. The discrete part of the dynamics is modelled by means of a graph whose vertices are called
locations, discrete states or modes, and whose edges are transitions. The continuous state takes values
in a vector space R™. For each mode there is a set of trajectories, which are called the activities in [1],
and which represent the continuous dynamics of the system. The “sets of activities” may be compared
to the well-known “behaviors” advocated by J. Willems and they are typically described by differential
or difference algebraic equations like the ones in (7). Interaction between the discrete dynamics (mode
transitions) and the continuous dynamics takes place through invariants and transition relations in which
the latter is sometimes split in a set of guards and reset maps for each transition. Each mode has an
invariant associated to it, which describes the conditions that the continuous state has to satisfy at this
mode. In (5) these are given by the inequalities w;(t) > 0,4 ¢ I and A(¢) > 0, ¢ € I. Each transition
has an associated transition relation, which describes the conditions on the continuous state under which
that particular transition may take place (called the guard) and the effect that the transition will have on
the continuous state (called the reset map). Invariants and transition relations play supplementary roles:
whereas invariants describe when a transition must take place (namely when otherwise the motion of the
continuous state as described in the set of activities would lead to violation of the conditions given by the
invariant), the transition relations (in particular the guards) serve as “enabling conditions” that describe
when a particular transition may take place. Note that in (5) the transition relations consist of the re-
initialization rule and a mapping that will describe which mode has to be selected when the invariant will



be violated.

As we see, CS fit nicely in the description of these hybrid automata (see also [22] for a discussion).
On one hand CS can profit from the theory in this field, but on the other can contribute to the development
of a general hybrid systems theory. Note that the above “hybrid” point of view can be used to define
trajectories of the system, though this is not at all necessary (see [6, 7,62, 87]). However, before we go
into these details of the behavior of CS we will first indicate the application domains and the relations to
other (hybrid) modelling formalisms.

3 Application areas

It is well known that the LCP and its various variations and ramifications have many engineering and
economical applications [31, 37]. These specific combinations of inequalities are found in all kinds of
optimization problems [61], contact problems in mechanics [59, 74], resistive switched electrical cir-
cuits [12, 64], piecewise linear maps [36] and so on. Actually, in [37] one states that “the concept of
complementarity is synonymous with the notion of system equilibrium,” which suggest that the system
itself (so not only the equilibrium) might be described by a dynamical model in which complementarity
plays a role as well. This are exactly the complementarity systems that we have introduced in the pre-
vious sections, which might even be more fascinating to study. Historically, complementarity has been
introduced in optimization by Karush, John, Kuhn and Tucker as early as 19392 [56, 61], in mechan-
ics by Signorini and Moreau in the sixties [74] and in electrical circuit theory by Van Bokhoven [12].
The development of methods based on complementarity, is closely linked to the developments of convex
analysis which have been led in the second part of the twentieth century by Rockafellar [91] (motivated
by optimization) and Moreau [76] (motivated by mechanics). Before going into the details about these
theoretical developments, let us first consider several applications of CS.

3.1 Electrical networks with diodes

A linear electrical network consisting of resistors, capacitors, inductors, gyrators, transformers and of &
ideal diodes is considered [48]. The RLCGT components form a multi-port network, which can under
certain mild conditions be described by a state space representation £ = Az + BA, w = Cz + D) [2]
with state variable z representing for instance, fluxes through the inductors and charges at the capacitors
and input/output variables and A and w representing the port variables connected to the diodes, i.e. A; =
Vi, w; = I; or \; = I;, w; = =V, where V; and I; are the voltage across and current through the i-th
diode, respectively. Finally, the ideal diode characteristics of the i-th diode are given by V; < 0, I; >
0, (V; = 0 or I; = 0). By suitable substitutions the following system description is obtained:

z(t) = Az(t) + BA(t) (8a)
w(t) = Cxz(t) + DA(t) (8b)
0<w(t) L At) >0, (8c)

2The result of W. Karush was never published except as a master thesis of the university of Chichago in 1939.



which is a linear complementarity system (without control inputs). Since (8a)-(8b) is a model for the
RLCGT-multi-port network, (A, B, C, D) satisfies a passivity condition as we will use later (see Sec-
tion 7.3.2). In this framework one could also add pure switches and control inputs to regulate such
switching systems [49]. Examples can be found in the area of power converters.

Let us illustrate these developments with the following simple electrical circuits.
Example 3.1 The circuit on figure 2 (a) has the dynamics:
1 = To
-’izz—%lvz—l-f—%—%ﬂvl 9)
0<AL—29>0

where u denotes the voltage applied to the system, z; is the charge of the capacitor and x- is current
through inductor. A second example is displayed in figure 2 (b) and has the dynamics:

.i‘1=$2+%(A—u+%{L‘1)
iy =+ —u+ &z1) (10)
0< —z2— FA—u+5z1) LA>0

A final circuit is given in figure 2 (c) and leads to the following dynamics:

W ©

Figure 2: Electrical circuits.
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iy = f=z1 + Zu+ 2 (11)

0< ALz 20

One sees that the control input » and the Lagrange multiplier A(-) enter in various places of the dy-
namics in each case. This may not be without consequences on stabilization, controllability, observability
properties.

3.2 Constrained mechanical systems

In mechanics, many fields of application concern multi-body systems with unilateral contacts and fric-
tion. To realize this we only have to look at our everyday environment. For instance, home circuit
breakers are constituted of complex kinematic chains (10-20 bodies) with several (20-30) unilateral con-
tacts and friction. In such mechanisms, the unilaterality and the friction are essential phenomena, which
cannot be disregarded for virtual prototyping. Nuclear plants reactors have cooling bars which are also
subject to such phenomena and may induce very particular (and possibly dangerous) dynamics with
complicated bifurcation phenomena. Some compact discs players possess a stabilization system based
on steel balls constrained to move in a circular rig (a so-called automatic balancing unit). Once again
shocks between the balls and friction are the fundamental physical phenomena that make this mechan-
ical device compensate for the irregularities of the disc. Watches form also nice examples of everyday
devices, which contain complex mechanics inside. Also aerospace (models for planes landing and taking-
off, liquid slosh phenomena in satellites) and automotive applications (clutches, engine dynamics or for
virtual reality applications like virtual mounting and assembly), form a source of numerous impact and
friction problems. Evidently robotics is a vast field of applications, as many robotic tasks involve con-
tact and intermittent motion (drilling, hammering, polishing, and other machining tasks). Among them,
bipedal locomotion is certainly a well-known one, at least from the academic side.

More will be said about mechanical systems in section 7.4 and on Moreau’s work. To give one way
of modelling this type of systems let us take a conservative mechanical system in which ¢ denotes the
generalized coordinates and p the generalized momenta. The free motion dynamics can be expressed in
terms of the Hamiltonian H (g, p), which is the total energy in the system. The equations are

i = %—f(q,p) (12a)
p o= —%—f(q,p) (12b)

with %—H and %—I; denoting partial derivatives. The system is subject to the geometric inequality con-
straints given by h(q) > 0.

Friction effects are not modelled here, despite Coulomb’s characteristic can be recast into a com-
plementarity framework (as all piecewise linear characteristics, in fact). To obtain a complementarity



formulation, we introduce (as in [45,92,93]) the Lagrange multiplier A generating the constraint forces
needed to satisfy the unilateral constraints 4(g) > 0. According to the rules of classical mechanics, the
system can then be written as follows

O0H

i — 2w (134)
- —%—Z@,pqum (13b)
w = hig) (130)

together with the complementarity conditions 0 < wlXA > 0. Note that Vh(q) = g—Z(q). These
conditions express the fact that the Lagrange multiplier A; is only nonzero, if the corresponding constraint
is active (w; = 0). Vice versa, if the constraint is inactive (w; > 0), the corresponding multiplier A; is
zero. One also has to add the impact rules to make the dynamics complete.

Another way to write the dynamics is via the Lagrangian formalism, which is actually the more
useful and used formalism in Mechanics and Control:

M(q)g + F(q,9) = [Vh(9)]" X
0<h(g) LA>0 (14)
Collision mapping

where the vector F'(g, ¢) contains Coriolis, centrifugal and conservative generalized forces. The collision
mapping can be chosen in various ways, as proposed by Moreau [78, 81], Pfeiffer and Glocker [88],
Frémond [39], Stronge [98], etc. Some mappings will be discussed later.

3.3 Optimization and complementarity

It is well-known in mathematical programming, that a necessary and sufficient condition for the opti-
mality of a quadratic program with a positive definite matrix is equivalent to a set of complementarity
conditions by introducing so-called slack variables and applying the Karush-John-Kuhn-Tucker’s (usu-
ally known as the KKT) theorem. In particular, the quadratic optimization problem

Minimize, _jprg” A + AT M subjectto A > 0 (15)

is equivalent to LCP(gq, M) with w the slack variable. [31]- [83, §9.3.1].

Dynamical extensions of this result are also well-known via Pontryagin’s maximum principle, which
was developed in the early sixties [89]. Before showing this connection to CS, we will first go to dynam-
ical version in discrete-time that is directly connected to the classical KKT conditions.

Remark 3.2 Some other links between complementarity and optimization exist as well. For instance,
Moreau introduced complementarity in Lagrangian systems and proved with convex analysis tools that
Gauss’ principle still holds in this case [74,75] (Gauss’ principle of mechanics is a minimization problem
involving the acceleration as the unknown). This was rediscovered by Lddstedt much later [65]. Some
of the material presented in section 5.5 wil also use the link between optimization and complementarity.



3.3.1 Model predictive control and optimal control

The relationship between quadratic programming and linear complementarity problems has the immedi-
ate consequence that the well-known control methodology model predictive control in a linear quadratic
setting leads to closed-loop systems that can be considered as discrete-time complementarity systems.
Indeed, in [11] one studies the control of the discrete-time linear time-invariant system

{ z(k+1) = Az(k)+ Bu(k) (16)
y(k) = Cz(k),
where z(k) € IR", u(k) € IR™, and y(k) € IRP are the state, input, and output vector, respectively.
In particular, one is interested in the problem of tracking the output reference signal r(k) € IRP while

fulfilling the constraints
D1£L‘(k)) + DQ’U/(k) + D3Au(k) <dy (17)

at all time instants £ > 0, where Au(k) := u(k) — u(k — 1) are the increments of the input.
Assume for the moment that a full measurement of the state (k) and the previously implemented

control value z,(k) := u(k — 1) (which might be considered as an additional state) are available at the
current time k. Then, the optimization problem

Ny Ny—1
. ! !
min E €k+t\kQ€k+t\k + E Auy  RAug 4
t=1 t=0

subject to D137k—|—t|k + Dougy¢ + D3Augry < dy, t=0,1,..., N,
Ttk = AZpqgp + Bugtr, £ 20
Ykt = CTppgp, ¢ 20
Ukt = Ugtt—1 + Dugyg, 21
AUk+t = 0, Nu <t < Ny
Ty = o(k), up = u(k — 1) + Auy

(18)

is solved with respect to the column vector U := [Auj,. .. ,AU2+Nu_1]' € IR?, s := mN,, at each time
k, where x4, denotes the predicted state vector at time k + ¢, obtained by applying the input sequence

Uk, - - - Uk+¢—1 t0 Model (16) starting from the state z(k), and €% = Y44k — 7 (k) is the predicted
tracking error®. In (18), we assume that Q = Q' > 0, R = R’ > 0 (“>" denotes matrix positive

definiteness), IV, N,, N, are the output, input, and constraint horizons, respectively, with N,, < N, and
N. < Ny — 1.

The MPC control law is based on the following idea: At time k& compute the optimal solution
U*(k) = [Auf/, ..., Auy, . 1] to problem (18), apply

u(k) = x4 (k) + Auj, (19)

3If the reference is known in advance, one can replace (k) with »(k + t), with a consequent anticipative action of the
resulting MPC controller. Otherwise, we set r(k +t) = r(k) fort > 0.

10



as input to system (16), and repeat the optimization (18) at the next time step k& + 1, based on the new
measured (or estimated) state z(k + 1). Note that

Al = LU*(k), (20)

where Iy := [I,;, 0 ... 0]. By substituting ., = Atz (k) + Z;;B AIBuyq4—1—j in (18), this can be
written as _ - / -
min sU'HU + &' (k)FU + 5¢' (k)Y E(k)
(21)
subjectto GU < W + S¢(k),

where ¢(k) £ [2' (k) z, (k) r'(k)],H=H"»>0,and H, F, Y, G, W, S are easily obtained from (18).

Note that (21) is a quadratic program (QP) depending on the current state z(k), past input z, (k) =
u(k — 1), and reference (k). As the quadratic program can be transformed into an LCP via the KKT
conditions, we can rewrite the closed-loop system as a linear system subject to complementarity relations
as was outlined in [11]. Hence, the analysis of these type of controlled systems comes down to studying
Cs.

3.3.2 Optimal control problems in continuous-time: Pontryagin’s maximum principle

Also in a continuous-time setting complementarity plays a central role. Consider the class of optimal
control problems consisting of maximizing the criterion

T
J (0, u) == /0 (F(w, u, £)|dt + S(z(T), T)

by choosing an appropriate control function « satisfying the control constraints «(t) € U, state constraint
h(z,t) > 0, the dynamics & = f(z,u,t) forall ¢ € [0, 7] and the initial condition z(0) = z .

In the survey paper [42] the application of Pontryagin’s maximum principle [89] to such optimal con-
trol problems results in necessary conditions for a control input to be optimal. Introduce the Hamiltonian
H(z,u,$,t) :== F(z,u,t) + ¢" f(z,u,t). The optimal control u,; satisfies:

Vopt = arg max,H(zopt, u,1) (22a)
. oOH
Topt = %(xopta uoptat)a xopt(o) =T (22b)
- OH onT
b = _a—x(xoptauoptat) - 8_.77 (-Toptat))\ (22C)
= h(@opt, ) (22d)

with complementarity conditions holding between the multiplier A and constraint variables w. The vari-
able ¢ is called the adjoint or costate variable. Note that these equations resemble the Hamiltonian
formulation for unilaterally constrained mechanical systems as in Section 3.2. Equations (22) are com-
pleted by boundary conditions resulting in a two-point boundary problem. For instance, in case of a

11



linear plant & = Az + Bu, quadratic criterion — 1 [/ [z(t)” Qx(t) +u(t)"u(t)]dt with Q positive semi-
definite, constraints & = R™, Cz(t) > 0 and initial condition z(0) = o one obtains u(t) = BT ¢(t)

and
O - @O -6 e

w =[O0 ( ¢) (23b)
0 <wl) >0, (23¢)

which is a linear complementarity system. Note that we have boundary conditions for ¢t = 0 and ¢t =
T. Interestingly, it is possible that jumps occur in the adjoint variable ¢ (which corresponds to “Dirac
pulses” in A). Also for these jumps additional relations are available. We do not specify all the available
conditions, but only would like to illustrate that this kind of optimal control problems fit in the class of
CS.

The general formulation in [42] is called an informal theorem, because the result is not rigorously
established. It might be interesting to see how the study on CS can contribute to settle the difficult issues
that play a role in this challenging field.

For a further overview of connections between optimization and complementarity, see [95].

3.4 Piecewise affine systems

To link the optimal control problem in the previous section to the next application domain of CS being
piecewise affine systems, one can see that first condition in (22) for a constrained set I/ = R’ and a
quadratic criterion gives u,,: = max (0, BT ¢). This is a piecewise linear relationship, that is equivalent
to the complementarity description

0 < Ugpt Lugpr — BT > 0. (24)

In this case additional complementarity conditions would be added to (23). Observe that we have ac-
tually rewritten a simple piecewise linear function as a complementarity model. Before we go to more
general piecewise linearities, let us first consider an application of the max-relation in the piecewise
linear mechanical system below.

Example 3.3 A simple mechanical example is depicted in Figure 3 with mass m, position ¢ and spring
stiffness k. This system is described by

mj = u+A (25a)
w = kqg+ A (25b)
0 < AXlLw>=0. (25c¢)

The equations (25b)-(25c) form a linear complementarity problem. It can easily be seen that this
problem has two characteristics (just as in the physical system) given by:

12



inactive spring : If ¢ > 0, then we have A = 0 and w = kq. This means that we have the “free motion
dynamics” mg = u.

active spring : If ¢ < 0, then it holds that A = —kq and w = 0. Hence, the system evolves according
to mg = u — kq.

Figure 3: Simple mechanical system.

Hence, certain dynamical piecewise linear of affine (PWL or PWA) systems can be recast as CS.
This is in agreement with the combination of the facts that closed-loop MPC systems turned out to be
complementarity systems (cf. Section 3.3.1) and that in [10] it was shown that the closed-loop systems
can also be described by discrete-time piecewise affine systems. As a consequence, the MPC context
indicates that there must be a strong relationship between PWA and (linear) CS in discrete-time. In
the static case the connection between piecewise affine mappings and LCP is already known for a long
time [36]. Also in circuit theory many static piecewise-linear (PL) circuit elements play a role (next
to the ideal diode characteristics of Section 3.1), which were suitably formulated as complementarity
models. Indeed, Kevenaars en Leenaerts (see e.g. [64]) showed that all the explicit piecewise linear
canonical representations proposed by Chua and Kang, Giizelis and Goknar, and Kahlert and Chua used
for PWL circuit elements are all covered by one implicit model based on the LCP. This implicit model
was developed by Van Bokhoven [12].

To give some example consider the rather arbitrary piecewise affine function as given in Figure 4,
which is described by

v=g+mriz+ (re — r1) max(d — a1,0) + (r3 — r2) max(d — a2, 0). (26)
By using the same trick (24) as for rewriting the max-relation, we obtain
v=g+riz+(ro—ri)A + (r3 —7r2)Ae (27)

with 0 < A; — d + a;1L)\; > 0. Having these type of non-smooth functions in a dynamical setting,
e.g. control systems with saturations or dead zones, gives rise to CS. Another dynamical example in this
context are linear relay systems given by

T = Az + Bu (28)
= Cz+ Du (29)
u = —=Signy, (30)
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where sign(a) is a set-valued mapping given by

1, ifa>0
sign(a) = ¢ [-1,1], ifa=0. (31)
-1, ifa <0

See the left picture in Figure 7 for its graph.

v

72
73

| a2
r :
1 o \ P

Figure 4: Piecewise affine function.

It can be verified that this system is equivalent to the following affine complementarity system (e
denotes the column vector with all entries equal to 1 and I the identity matrix):

i = Az+ Be—2BX\° (32a)
w? —Cz — De 2D 1T 2@
(w) = (™) 5) (%) @2
with the complementarity conditions 0 < w®1 X% > 0and 0 < wbLA® > 0.

In the next section we will return to piecewise affine and piecewise smooth systems together with
several other hybrid model classes, which have strong connections to CS.

4 Reélationsto other model classes

There are many different mathematical formalisms which are used for the analysis and control design
of hybrid systems. It is of great interest to investigate the relationships between these models. Let us
provide some preliminary views on this point. Note that in the previous section we have already indicated
strong connections between piecewise linear / affine systems and linear / affine complementarity system.
We will continue along these lines, starting with the discrete-time case.

4.1 Discrete-time linear complementarity systems

In [50] one studied the following hybrid model classes.
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4.1.1 Linear Complementarity (LC) Systems

In view of (33) discrete-time linear complementarity (LC) systems are given by the equations

w(k+1) = Az(k)+ Bu(k) + BoA(k) (33a)
y(k) = Cx(k)+ Diu(k) + DoA(k) (33b)
w(k) = x(k) + Byu(k) + EsA(k) + g4 (33¢)
<SAK) L w(k)> (330)

with w(k), A(k) € R® the complementarity variables. Moreover, the variables u(k) € R™, z(k) € R"
and y(k) € R! denote the input, state and output, respectively, at time & (this notation also holds for the
other hybrid system models that will be introduced).

In [50] one has also formulated so-called extended linear complementarity systems in which not only
products of two terms can be negative as in the orthogonality conditions, but any product of an arbitrary
number of terms.

4.1.2 Piecewise Affine (PWA) Systems

Piecewise affine (PWA) systems [96] are described by

z(k+1) = Ajz(k)+ Biu(k) + fi for [x(k)
y(k) = Ciz(k) + Diu(k) + gi u(k)

where Q; are convex polyhedra (i.e. given by a finite number of linear inequalities) in the input/state
space.

] e 0, (34)

4.1.3 Mixed Logical Dynamical (MLD) Systems

In [8] a class of hybrid systems has been introduced in which logic, dynamics and constraints are inte-
grated. This resulted in the description

sk +1) = Ax(k) + Bru(k) + Byd(k) + Bsz(k) (352)
y(k) = Cz(k) + Dyu(k) + D2d(k) + D3z(k) (35b)
Ell‘(k') + Egu(k') + Egé(k‘) + E4Z(k:) < gs, (35C)

where z(k) = [z,.7 (k) zpT (k)]" with z.(k) € IR™ and zy,(k) € {0,1}™ (y(k) and u(k) have a similar
structure), and where z(k) € IR™ and §(k) € {0,1}"™ are auxiliary variables. The inequalities (35c)
have to be interpreted componentwise. Systems of the form (35) are called mixed logical dynamical
(MLD) systems.
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Figure 5: Graphical representation of the links between the classes of hybrid systems considered in this
paper.

4.1.4 Max-Min-Plus-Scaling (MMPS) Systems

The last discrete-time class that was described in [50] consists of discrete event systems, which can be
modelled using the operations maximization, minimization, addition and scalar multiplication. In this
way they extend the well-known max-plus systems. Expressions that are built using these operations are
called max-min-plus-scaling (MMPS) expressions, e.g. 5z1 —3z2+7+max(min(2z1, —8x3), xo—3x3).

Consider now the MMPS systems, which are described by

2(k +1) = My(z(k), u(k), d(k)) (36)
y(k) = My(z(k), u(k), d(k)) (36b)
M (z(k), ulk), d(k)) < c, (36¢)

where M, M, and M, are MMPS expressions in terms of the components of z(k), the input «(k) and
the auxiliary variables d(k), which are all real-valued.

4.1.5 Equivalences

In Figure 5 the relationships between the classes as derived in [50] are indicated. An arrow going from
class A to class B means that A is a subset of B. Moreover, arrows with a star (x) require conditions
to establish the indicated inclusion. The conditions are related to well-posedness (i.e. existence and
uniqueness of solution trajectories given an initial condition) and boundedness of certain variables. For
all the details on the transformations, consult [50]. To illustrate the results here, we consider an example
taken from [8, 50].
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Example 4.1
0.8z(k) + u(k) if z(k) >0

ok +1) = { —0.8z(k) +u(k)  if 2(k) <0 (37)
with m < z(k) < M. In [8] it is shown that (37) can be written as
z(k+1) = —0.8z(k)+ u(k) + 1.6z(k)
—mé(k) < z(k) —m; z(k) < Mi(k) (38)
z(k) < Mé(k); z(k) > mé(k
z(k) < (k) —m(l —6(k)); z(k) > xz(k) —M(1—6(k))
and the condition 6(k) € {0,1}.
One can verify that (37) can be rewritten as the MMPS model
z(k+1) = —0.8z(k) + 1.6 max (0, z(k)) + u(k) (39)
and as the LC formulation
z(k + 1) = —0.8z(k) + u(k) + 1.6A(k); (40a)
0 < w(k) := —z(k) + A(k) L X(k) > 0. (40b)

Note that the MLD representation (38) requires bounds on z(k), u(k) (although such bounds can be
arbitrarily large). The PWA, MMPS, and LC expressions do not require such a restriction.

4.2 Continuous-time CS

Several interesting links exist also between continuous-time CS and other model classes. Of course,
the dynamical extensions of various problems with relationships to LCP like variational inequalities,
monotone multi-valued mappings and so on, give related dynamical model classes. We will first start a
discussion on these type of (static) problems before we will present a preliminary view on its dynamical
counterparts.

4.2.1 Monotone multi-valued mappings and convex analysis

Let us notice an important fact about the complementarity condition C* > w L A(X) € C. This set of
conditions means that w and A(X) have to be perpendicular, while belonging to C* and C, respectively.
This can be thought of as defining a mapping M ., that associates to each w a set of possible values of
A(X). Let us consider two couples (w1, A1) and (ws, A2) that satisfy the complementarity conditions.
Then the following holds:

<U)1 - U)Q,Al - A2> 2 0 (41)

where (.,.) is the scalar product in IR™. Indeed a straightforward calculation yields (w; — wo, A1 —
Ag) = wh Ay + wEAy — wl Ay — wl'Ay = —wP' Ay — wd' Ay > 0 since the cones C* and C are polar
cones. The inequality in (41) states that M., is @ monotone multi-valued mapping [51,91]. The
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multi-valued feature of M., is easily deduced by noticing that for a given w, there may in general be
an infinity of A which satisfy the complementarity conditions. For instance in the scalar case and with
C=R_:=(oc0,0and C* = Ry = [0,00),0ne gets0 < w L —A > 0. The mapping w — A is
monotone and its graph is the so-called corner law as depicted in figure 6. Another important notion is
the maximality of a monotone operator, which has to be understood in terms of graph inclusion. Roughly
speaking, a monotone operator is maximal if its graph is “completely filled in.” For instance, the graph in
figure 7 (a) is maximal (note that this is the sign-characteristic of (31)), but the graph in the graph figure
7 (b) is not maximal.

Figure 6: The corner law (a multi-valued monotone mapping).

$\bullets

(a) (b)

Figure 7: A maximal and a non-maximal graphs.

Further links exist to convex analysis as the complementarity conditions are closely related to the
subdifferentiation of convex functions. Indeed, from basic convex analysis one obtains the equivalence

0 < ALl w 2 0 < )€ 8¢(R+)m (’LU) (42)

where A and w are m—dimensional vectors. The function ¢ x () is the indicator function of the closed

convex set K, defined as
0 if ze K

YK (T) = (43)
too if z¢ K

and Given a convex function F' : R — R™ its subdifferential 0F (z) at x is defined as
OF(z) ={y € R" [ (y —x,F(y) — F(z)) > (v,y — =) forally € R"}. (44)
Subdifferentiation is a generalization of the notion of a derivative of a function, which applies to convex

functions which may be non-differentiable (in ordinary sense), and may even take infinite values. It can
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also be extended to set-valued mappings. An example in the former cases is the absolute value function
abs : z — |z|, that is subdifferentiable at z = 0 with

-1, ifz <0
dabs(z) = < [-1,1], ifz =0, = signz,
1, ifz >0

and the mapping whose graph is the corner law, is also subdifferentiable.

Computing the subdifferential of the indicator, leads to the set-valued (being a convex cone for any
x) given by
Mk (z) = Ng(z), (45)
where
Ni(z) ={v| (v,w—2) <0 forall ve K} (46)

is the normal cone [51,91] to K at z. Outside K one defines Nk (z) = 0y x(z) := .

Convex functions taking infinite values like the indicator function, have been introduced by Moreau
in relation with unilateral constrained mechanics (the reader may think of 4 x (z) as a potential function
associated with non-penetration of the “position” z outside the domain K). See [76] and [91] for details.
Examples in the plane are depicted on figure 8. In unilaterally constrained mechanics, this means that the
contact force should be zero in the interior of K, and should belong to the normal cone when the system
is on the boundary of K.

K
Viz) V(x)
K
m
T
Nk(e Nk (z)

Figure 8: Normal and tangent cones (cf. (94) below for a definition of a tangent cone).
¢From the above relationships between the various static problems, we can now discuss the related

dynamical systems for which we start from a closed convex set K.

e Evolution variational inequalities (EV1) are dynamical systems of the form:
(z+ f(t,z),v—z) >0 forall ve K 47)

EVI may represent the dynamics of various systems like oligopolistic markets [84], and some
electrical circuits [41].
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e By definition of a normal cone (46), we directly obtain from (47) the differential inclusion (DI)

T+ f(t,z) € —Nk(z) (48)

In case f(t,z) = 0 and K = K (t,x), the equations turn into the Sweeping Process as defined by
Moreau [62, 77]. Let us note that having a varying set K complicates the analysis a lot, but may
be necessary in some control applications (see [22, remark 6] and [41, remark 2]).

e Incase K is given by {z € R" | h(z) > 0} with A : R* — R* convex and real-analytic, it can be
shown [46] that
Ni(z) = { Y [Vhi(z)]" i | X < 0}
i€J(x)
and J(z) = {j | h;j(x) = 0} the active constraint set at z. Hence, this means that we can obtain
the complementarity system (CS) specified by

&+ f(t,z) = Vh(=z)A (49a)
= h(z) (49b)
0<A L w>0 (49c)

e In [46] it has been shown that under some mild conditions the CS (49) is equivalent to the projected
dynamical system (PDS) [35, 84] given by

T = HK(‘Ta_f(tam))a (50)
where
g (z,v) = lim Picla + ) = :v’ (51)
—0 )
and Pg the projection operator that assigns to each vector = in R™ the vector in K that is closest
to z in the Euclidean norm || - || (i.e. Pxx = arg min, ||z — k||). These systems are used for

studying the behavior of oligopolistic markets, urban transportation networks, traffic networks,
international trade, and agricultural and energy markets (spatial price equilibria) [35, 84].

e Since we saw the relationship (42) we arrive from (49) at the differential inclusion (DI) given by
&+ f(t,z) = 0Pk (z) (52)

by using the differential rule 0y x(z) = Vh(z)0ywry (h(z)) of convex analysis [91, Theorem
23.9]. Since Y (zr) = Ngk(x), we see that we arrived at (48) again by following the route as
outlined.

Remark 4.2 The DI € —0|z|, which models a mass subject to Coulomb friction, cannot be written as
an EVI asin (47). Indeed this would imply that the set 9|z is equal to the cone Nk (z) forall z € K and
for a certain closed convex set K. However, clearly 9|z| is not a cone for £ = 0 since 0|0| = [—1, 1].
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Remark 4.3 Measure Differential Equations (MDE) are dynamical systems of the form (¢) = f(x(¢),u(t))
if ¢ # t, z(t)) = g(z(ty) if t = t,. The instants ¢4, & > 0, may be constant or may depend on z(t).
There is some resemblance between MDEs and complementarity systems whose trajectories are com-
posed of “free-motion” paths separated by isolated state jumps. For mechanical systems this corresponds

to having h(q(t)) > 0 for all ¢ # ¢, and tx4; — tx > ¢ for some 6 > 0. Such systems are sometimes
called vibro-impact systems (especially in the Russian literature). Though the analytical tools (e.g. for
stability studies) that are developed for MDEs may sometimes be used for “vibro-impact” CS, in general
this is by far not the case.

Just as for the discrete-time case where we consider the connection between LC systems and PWA
systems, we would like to state a similar result for continuous-time piecewise smooth system (PSS). Note
that some kind of PSS was obtained from CS by using a multi-modal or hybrid point of view as given in
Section 2.3. However, one has to notice that often one does not include the possibility of discontinuities
in the state trajectory in a PWA or PSS framework. Moreover, one normally assumes that the smooth
submodels of a PWA system or a PSS live on a part of the state space which has a non-trivial interior,
while smooth phases of CS (5) given by the differential algebraic equations (7) are defined on lower-
dimensional subspaces of the total space due to the presence of the algebraic equations. For instance,
the constrained motion of a robot arm that is in contact with its environment looses two degrees of
freedom (the relative distance between environment and arm and the corresponding velocity are zero).
This is also nicely illustrated by the two-carts example below, where the constrained motion evolves on
a 2-dimensional space, while the system has a 4-dimensional state space.

42.2 FromPSStoCS

Consider the following example with four smooth regimes valid in their own part of the state space
specified by certain inequalities.

fi1(z), whenhyi(z) >0, ha(z) >0

b fio(z), whenhi(z) <0, ha(z) <0 (53)
f01($), when h1 (l‘) < 0, h2(.’L‘) <0
foo(z), whenhi(z) <0, ho(z) <0

This can be rewritten as

T = MAaf11(z) + A (1 = A2) fro + (1 — A1) Aafor (@) + (1 — A1) (1 — A2) foo(w) (54)

with A; € §+ 3sign(h;i(z)). Hence, we obtain (again) a differential inclusion. As these type of sign-
characteristics can easily be transformed into complementarity conditions (see (32)), this shows how
to transform PSS to CS. Note that the right-hand side of (54) is a set-valued function at the separating
boundaries as one is allowed to take any convex combination of the vector fields in the neighboring
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regions. In this manner the solution concept complies with Filippov’s convex definition as presented
in [38]. In a similar way one can also use Utkin’s equivalent control definition to define the “sliding
behavior” at the switching surface.

4.3 From linear complementarity systems to piecewise linear systems

To show the connection between continuous-time LC systems and PWL systems we consider the bimodal
linear complementarity system (LCS)

z=Az+ b+ eu (55a)
w=clz+d\ (55h)
0<w L A>0, (55c¢)

where A € R**" b e R™¥ c e R*™*1, d € R, and 0 # e € R**1,

We assume that either d > 0 or (d = 0 and ¢T'b > 0). Under this assumption guarantees that for
each input u € £, and initial state =y (with ¢’y > 0 in case d = 0), there exists a unique (absolutely)
continuous state trajectory z with z(0) = z, and a unique pair (\,w) € £37" such that the equations
(55) hold almost everywhere. For a treatment of the well-posedness of LCSs with external inputs, we
refer to [25, 26, 49].

The complementarity conditions (55c) imply that either A or w is zero at (almost) each time instant
(see Section (2.3)). As a consequence, this gives a system with two modes, i.e. a bimodal system. Indeed,
to see the bimodal structure more explicitly, consider first the case d > 0. Then, one can rewrite (55) as

. Az + eu if Tz >0,
&= _ (56)
(A—bd 'z +eu ifclz <O0.
For the case d = 0 and ¢’'b > 0, one can rewrite (55) as
. JAz+eu if (T'z,cT Az + cTeu) 3= 0, 57)
| P(Az +eu) ifcTz=0and T Az + cTeu < 0.

where P = T — b(c"b)~!cT. Indeed, the mode w = ¢’z = 0 yields by differentiating that ¢’ Az +
c'b) + ceu = 0. Hence, one can solve X as a function of = and « and by proper substitutions one
gets the result above. Note that this illustrates the remark made earlier that within a mode the state
variable z might ‘live’ on a lower-dimensional subspace (in (57) on the (n — 1)-dimensional subspace
{z | "'z = 0}) and actually if the linear system has higher relative degree (d = 0,c¢”b = 0), then also
resets of the state variable are necessary as for instance in the two-carts systems studied below. This is a
distinctive feature of CS, which is hardly studied in the framework of PWL systems. The material in this
section provides a preliminary answer to the problem OP 4 in [22].
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4.3.1 Insummary

The above clearly indicates the various relationships that exist between complementarity systems and
other description formats, which are summarized by Figure 9.

LCS, dissipativeLCS

mechanical, electrical

ems

Figure 9: Some links between various formalisms.

5 Dynamicsand well-posedness

In Section 2.3 we have already introduced a hybrid point of view for considering CS. This observation
can be used to define solution concepts for CS. Similarly, one can use the connections to differential
inclusions to come up with more classical solution concepts. We will give some possibilities to define
the notion of trajectories after giving an example in the next section.

5.1 Dynamics

To illustrate the dynamical behavior of complementarity systems, we start by a simple example.

5.1.1 Two-carts system

Let us illustrate the dynamics of CS by an example consisting of two carts as depicted in Figure 10 as
was used also in [45,92]. The carts are connect by a spring and the left cart is attached to a wall by a
spring. Moreover, the motion of the left cart is constrained by a completely inelastic stop.
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Figure 10: Two-carts system.

For simplicity, the masses of the carts and the spring constants are set equal to 1. The stop is placed
at the equilibrium position of the left cart. By z1, xo we denote the deviations of the left and right
cart, respectively, from their equilibrium positions and z3, x4 are the velocities of the left and right cart,
respectively. By A, we denote the reaction force exerted by the stop. Furthermore, the variable w is set
equal to x1. Simple mechanical laws lead to the dynamical relations

t1(t) = z3(t),

Bo(t) = za(t),

z3(t) = —2z1(t) + z2(t) + A(t), (58)
$4(t) = z1(t) — 22(2),

w(t) = z1(t)

To model the stop in this setting, the following reasoning applies. The variable w(t) = z1(¢) should
be nonnegative because it is the position of the left cart with respect to the stop. The force exerted by
the stop can act only in the positive direction implying that A(¢) should be nonnegative. If the left cart
is not at the stop at time ¢ (w(¢) > 0), the reaction force vanishes at time ¢, i.e., A(¢) = 0. Similarly, if
A(t) > 0, the cart must necessarily be at the stop, i.e., w(t) = 0. This is expressed by the conditions

0 < w(t)LA®) > 0. (59)

The system consists of two modes: the unconstrained mode (A(¢) = 0) and the constrained mode (w(t)
0). The dynamics of these modes are given by the following differential and algebraic equations:

unconstrained
o1(t) = z3(t)

constrained

Zo(t) = z4(t) Zo(t) = za(t)
z3(t) = —2z1(t) + z2(t) z3(t) = —2x1(t) + z2(t) + A(2)
Z4(t) = z1(t) + z2(t) Z4(t) = z1(t) + z2(t)
z(t) =0 w(t) = z1(t) =

Remark 5.1 Note that the unconstrained mode is directly stated as an ordinary differential equation
(ODE) in the state variable z. However, the constrained mode is a differential algebraic equation (DAE)
(of high index) as the variable X is not explicit. Since w = z1 = 0 in this mode, also «w = 0 holds, which
yields 3 = 0. Similarly, we must have that @ = 0, which leads to —2x1 + z2 + A = 0. Hence, we have
A = —x9. By substituting this in the DAE of the constrained mode, we obtain 1 = 23 = 0 and &2 = 2
(note that the constrained mode has a state variable (z3,z4)” of dimension 2.) Hence, by differentiating
the variable w, we can rewrite the DAE as an ODE.
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When the system is represented by either of these modes, the triple (A, z, w) is given by the corre-
sponding dynamics as long as the following inequalities in (59):

unconstrained constrained
w(t) =z1(t) 20 A(t) = —z2(t) 2 0

are satisfied. A change of mode is triggered by violation of one of these inequalities and during a
transition from the unconstrained to the constrained mode we assume that the re-initialization rule is
inelastic, i.e. 3 := 0. The mode transitions that are possible for the two-carts systems are described
below.

e Unconstrained — constrained. The inequality w(¢) > 0 tends to be violated at a time instant
t = 7. The left cart hits the stop and stays there. The velocity of the left cart is reduced to
zero instantaneously at the time of impact: the kinetic energy of the left cart is totally absorbed
by the stop due to a purely inelastic collision. A state for which this happens is, for instance,
z(1) = (0,-1,-1,0)T.

e Constrained — unconstrained. The inequality A(t) = —z2(¢) > 0 tends to be violated at ¢t = 7.
The right cart is located at or moving to the right of its equilibrium position, so the spring between
the carts is stretched and pulls the left cart away from the stop. This happens, for example, if
z(1) = (0,0,0,1)T".

e Unconstrained — unconstrained with re-initialization according to constrained mode. The
inequality w(t) > 0 tends to be violated at t = 7. As an example, consider z(7) = (0,1, —1,0)7".
At the time of impact, the velocity of the left cart is reduced to zero just as in the first case. Hence,
a state reset (re-initialization) to (0, 1,0,0)% occurs. The right cart is at the right of its equilibrium
position and pulls the left cart away from the stop. Stated differently, from (0,1,0,0)” smooth
continuation in the unconstrained mode is possible.

This last transition is a special one in the sense that, first, the constrained mode is active, causing the
corresponding state reset. After the reset, no smooth continuation is possible in the constrained mode
resulting in a second mode change back to the unconstrained mode.

A possible trajectory is given in Figure 11 for initial state
zo=e 40 —1 —10)T ~ (0.3202, —0.4335,0.3716, —1.0915)”
on the interval [0.3]
Note the complementarity between A (denoted by “u” in the figure) and w = z; and the discontinuity

in the derivative of z; attime ¢t = 1.

5.2 Solution concepts

For complementarity systems one may develop several solution concepts (see [47]), which may be sim-
ilar to the notion of an execution for hybrid automata [54], or to the solution concept for differential
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Figure 11: Solution trajectory of two-carts system.

inclusions as used for differential equations with discontinuous right-hand sides [38]. A solution concept
of the first type can for instance be formulated as follows.

Definition 5.2 Aset £ C R, is called an admissible event times set, if it is closed and countable, and
0 € £. To each admissible event times set £, we associate a collection of intervals between events
TE = {(tl,tQ) C R+ | t1,to € EU {OO} and (tl,tQ) nNé = @}.

Note that both left and right accumulations® of event times are allowed by the above definition.

Definition 5.3 [25] A quadruple (€, A, z, w) where £ is an admissible event times set, and (A, z, w) :
R, — R™"+™ js said to be a hybrid solution of the autonomous CS

w = h(z, )
0<wLlA>0

with initial state zo, if (0) = z, = is continuous on Ry and the following conditions hold for each
T E Tg!

1. The triple (A, z,w)|, is real-analytic.

2. Forall ¢t € 7, it holds that

i(t) = f(z(t), A(t))
w(t) = h(z(t), A(t))
0<w(t) LA{t) >0

4An element ¢ of a set £ is said to be a left (right) accumulation point if forall ¢/ > ¢ (¢’ < t) (t,') N E ((¢',t) N E) is not
empty.
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Figure 12: Trajectory in the phase plane with initial state (5,5)7".

The occurrence of accumulation points in the event times set of a solution trajectory is a particular
instance of Zeno behavior (an infinite number of events in a finite length time-interval). Let us consider
some complementarity systems in which this phenomenon shows up.

Example 5.4 (Time-reversed Filippov’s example) Consider a time-reversed version of a system stud-
ied by Filippov [38, p. 116] (mentioned also in [66]), i.e.

1 = —sign(zy) + 2sign(z29) (61a)
Ty = —2sign(zy) — sign(zs), (61b)

that can be written as a linear complementarity system as seen before (see (32)). Solutions of this
piecewise constant system are spiraling towards the origin, which is an equilibrium. Since %(|x1(t)| +
|z2(t)|) = —2, when z(t) # 0, solutions reach the origin in finite time. See Figure 12 for a trajectory.
However, solutions cannot arrive at the origin without going through an infinite number of mode transi-
tions (relay switches). Since these mode switches occur in a finite time interval, the event times contain a
right-accumulation point (i.e. the time that the solution reaches the origin) after which the solution stays
at zero.

Example 5.5 (Filippov’s original example) The time-reverse of (61) (which is the original example
in [38]) given by

1 = sign(zy) — 2sign(z2) (62a)
o = 2sign(zy) + sign(zs), (62b)
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has the zero trajectory starting in the origin. For a trajectory in the phase plane, see Figure 12. Note that
the trajectories now move away from the origin. From this it can be seen that there are (infinitely many)
solutions corresponding to initial state z, = 0 starting up with a left accumulation point. See Figure 13
for a time-trajectory.

time

Figure 13: A sample trajectory of Filippov’s example.
In this respect we can use the following terminology.

Definition 5.6 An admissible event times set £ is said to be left (right) Zeno free if it does not contain any
left (right) accumulation points. A hybrid solution® is said to be left (right) Zeno free if the corresponding
event times set is left (right) Zeno free. It is said to be left (right) Zeno if it is not left (right) Zeno free,
and non-Zeno if it is both left and right Zeno free.

Note that if a left-Zeno free solution concept is used for Filippov’s example, there is well-posedness:
existence and uniqueness of solutions given an initial condition. However, if a general hybrid solution
concept (including the possibility of left-accumulations in the event times set) is used then the system
is not well-posed as we have non-determinism (non-uniqueness). As one could have expected, the well-
posedness issue will depend strongly on the notion of solutions.

Definition 5.3 requires that the state 2 of a solution trajectory is continuous across events. For
so-called “high-index” systems (e.g. constrained mechanical systems as the two-carts example), this re-
quirement is too strong and, as noted before, one has to add jump rules that connect continuous states
before and after an event has taken place. The solution concept can then be generalized by intercon-
necting the continuous state x just before and after the event via these re-initialization rules. For linear

SWe assume that (£, A, z, w) is nonredundant, i.e. there does not exist a¢ € € and ',t" with ' < ¢ < " such that
(A, z,w) is analytic on (¢, "), i.e. there are no void event times in £.
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complementarity systems a general jump rule has been proposed in [45]. In this study the issue of ir-
regular initial states had to be tackled, i.e., the initial states for which there is no solution in the senses
defined so far for complementarity systems. A distributional framework was used to obtain a new solu-
tion concept for LCS [45]. In principle, this framework is based on so-called Bohl distributions of the
form A(t) = Y30 A1) 4 A, (t), where § is the delta or Dirac distribution (supported at 0), §() is
the 4-th derivative of J and A4 is a Bohl function. These distributions can equivalently be characterized
by the inverse Laplace transforms of rational functions. A Bohl distribution (A, z, w) is called an initial
solution for initial state g, if it satisfies £ = Az + BA + z¢d; w = Cx + DX as equalities of distri-
butions, there exists an I C {1,...,m} withw; = 0,7 € Iand \; = 0,7 ¢ I and finally, the Laplace
transforms satisfy (o) > 0 and A(o) > 0 for all sufficiently large o. In case (A(), z(t), w(t)) is an
ordinary function these conditions mean that the system’s equations (6) are satisfied on an interval of the
form [0, ¢) for some ¢ > 0. In case the initial solution is not a function, the impulsive part of A(¢) will
result in a state jump from z to z* := zo + 3, A“’BA~". Particularly, in [45] it is shown that the above
re-initialization procedure corresponds for linear mechanical systems with unilateral constraints to the
inelastic jump rule as proposed by Moreau. Moreover, in some cases the jump of the state variable can
be made more explicit in terms of the linear projection operator onto the consistent subspace of the new
mode along a jump space [45].

Example 5.7 Reconsider the two-carts example. From state z(7) = (0, -1, —1,0)T, we can enter the
constrained mode by starting with an instantaneous reset to z(7+) = (0, —1,0,0)7. This reset can be
modelled as the result of a (Dirac) pulse § exerted by the stop. In fact, A = § results in the state jump
z(t+) — z(7) = (0,0,1,0)T. This motivates the use of distributional theory as a suitable mathematical
framework for describing physical phenomena such as collisions with discontinuities in the state vector
as is done for instance in [45].

Let us consider another Zeno example including re-initialization maps.

Example 5.8 (Bouncing ball) Consider a ball (height of ball is ) with dynamics & = —g and constraint
x > 0. To complete the model we include Newton’s restitution rule z(7+) = —es(7—) when z(7—) =
Oand z(7—) < 0 (0 < e < 1). Incase z(t—) = &(7—) = 0, the dynamics are equal to Z = 0 due to the
constraint z > 0. The event times {7; };cn are related through (see [17, p.346]) 7o = 0 and

2¢'%(0
Ti+1 =T + ez( ),iEN

assuming that z(0) = 0 and £(0) > 0. Hence, {7; };en has a finite limit equal to 7* = @ < 00. Since

the continuous state (z(t), z(¢)) converges to (0,0) when ¢ T 7* a continuation beyond 7* can be defined
by (z(t),z(t)) = (0,0) for ¢ > 7*. The physical interpretation is that the ball is at rest within a finite
time span, but after infinitely many bounces.

An alternative concept that foregoes explicit mention of events is the following one, which is closer
to the solution concept used for differential inclusions. The notion turns out to be convenient for com-
plementarity systems that satisfy a certain passivity condition.

Definition 5.9 A triple (A, z,w) € L**"*™ is said to be an Ly-solution of (60) on the interval [0, T
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with initial condition z if for almost all ¢ € [0, T'] the following conditions hold:

x(t)

t
z0 + /0 £(2(s), \(s)) ds

w(t) = h(z(t), A(t))
0 < w(t) L A(¢) >0.

5.3 Well-posedness

Well-posedness roughly means that solutions exist and are unique for any given initial condition. If
solutions exist and are unique, a given system description defines a mapping from initial conditions to
trajectories. In the theory of smooth dynamical systems, it is usually taken as part of the definition of
well-posedness that this mapping is continuous with respect to suitably chosen topologies. This may be
a too strong requirement for hybrid systems and complementarity systems in particular as we will see by
Example (5.11) below.

5.4 Illlustrative examples

By adopting a hybrid solution concept as in Definition 5.3 non-uniqueness of solution trajectories can
occur as shown by Filippov’s example. Here some other examples are in order.

5.4.1 Non-existence and non-uniqueness of trajectories

Example 5.10 Consider the following simple LCS

i o= —z4 A (63a)
= -\ (63b)
0 < wlA>0 (63¢)

Note that this system is equivalent to

— whenz > 0
g={ vz (64)
0, when z > 0,
which leads to non-existence of solutions for z(0) = —1 and to non-uniqueness when z(0) = 1.

Other examples concerning mechanical systems can be found in [6], inspired by the well-known
Bressan’s counter-example (see e.g. [17, §2.2.3]).
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5.4.2 Discontinuous dependence on initial conditions

The requirement that solutions depend continuously on initial data, may be important for control. For
instance, the Krasovskii-LaSalle invariance lemma, heavily relies on this property. It is therefore crucial
to check, when dealing with hybrid systems, that solutions are indeed continuous with respect to initial
conditions. This may, however, not always be the case, as is well-known for mechanical systems with
impacts [6,17]. Let us consider a concrete example:

Example 5.11 [45] Consider the two-carts system of Section 5.1.1 extended with a hook. See Figure 14.

X, X,

— NS

Figure 14: Two-carts system with hook.

The complementarity description is given by

1(t) = wx3(t),

To(t) = z4(?),

563(15) = —2:171(t) + 5132(75) + Al(t) + /\Q(t),
Ta(t) = z1(t) — 22(t) — A2(2),

wi(t) = z1(),

wo(t) = z1(t) — z2(2),

where A1, Ao denote the reaction forces exerted by the stop and hook, respectively. These equations are
completed by the complementarity conditions and the inelastic impact rule. Taking

10 0 0 2 -1 1 0
w=(o)e=(oa)ie=(5 0 )ir=(h 5) @

leads to a description of the form

M{(t) + Dg(t) + Kq(t) = ET\. (66a)
w = Eq(t) (66b)
Moreau’s impact rule (66¢)

where Moreau’s rule is defined in (93). This LCS displays the fact that the solutions of linear comple-
mentarity systems do not always depend continuously on the initial state. The discontinuous dependence
is caused by the sensitivity of solutions to the order in which constraints become active. Consider the
initial states zo(¢) = (e,¢, —2,1)T, € > 0. For e = 0 the solution is a jump to (0,0, 0,0)7, after which
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the system stays at rest in its equilibrium position. For e > 0, first the hook becomes active, resulting
in ajump to (e, ¢, —%, —%)T. This is followed by a regular continuation in the hook-constrained mode
until the left cart hits the stop. The state just before the impact is (0,0, — 3 + g(e), —3 + g(¢)) for some
continuous function g(e) with g(0) = 0. Re-initialization yields the new state (0,0,0, — 3 + g(¢))?,
which converges to (0,0,0,—%)7 if € | 0. Obviously, the system has a discontinuity in (0,0, —2,1).
One may also note that the sequence of initial states zo(¢) = (0,—¢,—2,1), ¢ > 0, leads after two
re-initializations for | 0 to the limit state (0, 0, %, %). This alternative limit corresponds to a situation
in which first the stop-constrained and then the hook-constrained mode is active.

In [47] an overview is given of available well-posedness results for complementarity systems. Here
we just recall a few interesting results just to give you the flavor of them.

5.5 Linear passive complementarity systems

Consider an (input-free) LCS given by

@ Az + B\ (67a)
w Cz + DX (67b)
0<w L A0 (67¢)

with (4, B, C, D) passive or dissipative with respect to the supply rate 7w (in the sense of [101]).

Definition 5.12 [101] A system (A, B, C, D) given by (67a)-(67b) is called passive, or dissipative with
respect to the supply rate \T'w, if there exists a nonnegative function v : R® — R, , (a storage function),
such that for all ¢, < #; and all time functions (u,z,y) € LET"*(ty,1,) satisfying (67a)-(67b) the
following inequality holds:

t1

V(z(to)) + t M Qw(t)dt > V(zt)).

The above inequality is called the dissipation inequality. The storage function represents a notion of
“stored energy” in the system.

Proposition 5.13 [101] Consider a system (A, B, C, D) in which (A, B, C) is a minimal® representa-
tion. The following statements are equivalent.

e (A,B,C,D) is passive.

e The transfer matrix G(s) := C(sZ — A)~'B + D is positive real’, i.e., z*[G(\) + G*(A)]z > 0
for all complex vectors z and all A € C such that Re A > 0 and X is not an eigenvalue of A.

®This means that (4, B) is controllable and (C, A) observable.
"The * denotes conjugate transpose of vectors and matrices.
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e The linear matrix inequalities

~ATK - KA —KB+CT
( ~B'K+C  D+D' )/0 (682)
and
K=K'>0 (68b)

have a solution K.

Moreover, in case (A, B, C, D) is passive, all solutions to (68) are positive definite (i.e., (68b) holds with
strict inequality) and a symmetric K is a solution to (68) if and only if V (z) = %zTK:c defines a storage
function of the system (A, B, C, D).

Systems of the form (67) satisfying a passivity condition are called linear passive complementarity
system (LPCS) [26,48]. Note that this case occurs typically for electrical circuits containing ideal diodes
discussed in Section 3.1.

Theorem 5.14 [25] Consider a LCS(A, B, C, D) with (A, B,C, D) being passive, (A, B, C) being
minimal and col(B, D+ D7) := ( D +BDT ) of full column rank. Let Qp = {z | z solves LCP(0, D)}.
There exists a hybrid solution of LCS(A, B, C, D) with the initial state zo on [0,00) if and only if
Czo € —Q% = {v | vI'z > Oforallz € Qp}. Moreover, if a solution exists it is unique® and
left Zeno free.

As outlined in [26, 48] this can be extended to include all initial states. The initial states for which
Cxo ¢ —Q7, are “inconsistent states” as a re-initialization will happen from these points [26, 48] (even
with input signals) by following the discussion on Section 5.2. It was shown in [26] that the jump rules
are given as a cone complementarity problem, quite similar in their structure to what Moreau proposed
for mechanical systems [78], see the Sections 7.4 and (97).

Theorem 5.15 Consider a LCS(A4, B, C, D) with (A, B, C, D) being passive, (4, B, C) being minimal

and col(B,D + D7) := D fDT of full column rank. Let Qp = {z | z solves LCP(0, D)}.
Define Q := SOL(0,D) and let if form with Q* a pair of polar cones. Consider initial state zy with
Czo ¢ —Q%. Then a re-initialization occurs to the state z+ := zo + BA" according to the following

equivalent characterizations.

(i) The multiplier A is the unique solution of the cone complementarity problem

Q3\L —Czy—CBX€ Q% (69)

8]t can also be shown that this solution is unique in L.
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(ii) The cone Qp isequal to {Nyu | p > 0} and Q% = {v | NTv < 0} for some real matrix N. The
multiplier A> = N with mu a solution to the LCP

v=NTCzy+ N'CKCTNp (70a)
0<v Llu>=0. (70b)

(iii) The re-initialized state =T is the unique minimizer of

Minimize 1[p — zo]" K[p — ) (71a)
subject to Cp € — 97, (71b)

where K is any solution to (68) and thus V' (z) = %a:TKa: is a storage function for (4, B, C, D).
(iv) The jump multiplier A° is the unique minimizer of

Minimize 3(zo + Bv)" K (z + Bv) (72a)
Subjecttov € Qp (72b)

Just as outlined in Section 5.2 these jump rules are based on a distributional framework in which
Dirac pulses can occur in the currents and voltages (representing “sparks”). For passive LCS without
inputs there are only jumps at the initial time ¢ = 0. After that there is a hybrid solution with a continuous
state trajectory meaning that Cz(t) € —Q3, for all ¢ > 0. Note that this gives existence and uniqueness
of solutions on [0, co) for all arbitrary initial conditions, which is called global well-posedness.

There are some nice physical interpretations for the two optimization problems. Statement (iii) ex-
presses the fact that among the admissible re-initialized states p (admissible in the sense that smooth
continuation is possible after the reset, i.e. Cp € —Q7,) the nearest one is chosen in the sense of the
metric defined by any arbitrary storage function corresponding to (A, B, C, D). The quadratic program
in (iv) states that the jump multiplier A" satisfies the complementarity conditions (i.e., A € Qp) and
minimizes the internal energy (expressed by the storage function %mTKJ:) after the jump. Note that
zo + B0 is the re-initialized state. Under the assumption of z* — zy € imB, it can be shown that the
two optimization problems are actually each other’s dual (see e.g. page 117 in [31]).

We will see later that these conditions can be used to establish stability of these type of systems.

5.6 Initial, local and global well-posedness

In the previous section we derived conditions that imply so-called global well-posedness, i.e. the exis-
tence and uniqueness of a solution on the interval [0, c0) for any initial condition. Depending on the
interval on which solutions exist, we can now distinguish between two other types of well-posedness;
local well-posedness implies the existence and uniqueness of solution trajectories on an interval of the
form [0, ) for some ¢ > 0 for all initial conditions and initial well-posedness means the existence and
uniqueness of an initial solution (see Section 5.2) given arbitrary initial condition z(0) = z. Loosely,
speaking this means that for each initial state there is the possibility of either a (unique) re-initialization
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or a (unique) smooth continuation. In the terminology of hybrid automata [54], initial well-posedness is
equivalent to the LCS being non-blocking and deterministic.

We present now three results on initial, local and global well-posedness of LCS.

5.6.1 Initial well-posedness

For the LCS(A4, B, C, D) the rational matrices G(s) and Q(s) are defined by C(sZ — A)~'B + D and
Q(s) =C(sT - A) L.

Theorem 5.16 [44]
LCS(A4, B, C, D) is initially well-posed if and only if for all zo LCP(Q(o)zo, G(o)) is uniquely solvable
for sufficiently large o € R.

The strength of this theorem is that dynamical properties of an LCS are coupled to properties of
families of static LCPs, for which a wealth of existence and uniqueness are available [31]. For instance,
a sufficient condition [31]) for initial well-posedness is G(o) being a P-matrix® for sufficiently large o.

Clearly, initial well-posedness does not imply local existence of solutions as in principle, an infinite
number of re-initializations (jumps) may occur on one time-instance without “time progressing.” This
phenomenon is sometimes called “live-lock.” However, sufficient conditions for local well-posedness
have been provided for LCS [45,92], as presented next.

5.6.2 Local well-posedness

Consider the LCS(A, B, C, D) as in (67) with Markov parameters H® = D, H' = CB, H?> = CAB,
H? = CA?B, etc. and define the leading row and column indices by

nj = inf{i | Hi; # 0}, p; = inf{i | Hj, #0}, (73

where j € {1,...,k} and inf & := oo. The leading row coefficient matrix M and leading column
coefficient matrix A are then given for finite leading row and column indices by

HY,
M = : and N := (H} ... H})
HP*

%A matrix M € R™*™ s called a P-matrix, if all its principal minors detM;; > 0 forall I C {1,...,m}.
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5.6.3 Global well-posedness for bimodal LCS

Theorem 5.17 [45] If the leading column coefficient matrix A/ and the leading row coefficient matrix
M are both defined and P-matrices, then LCS(A, B, C, D) has a unique local left Zeno free solution on
an interval of the form [0, ) for some € > 0. Moreover, after at most one state re-initialization a smooth
continuation exists.

Theorem 5.18 Consider a bimodal LCS(A4, B, C, D) with' C # 0. The following statements are equiv-
alent.

1. The leading Markov parameter M = A is defined (i.e. p1 = 71 < oo) and positive.
2. The linear complementarity system (6) is locally well-posed.

3. The linear complementarity system (6) is globally well-posed.

For further work on well-posedness for complementarity systems, see [47] and the references therein.

5.7 Mechanical systems

Fundamental results have been obtained by Ballard [6, 7] and Stewart [97], se also Paoli and Schatzman
[87]. The review paper [97] is worth reading. The most general result in the frictionless case is in [6]. It
is proved that if all the data are piecewise analytic, then uniqueness and existence of a solution with ¢(-)
an absolutely continuous function, and ¢(-) a right-continuous function of bounded variation (RCLBV),
are assured. In [97] the same is shown for the so-called Painlevé example. The fact that ¢(-) € RCLBV
is fundamental in view of stability studies, see section 7.4. The analyticity conditions required in [6, 7]
also guarantee that solutions are right Zeno-free (see definition 5.6).

Remark 5.19 Where does the analyticity condition comes from? Intuitively, this is easy to understand.
The counter-examples for uniqueness all consider the system at rest on 9, and with an external force
that mimics the acceleration with a right-accumulation of impacts. Then two solutions are possible:
detachment with a right accumulation of impacts, or rest on 9. If this force is locally analytic, and if
all derivatives () (5") = 0, then it is impossible to get 2 (7;") > 0 for some i while 2 (") = 0 for
all j < ¢ (which is a necessary condition for take off). For detachment to occur, one has to force h(¢) not
to be equal to its Taylor series, which means that it cannot be analytic. Analyticity forces the solution to
remain stuck on 0.

The fact that velocities are of local bounded variation (in short, LBV), is quite fundamental in view of
analysis for control, and control design. In particular quadratic functions of LBV functions are still LBV,

©Note that C = 0 is a degenerate and uninteresting case, since the complementarity conditions do not involve the state
vector z. Any quadruple (A, z, w) with A(t) a solution to LCP(0, D) for all ¢ and satisfying (67a)-(67b) is a solution to (67).
It can easily be seen that for a scalar D, LCP(0, D) has a unique solution if and only if D # 0.
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derivatives of LBV functions are particular measures whose primitive is the LBV function, LBV func-
tions possess a countable set of discontinuities, LBV functions whose measure-derivative has a negative
density with respect to some positive measure are decreasing functions, etc.

6 Simulation

Simulation and numerical problems are not the topic of this paper. However, since any control design
needs some numerical simulation for verifying the synthesis, it is worth recalling some basic facts about
the numerical simulation of complementarity systems. The reader may have a look at the survey paper
[21] which focuses on mechanical systems, or at [17, §5.6] for a brief summary. The work in [53] may
also be consulted with benefit. Mainly, the reader should keep in mind that at the date of writing of this
paper, there exist almost no commercially available software packages that incorporates all the specific
features of complementarity systems (robust treatment of accumulations of events like impacts, LCP
solvers, treatment of discontinuities with respect to initial conditions, etc). Simulations are therefore
usually performed with self-developed codes, and only the simplest systems are simulated. Or, one is led
to adopt drastic simplifications. Another commonly used trick is to penalize the model, i.e. to replace the
unilateral constraints by some “stiff” constraints. This is sometimes also called “smoothing.” However,
such a procedure often leads to bad results, though it looks at first glance a convenient way to solve
the problem since the penalized dynamics take the form of a piecewise smooth system. Moreover, it
is often desirable to keep the discontinuities in the model. For instance, the discontinuity of the relay
characteristic that models Coulomb friction, should often be kept since it does represent the important
physical effect of “stick” that is not taken into account if the model is regularized.

6.1 Event-driven simulation

Event-driven algorithms of numerical simulation, are based on the simple idea of integration between
“event” and the application of algebraic conditions when an event occurs. Hence, this complies directly
with the hybrid point of view as in Section 2.3. More generally, a strict definition of hybrid dynamical
systems can be found in [94]. In complementarity dynamics as in (4) one may distinguish between two
types of events: those with a state re-initialization, and those involving only a mode transition: a change
in the vector field f(-) structure due to a new A (a bounded function of z, u, ¢ computed from some
complementarity problem). The routine consists for (5) of repetitive cycles of

1. DAE simulation: by standard integration routines compute a solution to the (7) for the currently
active mode I;

2. event detection: determine the event time at which the inequalities w;(¢) > 0,,7 ¢ I and \;(t) > 0,
i € I get violated, say at time 7 and state z(7—);

3. re-initialization: calculate the re-initialized state just after the event z(7+) (note that it is not
excluded that multiple resets are required);
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4. mode selection: determine the new active set I that will be active on the next time interval starting
at time 7 with state z(7+) and go back to “DAE-simulation” again.

6.2 Time-stepping

The time-stepping schemes are based on a time-discretization of the whole dynamics, i.e. of the differen-
tial equation and of the complementarity and state jump rules. The first schemes developed along these
lines, have been proposed by Moreau [80] in relation with the numerical simulation of the sweeping pro-
cess [62]. Other contributions have been made in [87] and [3]. The advantages of such schemes is that
they do not require the calculation of the event times. Evidently this holds provided that a convergence
proof has been derived. However, time-stepping schemes lend themselves for such theoretical proofs,
much better than event-driven ones. Other schemes have been developed for electrical circuits [26], with
convergence proofs. A drawback of time-stepping schemes may be their low order which precludes very
accurate results during free motion phases. However the low order seems to be a direct and unavoidable
consequence of the nonsmoothness. This means that they may be much more reliable than event-driven
schemes, if “hard” events occur (like events accumulations, multiple events), because they guarantee that
the global behavior is the right one. Also in the context of sampled-data control these methods might be
a promising way to go.

6.3 Smoothing

Smoothing is a known technique in mechanics and optimization. In the framework of (4) it consists of
replacing some complementarity conditions by a regularized version of it that approaches it when a regu-
larization parameter goes to infinity. For instance, in case of a sign-characteristic x — sign z, a suitable
regularization might look like z — tanhnz. Though this appears to many as a miraculous solution which
solves in one shot all the complicated problems that arise with unilaterality and complementarity, reality
is more subtle as stiff differential equations have to be solved which might yield unreliable results or
are computationally very demanding. To say nothing on physical parameters estimation which may be a
hard task in practice.

7 Analysis

For the analysis of controllability, observability and stability it has to be noted that all the ingredients in
(4) play a role. The state jJumps are important phenomena, but the complementarity conditions and their
interconnection with the vector field f(-) are fundamental as well.
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7.1 Controllability

The controllability issue is crucial in control systems for understanding to what extend we can influence
the system and hence, what can be achieved by (feedback) control. It is important to observe that CS can
in general not live at the whole state space R™, but only on a subset of it. This subset is specified by the
admissible states as introduced next.

To simplify the definition we consider a system (4) that is time-invariant (i.e. the time dependence of
the functions f and g is absent).

Definition 7.1 A state x is called admissible (4), if there exists an € > 0 and a control input u €
[0,€) ~ R such that there exists a solution (A, z,w) on the interval [0, ¢) for initial state 2(0) = zo.
The set of all admissible states is denoted by @

Just as for well-posedness, there is, of course, a relationship between the nature of the considered
solutions and the controllability properties. Also the set of admissible inputs should be sufficiently
friendly.

Definition 7.2 (Controllability) The CS (5) is controllable, if for any pair of states z 1,z € @, there ex-
ists an admissible input » defined on [0, T°], such that the corresponding state trajectory ¢ — z(t,0, z1, u)
with z(0) = z; satisfies z(T+,0,z1,u) = x9.

We assume for the moment that the origin lies in the admissible set ®.

Definition 7.3 Consider a CS given by (5) We say that a state o € ® is reachable (from the origin), if
there exists an admissible input « defined on [0, 7], such that the state trajectory ¢ — z(¢,0,0,u) with
z(0) = 0 satisfies z(T+,0,0,u) = z2. The set of reachable states is denoted by R. Similarly, we call
a state z; € ® controllable (to the origin), if there exists an admissible input » defined on [0, 7], such
that the state trajectory ¢t — x(t,0,z1,u) with z(0) = z; satisfies z(T+,0,z1,u) = 0. The set of
controllable states is denoted by C.

To show the diversity of situations that arise in CS we start off by some simple linear or affine
complementarity systems with state dimension 1 to indicate the problems that might occur.

Example 7.4 Consider the example

T = u+A (74a)
= x (74b)
0 < 2z1A>0 (74c)

of which the admissible set  is given by R, . Since

) u, whenz >0
€Tr =
0, when{z =0andu < 0}.
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it can be easily be seen that the system is controllable. This example illustrates the need of the admissible
states set @ as it would not make sense to require for controllability that there should be control input
that steers the state from z; > 0to z9 < 0.

Example 7.5 The system

T = —z+A
w = z+At+u
0<w L A0
can be rewritten as
N e whenz +u > 0
316_{—230—11, whenz +u < 0

or more compactly as £ = —z +max(0, —z —u). Note that & = R™. Itiseasily seenthat R =R, C =
—R; and thus the system is uncontrollable. However, the slightly modified system given by

T = —T+A+tu
w = T+
0<w L A0
or
. )—z+wu, whenz2>0
x_{—2$+u, when z < 0.
is controllable, which can be most easily seen by feedback linearizing the system by applying the

switched feedback
v, whenz > 0

u =
z+v, whenz <0

which leads to the linear system & = —x + v that is obviously controllable.

Note that the feedback linearization of the last example in (7.5) can always be applied to LC systems
of that form and state dimension one, where the complementarity variable w is not influenced by u, but
the differential equation is. However, for LC systems with state dimension two this argument is only
valid in particular cases. Fortunately, some work has been done for the case of state dimension 2 in [28].
Consider the LCS (55) with n = 2, (¢, A) is observable, and d > 0, i.e., the piecewise linear system
(56) with n = 2.

Theorem 7.6 Consider the system (55) with n = 2, (cT, A) is observable, and d > 0. It is controllable
if and only if
ffAe. fT(A—bd e > 0. (75)

holds where f is such that f7e = 0 and f # 0.

Another result which applies to planar systems but with d = 0 in (55) can be found in [24]. It relies
on the study of what happens on the boundary 4K of the set K = {z|c’z > 0}. The complementarity
conditions are shown to play a major role for the controllability properties in this setting. Some other
examples are in order now to show some tricky issues for systems with impact maps and affine CS.
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Example 7.7 Consider the following simple mechanical system

1 = T (76)

Ty = u+A (77)

z = @ (78)

0 < zLA>0 (79)

with reset map at z; = 0 given by zy(t+) = —exzo(t—). Note that the admissible set @ is equal to

{z € R? | z; > 0}. For e = 0 the system is not controllable as it is impossible to reach states z € R?
with z; = 0 and zo > 0 (unless you start initially at these points). In case e € (0,1] this system is
controllable. This immediately shows the influence of the reset map on these type of questions.

Example 7.8 Lete > 0 be given and formulate then the following affine complementarity system (ACS)

P o= u4A (80)
= zT—¢ (81)
< zlA>0. (82)

The admissible set @ is given by {(z, )T | 2 > €}.

) u, whenz >0
xr =
0, when{z =0andu < 0}.

This system is accessible, but not controllable as & > e prevents you from steering the state to other
states with smaller z-values.

7.1.1 Controllability results for jugglers

Jugglers are a sub-class of complementarity Lagrangian mechanical systems which can be written as

follows:
( Z.l = fl(zlata A)

ZIQ = fQ(ZQ,’U,,A)
g (83)
0<w=h(g,q) LA>0

 Collision rule

with zZT = (qiT,qiT) € IR™. Examples of mechanical jugglers are running biped robots, hoppers,
controlled structures, manipulators with dynamic passive environment, systems with dynamic backlash
or liquid slosh phenomena [69], tethered satellites [60], etc. The analysis and control of jugglers have
been investigated in [18, 23, 68, 103, 104]. It is apparent from (83) that the canonical form of jugglers is
not controllable if A = 0. The z;—dynamics can be controlled only through A, either with collisions,
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or during periods of motion where h(q1,q2) = 0. However since X is signed and is not the available
input signal, controllability and control are harder to solve. The reachable subspaces may be defined in a
natural manner, considering the paths that consist of the values of the positions and velocities, at impact
times [23]. Then when both the vector fields f1(-) and fo(-) in (83) are linear, it is possible to derive a
constrained equation of the form

A(w, z;)zp + B(z) =0
(84)
C(w,z)zf + D(w,z) >0

whose solvability is equivalent to having the final state reachable from the initial one, and w is an inter-
mediate input used in the analysis, z; is the initial state, z is the final state. The matrices A(-), B(-), C(-)
and D(-) have a strong structure which allows one to derive some conditions for controllability [23].

The results in [68] concern the characterization of the reachable subspaces for a planar juggler, and
a control for the stabilization of trajectories is proposed. Experimental results corroborate the theory.

The examples and theorems above indicate the diversity of the difficulties one might encounter when
studying controllability for these type of hybrid systems. This area is widely open and the answers
seem to be quite involved as is also evidenced by the proof of Theorem 7.6. In the case of discrete-time
piecewise affine systems [9], or piecewise linear continuous-time systems [63,99] some results might be
found, but in general it is far from complete.

7.2 Observability
7.2.1 Definition

To define the concept of observability we slightly adapted the observability definition in [85] which could
be used for any rather arbitrary complementarity system.

Definition 7.9 (Observability) Two states z; and x5 in ® are said to be indistinguishable, if for every
admissible input function u the output function ¢ — y(t,to,z1,u), t > to of the CS for initial state
z(to) = x1 and the output function ¢ — y(¢, %0, x2,u) t > to of the CS for initial state z(tg) = z2 are
identical on their common domain of definition. The system is called observable, if there do not exist
1 € ® and 2o € ® with 27 # x5 and indistinguishable.

Some approaches for observer design and analysis of observability for piecewise linear systems are
around in the literature (see e.g. [9,57] and the references therein). For Lur’e type of systems (see
e.g. [58]) observer design has been considered in [4]. Here we present some results for simple mechanical
systems.
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7.2.2 Simple mechanical systems

Pioneering works have been published in [72,73]. The aim is not to derive conditions on observability, but
to design asymptotically stable observers. A two-degree-of-freedom system is considered in [73] (this
is an impacting pair that may model dynamic backlash [69], and whose dynamics fits within jugglers
dynamics in (83)). The measured output is assumed to be y(¢) = g2(t). Similarly as for controllability
and stabilization, observing the state z1 can be achieved only through the impacts. We will not elaborate
on the observer construction, but let us rather focus on a quite interesting comment in [73]. The dynamics
is given by

((miGi(t) = A — A2

mada(t) = Ao — A1 + u(t)
g ¥(t) = () (85)

0<w=h(gi,q) LA>0

L d(t)) = Ea(ty)

92 —q1
where h(q1, =
(41, 2) ( @2—q—1

restitution matrix £ is function of the restitution coefficient e € [0, 1] and of the masses. Consider that
u(t) = 1, with initial data g2(0) = ¢1(0 = 41,0 < ¢1(07) — ¢2(0") < /2. Then the following holds

{ z(tl—ci_—f—l) = Al(Azz(t;:) + BQ) + B;

), A= ( :\\1 ) and t; generically denotes the impact times. The
2

(86)
y(ty) = Cz(ty)

which can be thought of as a Poincaré map with Poincaré section £+ = {(q,4)|k(q1,q2) = 0, Vh(q1,q2)" ¢ >
0} (this is called an impact Poincaré map). The matrices A; and B; take into account the impact condi-
tions, while the matrices A, and Bo come from the continuous part of the dynamics. The pair (Ao, C) is

not observable, but the pair (41 Ag, C) is observable. This nicely indicates that impacts may render the
system observable from the output g2(%).

7.3 Stability

Stability issues are of utmost importance for control applications. It is in fact well-known that a comple-
mentarity system can be stable (resp. unstable) while the corresponding unconstrained system is unstable
(resp. stable), see e.g. [84, Example 3.2] and [41]. Hence, as is well-known also for piecewise smooth
systems [14], stability of the submodels (7) does in general not say anything about stability of the overall
system. Some studies can be based on the use of common or multiple Lyapunov functions [14] and in
the field of piecewise linear systems one has approached based on quadratic and piecewise quadratic
Lyapunov functions [55]. However, in these approaches situations including state re-initializations or the
fact that the dynamics associated with some modes live on lower dimensional subspaces are hardly stud-
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ied. Here we will present some preliminary work in this direction within the context of complementarity
systems.

7.3.1 Bimodal planar linear complementarity systems

In this section, we will start by presenting some first results dealing with linear complementarity systems
(without external input u) of the form

i = Az + b\ (87a)
w=clz+d\ (87b)
0<ALw>0 (87c)

where A € R™" b € R"*!, ¢ € R**!,and d € R. As usual, the system (87) is said to be asymptotically
stable (with equilibrium 0) if all possible state trajectories z satisfy lim; ,o, z(f) = 0. A solution
(A, z, w) of the system is called periodic if all three functions are periodic.

Remark 7.10 Normally, one also includes Lyapunov stability in the definition of asymptotic stability.
Due to the structure of the system, we get Lyapunov stability for free in case we have asymptotic stability
as defined above. Moreover, in that case we even have global exponential stability and asymptotic
Lyapunov stability (see, e.g., [58] for the exact definitions).

Note that (87) is replaced by

Az ifc’'z >0
= ’ 88
’ {(A —bd )z ifcfz <0 (88)

bl

if d > 0 and by'*

(89)

Az if (cTz,cT Az) = 0,
PAz ifcfz=0and ¢TAz 0.

where P =T — b(c'b)~tc! in case d = 0 and cb > 0. Compare this to (56) and (57)

When the state space dimension (i.e., n) is 2, one can derive necessary and sufficient conditions as
in the following theorem.

Theorem 7.11 [28] Consider the LCS (87) with n = 2 and (¢, A) is an observable pair. The following

statements hold.

1. Suppose that d > 0. The LCS (87) is asymptotically stable if and only if

(a) neither A nor A —bd~'c” has a real nonnegative eigenvalue, and

1The notation 3= denotes lexicographic ordering, i.e. for this case either cTx > 0 or ¢z = 0 and ¢ Az > 0.
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(b) if both A and A—bd~c! have nonreal eigenvalues then o1 /wi + o2 /we < 0 where o1 +iw;
(w1 > 0) are the eigenvalues of A and o5 +iws (we > 0) are the eigenvalues of A —bd—1c”.

2. Suppose that d > 0. The LCS (87) has a nonconstant periodic solution if and only if both A and
A—bd~ ' have nonreal eigenvalues, and 01 /w1 +02/wa = 0 Where o £iw; are the eigenvalues
of A and oy + iwy are the eigenvalues of A — bd~'cT. Moreover, if there is one periodic solution,
then all other solutions are also periodic and 7 /w1 + m/ws is the period of any solution (except
the zero trajectory).

3. Suppose that d = 0. The LCS (87) is asymptotically stable if and only if A has no real nonnegative
eigenvalue and [T — b(c'b)~1cT]A has a real negative eigenvalue (note that one eigenvalue is
already zero).

In [28] one also presented some necessary conditions for stability and controllability for higher order
(n > 2) bimodal linear complementarity systems. In [41] the Lyapunov stability of a class of evolution
variational inequalities as in (47) is studied and several stability criteria are given. It is shown that adding
constraints on the “free” system may drastically modify its stability.

7.3.2 Linear passive complementarity systems and the passivity theorem

It is known that passivity / dissipativity is a powerful tool for stability analysis. It turns out that this is
also the case for nonsmooth complementarity systems. In this section we are going to deal with systems
which possess a structure as in figure 15. This class of systems (a linear transfer function in negative
feedback connection with a multi-valued static nonlinearity) has been studied in [20, 26, 66]. Note also
that we have studied the well-posedness of linear passive complementarity systems in Section 5.5, which
also fit in this context.

Q G(s)

A_IJ
Y

I

> |-

Figure 15: Absolute stability with monotone multi-valued mappings.

G(s) is a positive real transfer function, and the operator y — g, is maximal monotone [91]. As an
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example let us consider the linear passive complementarity system as in (67) with D =0

= Az + B
z=Cx . (90)
0<zLA>0

In this case the feedback loop contains the so-called corner law which is the graph of the operator
—z + . Basic convex analysis tells us that 0 < z L X > 0 is equivalent to —\ € J0vr_ (2), and
the corner law is precisely the graph of this subdifferential. Of course, any other operator can be used,
provided it is monotone (maximality is related to well-posedness rather than to stability).

Remark 7.12 The work in [66] concentrated on the well-posedness issues of relay feedback (i.e. y €
d|y| = sign y in figure 15. The class of transfer functions G(s) considered in [66] is larger than positive
real systems only (note that there one uses a left-Zeno free solution concept instead of a notion of solution
based on differential inclusions like in [33, 38] allowing left-accumulation points; the influence of this
choice is discussed in [90].)

Let us for the moment fix our attention on the dynamics that correspond to Figure 15, and which can

be rewritten as a6
z = Az — Byr

y=Cxzx (91)

yr € 0p(y)

where y,y;, € IR™, x € IR™ and a.e. means almost everywhere in the Lebesgue measure. Let us make
the following assumptions:

a) G(s) = C(sI — A) !B, with (4, B,C) a minimal representation, is a strictly positive real (SPR)
transfer matrix meaning that (68) leads to the existence of positive definite matrices P = P and
Q = Q" such that PA + ATP = —Q and BT P = C [67]. Moreover, CA~'B + BT A-TCT is
negative definite.

b) ¢ : R™ — IR U {400} is convex lower semicontinuous, so that d¢ is a maximal monotone
multi-valued mapping (see e.g. [15, example 2.3.4]).

Then the following is true:

Lemma 7.13 [20] Let assumptions a) and b) hold. If Cz(0) € dom d¢y, then the system in (91) has
a unique absolutely continuous solution on [0, +o00). Assume also that the graph of d¢ contains (0, 0).
Then: i) z = 0 is the unique solution of the generalized equilibrium equation Az € Bdyp(Cxz) ii) The
unique fixed point z = 0 of the system in (91) is exponentially stable.
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In the particular case of the system in (91), the proof can also be found in [26]. In [26] one does
not allow only continuous solutions, but also allows the possibility of state re-initializations. The cor-
responding jump rules are derived in Section 5.5 and were based on a distributional framework. Indeed
it is apparent from Lemma 7.13 that initial states which do not satisfy the indicated constraint, have to
jump instantaneously to some consistent value. Moreover, [26] also included the case (67) with D # 0
(and even allows external inputs in the study of well-posedness).

Lemma 7.14 A state z is an equilibrium point of (67), if and only if there exist X and w € R* satisfying

0 = Az + B (92a)
w = Cz+ DX (92b)
o<w L X>0, (92¢)

Moreover, if A is invertible, then we obtain the homogeneous LCP that characterizes all equilibria

T=-A"'Bxand0 < [-CA™'B + D]ALX > 0.

Note that these equations comply with the generalized equilibrium equation Az € Bdgp(Cz) in
Lemma 7.13. From Lemma 7.14 it follows that Z = 0 is an equilibrium.

Theorem 7.15 [26] Consider an LCS given by (67) such that (A, B,C, D) is passive, (4, B,C) is
minimal and col(B, D + D7) := ( D fDT ) has full column rank. This LCS has only Lyapunov

stable equilibrium points z. Moreover, if ATK + KA < 0 holds with strict inequality in (68), then
Z = 01is the only equilibrium point, which is asymptotically stable. The jumps as in Theorem 5.15 satisfy
V(zt) < V(zg) with V(z) = 27 Kz an arbitrary storage function obtained by (68).

Note that the results in this section extend the passivity theorems that are formulated for the abso-
lutely stability problems for Lur’e systems [58]. More general versions of the results presented here in
the direction of inclusion of pure switches and external inputs (voltage and current sources) have been
obtained in [49].

7.4 Stabilization of complementarity Lagrangian systems

The so-called Lagrange-Dirichlet theorem in mechanics, states that a mechanical system as in (99) whose
potential energy is strictly convex, has an equilibrium point that is Lyapunov stable. This result has been
used in control by suitably modifying the potential energy (shaping it) so that a desired equilibrium is
stabilized (see e.g. [67]). The question is: how does this extend to dynamics as in (14)? First of all let us
add to (14) an impact law defined as [81]

q(tf) = —eq(ty) + (1 + e)ProXas(gqe, ld(ty ), V(a(te))] (93)
where e € [0, 1] is a restitution coefficient. The set V' (¢(tx)) is a tangent cone and it is defined as [81]

V(z) ={v € R" | v"Vhi(z) >0, Vie J(x)} (94)
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with J(z) = {i € {1,...,m} | hi(z) < 0}, see figure 8 for examples in the plane. The “prox” in (93)

i(th)+ed(ty ciy
means that the vector %ﬁ(k) has to be chosen as the closest vector to ¢(t, ), in V(q(tx)). The

distance is understood in the kinetic metric, i.e. it is defined from the scalar product 7 M (q(t))y for
two vectors x and y. The link with quadratic programming is easily done.

It is necessary at this stage, to recall that the solutions of the dynamical system in (14)-(93) have
right-continuous velocities of local bounded variation (RCLBV) [7]. This has important consequences,
as derivatives of RCLBV functions may be complex objects, but are assured to be measures. In other
words, the acceleration ¢ is a measure, and quadratic functions of g are also RCLBV. Thus their derivative
is also a measure. Since measures are signed (a Dirac measure is signed — it may be positive or negative —
), itis meaningful to assign a sign to the derivative of a RCLBYV function and one knows that its primitive
is a function which is increasing or decreasing according to its measure-derivative sign. Consequently,
having ¢ € RC LBV places us in a rather nice framework for stability analysis with quadratic Lyapunov
functions. A fundamental result of [6] is that under piecewise real-analycity of all data, 4 is the sum of
two measures: an atomic measure dp,, (representing the acceleration at impacts), and a measure {g(t) }dt
where {g(t)} is Lebesgue integrable. One should be aware of the fact that the measure du,, can be quite
complex, in the sense that its support may by far not merely consists of a sequence {¢;}4> of ordered
times. As we shall see considering measure derivatives and their densities instead of the usual derivatives,
paves the way towards a generalization of the second method of Lyapunov in hybrid systems theory.

Before stating the lemma it is useful to recall that the dynamics in (14) can be rewritten as a differ-
ential inclusion as follows

M(Q)q + F(qa q‘, t) € —3¢¢ (Q) (95)

with @ = {g|h(q) > 0}. It becomes quite useful and powerful now to introduce another inclusion, called
Moreau’s measure differential inclusion [81], which uses the cone 0%y (4()) (w(t)) instead of 0vps (g) in
the right-hand-side of (95), with w(t) = ) ¢ 5V (q(#)) and g(t) = g(0) + J¢ v(s)ds OV (")
denotes the boundary of the tangent cone in (94)). The interest for this manipulation which yields the
inclusion

M(q)dv + F(gq,v,t) € —0%y (q)) (w(t)) (96)

is that (96) encompasses in one shot both continuous (without impacts) and discontinuous motion. More-
over there is a very nice dissipativity interpretation to this. Indeed the operator ¢ — w(t) where & and
w(t) satisfy the cone complementarity problem [31]

Na(q) 2 0Py gy (w(t)) > & L w(t) € V(g) (97)

is a passive operator (in a convex analysis language, this is a maximal monotone operator [91]), because
the cones V' (q) and Ng(q) are polar cones (the reader may compare (97) with (69)). It follows that
Moreau’s measure inclusion has the interpretation in figure 16 [20], which is well-known in control
theory and exactly matches the absolute stability framework developed in the mid twentieth century by
the Russian school. This representation is valid for all times, including impact times. It has strong
mathematical and mechanical bases [74, 75,78, 81].

The next result follows

Lemma 7.16 [20] Consider a mechanical system as in (14) and (93) and denote its smooth potential
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Lagrangian w(t)

©—> dynamics

Y

€ € Iy (g)(w(?)) w(t) € V(q(t))

Figure 16: Unilaterally constrained Lagrangian system.

energy as U(q). Then if ¥s(q) + U(g) has a strict minimum at go, the equilibrium point (go,0) is
Lyapunov stable.

The proof is based on the use of the energy function

V(q(t),4(t)) = %C}(t)TM(CI(t))CI('t) + s (q(t)) + Ulq(t)) — Ulqo) (98)

and calculating its derivative (characterized as the density of a measure with respect to the measure
dt + du, as given above) along solutions of the inclusion (96).

Remark 7.17 The reader may notice a direct similarity between this result, and what is presented in sec-
tion 7.3.2. This shows that the material presented by Moreau in the framework of nonsmooth mechanics
in [81] [78] relies on a solid analytical ground and lends itself to extensions to other types of dynamical
systems. The key point is the design of state re-initialization rules which can be expressed as polar cones
complementarity problems as in (97).

Remark 7.18 In a general setting, one should be aware of the fact that the state re-initialisation mapping
in (4e) cannot be chosen arbitrarily. If the system is a physical system then it has to satisfy some physical
coherence, like energy dissipation in Mechanics. But this is not sufficient. Consider for instance two
bodies moving on a line and which collide. Newton’s law tells us that linear momentum is conserved
at the impact time. A dissipative impact law implying that the two bodies stop after the shock for any
pre-impact velocity, surely is meaningles and will lead to contradiction and bad-posed dynamics.
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8 Control

In the previous section we have already seen a stabilization problem. In this section we will present
some other control approaches to CS, which lie in the mechanical domain. Of course, one might think of
other approaches. One of them is the use of passification techniques and relying on the stability theory
derived in Section 7.3.2. Indeed, if a controller can be found that makes the transfer matrix between the
maximally monotone nonlinearity (e.g. the complementarity conditions) (strictly) positive real, stability
has been realized. Another approach can be based on using the time-stepping methods (see Section 6) to
convert a continuous-time linear complementarity system into a discrete-time version, which turns out to
be equivalent to a mixed logical dynamical system as in Section 4.1.3. As various control algorithms have
been proposed for this class of hybrid models [8], these become applicable. Studies are still necessary to
get better insight in the real potential of the latter idea.

8.1 Tracking control for complementarity Lagrangian systems

The problem of tracking control for unconstrained and bilaterally constrained Lagrangian systems, has
been solved [67, 70]. The extension towards complementarity Lagrangian systems is not trivial, and a
solution is described now.

8.1.1 Problem statement

The tracking control problem for unconstrained fully actuated Lagrangian systems

M(q)d+ C(q,9)g + g(q) = u (99)

has been given various solutions (among them let us cite the computed torque algorithm, the Paden and
Panja, Slotine and Li schemes [67]). The extension towards bilaterally constrained systems

M(q)d+ C(q,9)g + g(q) = v+ Vh(g)X
(100)

h(g) =0

where X is the Lagrange multiplier representing the contact force, has been achieved by McClamroch and
Wang [70], and Yoshikawa [102]. It essentially relies on a suitable generalized coordinate transforma-
tion, which allows one to apply the “free-motion” schemes on a reduced-order subsystem (the “tangent
dynamics” to the constraint surface {g|h(q) = 0}). In both cases, the stability analysis relies on the
choice of a Lyapunov function V' (g, q, t), where § = q — qq is the tracking error, g4(-) is the desired tra-
jectory. It is shown that the closed-loop fixed point (g, (j) = (0,0) is globally uniformly asymptotically
stable. The central question which arises now in the body of this paper is: can we extend tracking control
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to complementarity Lagrangian systems as in (101)?
M(q)d+ C(g,9)d + 9(q) = u + Vh(g)A
0<h(g) LA>0 (101)
Collision rule: ¢(t;) = Fi(4(t;))

In fact, bringing an answer to such a question, implies first to be more accurate and rigorous on the
objective of the control task. Indeed a task involving impacts, flight phases and contact phases, may
take various forms. This may be a hammer-like task (a succession of impacts with no permanent contact
phase as we shall see in section 8.2), this can be a bouncing-ball-like task (the system stabilizes on the
constraint after a sequence of impacts, and stays there). A complementarity system as in (101) may
evolve in three different phases of motion :

e i) A free motion phase, where the mechanical system is not subject to any constraints (i.e. h(q) >
0, h(-) € IR™). The system is represented by an Ordinary Differential Equation.

e ii) A permanently constraint phase where the dynamical system is subject to holonomic constraints
(hi(g) = 0 during a non-zero time interval and for some indexes 7 € {1,--- ,m}). The system is
represented by a Differential-Algebraic Equation.

e iii) A transition phase whose goal is to stabilize the system on some surface X7 = N;ez%;, Where
Z is some subset of {1,--- ,m} and £; = {q|hi(¢) = 0}. In other words a transition control has
to assure that h;(g(t)) = 0 and Vh;(t))q(tt) = 0 for all ¢ € Z, where ¢ is a finite time for obvious
practical reasons. The system is a Measure Differential Equation, that may be represented through
an impact Poincaré map.

8.1.2 Stability framework

Let us place ourselves in the perspective of a cyclic task. In the time domain one gets a representation
as:

Ry =Q0UIpUQUQUI U...UQok 1 U, UTpUQopy ... (102)
—_—— ~ P _
cycle 0 cycle k

where €29 denotes the time intervals associated to free-motion phases and €241 those for constrained-
motion phases. The k-th cycle is Qo U I, U Q9x1. Figure 17 gives a further insight on the dynamics
and the need for considering such cycles (i.e., such discrete-event paths). In terms of hybrid dynamical
systems, (102) is a discrete-event system trajectory. Let us denote = Uj>o82.

Since we need a stability framework, let us propose the following [16] [19] [13], where z(-) denotes
the state of the closed-loop system:
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Qory2

Qopy1

impacts LCP(A1)

Figure 17: The control tasks and transitions between them.

Definition 8.1 (Q2-weakly stable system) The closed-loop system is £2-weakly stable if for each ¢ > 0,
there exists d(e) > Osuchthat || 2(0) ||< d(e) = z(t) |< eforallt > 0, € Q = Uy Asymptotic
2- weak stability holds if in addition z(t) — 0 as ¢ — +o0, t € (2. Practical Q-weak stability holds
if there is a ball centered at z = 0, with bounded radius R > 0, and such that z(¢) € B(0, R) for all
t2T,T < +oo,t €. ]

In view of item iii) let us define the closed-loop impact Poincaré map that corresponds to the section
7 = {z|hi(q) = 0,4 Vhi(q) < 0,i € I}, which is a hypersurface of codimension o = card(Z). The
pre-impact velocities are chosen to define Py, and the reason for this choice will be made clear after
claim 8.5. We define:
PZI : ZE — ZE
(103)
.’Iizz(k) — .’L‘Ez(k + 1)

where zyx, is the state of Py, .

Definition 8.2 (Strongly stable system) The system is said strongly stable if: (i) it is Q2-weakly stable,
(ii) on phases Iy, Ps, is Lyapunov stable, and (iii) the sequence {¢, }xen has a finite accumulation point
too < F00. [ |

Clearly P, has a fixed point 25, € 0. Now that we are equipped with a stabilization framework,
let us state the main control objective:

Given a global asymptotic tracking controller for free-motion tasks, with Lyapunov function V (g, ¢, t),
design a feedback control  in (101) such that given a desired trajectory ¢4(-), the closed-loop error sys-

tem with state 7 = (g, §) is stable in the sense of definitions 8.1 or 8.2.

There are two important features in this objective:

e We wish to use a controller that assures asymptotic convergence when it is applied on a system
without constraints as in (99). Finite-time convergent controllers are excluded from our study. This
is likely to complicate the control design, since impacts are not controllable (only the pre-impact
velocities can be controlled)

e The design of the desired trajectory ¢4(-) during the transition phase, is a crucial step for the overall
stability.
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Let us emphasize that the framework we choose, in particular the cyclic decomposition in (102), is
somewhat stringent. Indeed the impacts, which have a considerable influence on the velocity variation,
have effects which cannot be expected to be compensated for easily, except in very special cases. An
asymptotic convergent controller will, in general, not enable one to “erase” impacts effects in finite time.
Consequently great care will be needed to analyze the system from one cycle to the next.

8.1.3 Lyapunov’s second method (suitable extensions)

The basic idea is to use a positive function V' (x, ) such that the above stability notions can be proved. As
a consequence the design will be based on the choice of a nonlinear tracking controller which is known
to render the closed-loop error system globally asymptotically stable when the system is unconstrained.

Why choosing a single Lyapunov function (consequently a single controller structure) and not one
function per phase?

In fact it is known that for phases Qo and 941, the same controller structure can be used. Thus
using two different controllers for these phases, is useless. Moreover this would bring serious compli-
cations in the stability analysis, since the Lyapunov function for phases €294 has to be monitored during
phases 2941, and vice-versa. To say nothing of the third phase Ij. It therefore seems that there would be
very little (if none) advantage in using a multiple-Lyapunov functions approach for the tracking control
of the hybrid dynamics (101)-(102).

Let us define the jump function o ¢(t) = f(t*) — f(¢7) and A[] is the Lebesgue measure. Let V(-)
satisfy V (z,t) > o(||2(]), a(0) = 0, «(-) strictly increasing. Let I, = [rg, %].

Claim 8.3 (2—Weak Stability [16]) Assume that the task is as in (102), and that

(@) A[Q] = +oo,

(b) foreach k € N, A[I] < +o0,

© V(a(th),th) < V(e(rf), &),

(d) V(z(.),.) uniformly bounded on each Ij.

If on O, V(x(t),t) < 0and oy (t) < 0forall k > 0, then the closed-loop system is Q-weakly stable. If
Vi(z(t),t) < —(]] = ||), v(0) = 0, y(-) strictly increasing, then the system is asymptotically 2-weakly
stable. ]

This accommodates for other types of motions than the one as in (102), see [16]. Let us assume that
too < 4o0. It is noteworthy that from [7, proposition 4.11] this precludes elastic impacts (because if
there is no loss of kinetic energy at impacts, impact times satisfy ¢4 — ¢, > Bx > Owith 37, Bk
unbounded, so that ¢, = +00). On the contrary the results presented in section 8.2 hold only if imf)acts
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are elastic. Let us now state a result which incorporates the relation between the speed at which cycles in
(102) are covered, and the decrease of the Lyapunov function after stabilization on ¥+ has been obtained

()
Claim 8.4 (2—Weak Stability [13]) em Let us assume that (a) and (b) in claim (8.3) hold and that

(a) - outside phase I}, one has V(t) < —yV(¢t) for some v > 0,
(b) - inside phase I one has V' (¢, ,) — V(t
(c) - the system is initialized on Qg with V (7

) <
) <
d) - | X kso0v(te)] < KV*(7f) for some k > 0 and some K > 0.

Then there exists a constant N' < +oo such that A[th,, 5] < NV, for all & > 0 (the cycle index), and
such that:

()- Ifx > 1and N = 2 In(1£f) for some 0 < § < 1, then V(&) < BV (7). The system is
asymptotically weakly stable.

(i) - If & < 1, then V(7§) < B(7), where B(vy) can be made arbitrarily small by increasing y. The
system is practically weakly stable with R = o 1(8(7)). [ ]

The spirit of claim 8.4 is really “hybrid” since it merges the continuous and the discrete-event dy-
namical features of the system. The upper-bound on the sum of the Lyapunov function jumps in (d), is
the key of claim 8.4. As said above it is in general quite difficult to master such jumps. The central ques-
tion then is: can the decrease of V' (¢) during the impactless phases, compensate for its variation during
I;;? In the ideal situation, we should manage so that V' (¢) decreases at impacts (this is the meaning of the
strong stability concept in definition 8.2). But this will not always be easy to get. On the other hand, it is
crucial to assure that the variation of V(-) during I, does not amplify from one cycle to the next when
the phases 2, are of bounded duration.

Claim 8.5 (Strong Stability [16]) The system is strongly stable if in addition to the conditions in claim
8.3 one has:

- Vb)) S V()
- V is uniformly bounded and time continuous on I, — Ug{tx}. [

Sufficient conditions are that oy (tx) < 0and V(¢ ,) < V(t), but this framework permits
oy (tg) = 0 provided V (¢, ) < V(t{) — & for some large enough § > 0. Notice also that V(t)
needs not to be < 0 along the system’s trajectories on the whole of (¢, tx+1). The reason why we have
chosen £ and not £ in (103) is that it allows us to take into account the value V' (¢y) in the stability
analysis. Notice that ¢(t%)) = ¢(t5,).

2In the following we sometimes denote with some abuse of notation V() = V' (z(t),t).
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8.1.4 What is the difference compared to the unconstrained case?

Consider the dynamics in (99). A globally tracking controller guarantees that the closed-loop system
possesses the desired trajectory g4(-) as its unique isolated invariant set, with a global basin of attrac-
tion. The control input is a function of g,4(-), and the Lyapunov function satisfies V (¢, §,t) = 0 when
q(-) = qq(+). In fact the closed-loop system that we are going to design, differs a lot. There are some
fundamental reasons for such discrepancies, which we try now to summarize. Let us start from a simple
one degree-of-freedom example:

m(G — g) +71(4 — ga) + 72(q — q3) € —0a(q) (104)

for some (possibly time-varying though we dropped arguments in (104)) signal ¢;(-). The feedback
gains are y; > 0 and v > 0. Assume now that ¢;(t) > 0 for all t > 0 and gj;(t) = 0 during nonzero
time intervals. Clearly if & = IR then the right-hand-side of (104) is equal to 0, and the unique globally
stable invariant trajectory is ¢(-) = ¢j(-). If ® = (—o0,—al], a > 0, then this trajectory is still the
unique invariant one, however it may not be globally stable (there may be impacts with the boundary of
®). Consider now ® = (—o0,a], a > 0. Then clearly ¢};(-) can non longer be the invariant trajectory,
since it “penetrates” outside ®. Therefore the invariant and stable trajectory (if any) must be different
from ¢(-). Let us denote it as g*(-). Now let us think about stability with a Lyapunov-like function
V' (t). One requirement is that V' = 0 when the tracking error is 0, i.e. when the system evolves on the
closed-loop invariant. Consequently let us admit for the moment that V(-) has to be a function of ¢ — ¢*
and ¢ — ¢* instead of ¢ — ¢ and ¢ — ¢

Remark 8.6 Notice that the right-hand-side of the inclusion in (104) can also be written in a closed-
loop form as 9t (§) where ® = {G|h(q,t) > 0}, where h(q,t) = h(§ + qa(t)). This closed-loop
formalism has not yet been used for tracking design purpose (convex analysis could be at the core of
such a design, as a direct extension of the stabilization framework in section 7.4).

Let us think now of the transition phase of motion. Let us take @ = IR, and ¢; a negative constant.
Then (104) is the bouncing-ball dynamics. The only invariant trajectory is (g,¢) = (0,0). If one wants
that the same function V' (-) serves for this impacting phase as well (see definition 8.2), then during phases
I;, one must have V(¢ = 0,¢ = 0) = 0. In this case it is even more appropriate to use an impact Poincaré
mapping to represent the dynamics. Once again one sees that it is not ¢}, which enters the function V' (-).

A first conclusion is that the signal which enters the control input (i.e. ¢};(-)) is not the signal which
enters the Lyapunov function. This is due to the fact that the system evolves along phases of motion,
whose underlying dynamics are of different natures. There is another subtlety in the control design
which is a consequence of asymptotic stability. Indeed assume that the system is initialized on €2 and
with tracking errors ¢ — ¢ = 0, ¢ — ¢; = 0. Then V(¢t) = 0 for all ¢ > 0, until there is a first
impact at time to. Then if there is a jump in V(-) at ¢o, one must have V(t) — V(t;) = V(¢]) > 0.
Since we restrict ourselves to using only controllers which assure asymptotic convergence of the tracking
errors towards zero, it will generally be impossible to compensate for such positive jumps. Therefore
the invariant closed-loop trajectory ¢* will generally have to be impactless, otherwise its asymptotic
stabilization is impossible.
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Let us recapitulate: V(-) cannot be a function of ¢(-), ¢"*(-) must be impactless, and during I,
V(g = 0,4 = 0) = 0. This yields us to define a third signal g4(-) that will enter V(-). On I and still
dealing with (104), g4 = 0 to cope with the third item. On Qg ga(-) = ¢j(-). On Qox11, g4(-) = 0.
In order to converge towards ¢(-), the signal ¢3;(-) has to evolve from cycle  to cycle k + 1 such that,
in proportion as tracking errors decrease on €y, ¢’;(-) approaches an impactless trajectory. There will
consequently be two distinct notions of convergence: one in time ¢, the other one along the cycle index
k.

Remark 8.7 An idea (which will be discussed again in section 8.2) is to design g4(-) such that its first
derivative has discontinuities at times ¢, i.e. simultaneous to jumps in ¢(-). This trick would allow one to
get V (t5) = 0 when perfect tracking is assured. However one has also to keep in mind that the variation
of V(-) has to be characterized for nonzero tracking errors as well, and studying such variations when
impacts do not match with discontinuities in ¢4(-) adds useless difficulties to the problem. The choice
for g4(-) in [19] [13] is made to simplify as much as possible all calculations for the variations of V'(+)
during transition phases 1.

In conclusion, asymptotic tracking along a discrete trajectory as in (102) implies in general that [13]:

e the closed-loop invariant trajectory is impactless, but robustness of the stabilization on 9® implies
that impacts do occur during transition phases,

e the signals “desired trajectory” which enter the controller and the Lyapunov function, are not the
same.

What do we mean by “in general™? In fact there are special cases where the inertia matrix is such
that the dynamics tangential to the boundary 9® and normal to 9®, are decoupled (i.e. in a specific
set of generalized coordinates, M (q) is block diagonal). This decoupling allows one to compensate
for the jump V(t§) — V(¢y) in a finite time, at each cycle (see [16]). But as soon as couplings exist,
this nice feature vanishes. Let us expand a little on this by showing equations. Assume that h(q) =
¢1 € IR in (101), where ¢; is the first component of ¢. Let us write the inertia matrix as M(q) =

Mii(q) Mia(q)

. Then, choosing for instance Moreau’s impact law with restitution e € [0, 1]

Miy(q) May(q)
[81], at an impact one has

at) —qty) = —(1+e)q(ty)
(105)
Q2(tf) — Go(ty) = —My' (@ ME(q) (1 + €)da (t;)

It clearly appears that if M, = 0, then the dynamics in the (¢1, g2) coordinates is decoupled, and there
is no jump in the generalized velocity ¢». But if M5 # 0, then jumps occur in ¢s and consequently
in the Lyapunov function V'(-). If V(-) exactly matches the kinetic energy at times ¢, its variation will
automatically be negative at ¢;. However making V'(-) match T'(q, ¢) and at the same time assuring the
stability as in definitions 8.1 or 8.2, is not an easy design task. When M5 = 0 it is easy to split the control
problem into two sub-problems with V' (-) = Vi (-) 4+ Va(-) where Vi (-) and Va(-) evolve independently.
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The reader is referred to [13] for a description of this control problem in terms of invariant trajectories
of the closed-loop dynamical system.

8.1.5 Control design

Let us briefly summarize a solution for tracking control, in a general setting (no dynamic decoupling). As
said above, the underlying strategy is to use a single controller structure (consequently a unique Lyapunov
function) which, when applied to an unconstrained system, guarantees asymptotic global tracking. The
input that we are going to present, has some switches in it, but the switches are at the level of the desired
trajectory (see figure 18). Therefore it is a feedback control of the form u = u(q, ¢, t) that has a fixed
structure with respect to g and ¢, but is discontinuous in its second argument.

Pa = +

switching
strategy

e
| generator
Qop 41822k U I
s

Free motion phase trajectop:

Lagrangian
complementarity
system

nonlinear controller;
structure

Constraint phase trgjectory

|
|
|
|
|
: Transition phase trgjectory|
|
|
|
|
|

(g, ¢)

Figure 18: The overall structure of the control input signal.

We do not have an unbounded panoply of nonlinear controllers for tracking control at our disposal.
Among them: feedback linearization (known as the computed torque method in Robotics), the Paden
and Panja scheme, the Slotine and Li scheme (see e.g. [67]). Since impacts dissipate kinetic energy it is
natural to consider those controllers whose Lyapunov function is as close as possible the system’s total
energy. For this reason the Paden and Panja scheme, which is the most direct extension of PD control,
is chosen in a first instance. As we shall see, the closeness of the Lyapunov function to the system’s
total energy, does not allow one to overcome all the obstacles of this control problem. Other parameters,
like the ability of characterizing the decreasing of V() along continuous motion phases ¢ € €2, may be
important.

In order to cope with the robustness issue (stabilization on > 7) and the asymptotic convergence of
the tracking error towards zero (which implies an impactless closed-loop invariant trajectory), a specific
signal ¢};(-) has to be designed during transition phases Ij,. This signal should be such that when perfect
tracking is obtained on €2, then the systems tracks an impactless trajectory, whereas for nonzero tracking
errors a bouncing-ball-like motion occurs during Ix. Such a trajectory is depicted in figure 19, where
only the normal direction ¢; is considered.

The transition phase starts at a time 7-3“ € Qo (this k£ is a cycle Qof U I, U Qo1 index), which is
chosen by the designer when stabilization on 0® is desired. If V(r§) = 0 (perfect tracking) then there
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Figure 19: A specific transition trajectory.

is no impact and 9@ is attained tangentially. If V(75) # 0 then g} ,(¢) decreases towards —a'V (7§) < 0.
The time 7§ and the value V(7¥) reflect the convergence of ¢*(-) towards ¢*(-) as explained in the
foregoing subsection. The Paden and Panja scheme has the Lyapunov function

V(t,4:8) = 50" M@+ 5md"a+ po(a) (106)
where, following the above discussion, § = ¢ — gq. We can set g4(t) = ¢;(¢) until a first impact occurs
at to. Then g4(¢t) = 0. Thus for ¢t > to the Lyapunov function in (106) resembles the system’s energy,
and in particular V() — V(t;) = T(t}) — T(t;) < 0for k > 1, where T(q,q) is the kinetic energy.
One sees that at this stage, an impact model is not necessary. In fact one major difficulty lies in the
position of the first impact time ¢, with respect to the time 7§ at which gJ;(-) becomes a constant signal,
see figure 19. For ¢ < ¢, one can set g4(-) = ¢j(-) and one has V (t) < 0 along closed-loop trajectories.
If £, > 7F then V/(-) in (106) can serve as a Lyapunov function for the impact Poincaré map in (103).
But if ¢, < 7F (which is the most general case), it is difficult to get V (t) — V (¢, ) < 0, except, as stated
above, in special dynamically decoupled cases (13). This first positive jump in the Lyapunov function,
creates some difficulty in applying claims 8.3 and 8.5. More concretely, if the impact rule in (93) is used,
and if gj;(t) is set constant just after the first shock (which can be interpreted as a sort of plastic impact
in the signal g7 ,(t) at o) whereas g is set to zero, then one gets

2 _ _ . _ . _
O'V(to) — 677,2 1[M11 — M12M221M1T2]q%(t0 ) — %Mllq%d(to ) (107)

+Mi1gi(ty )dalty) + dolty) " Mardualty) — md2.(ty)

Rendering the expression in (107) non-positive thanks to a suitable definition of the signals ¢7 ,(-) and
g14(+), is the cornerstone of this tracking control design. It is also assumed in (107) that the “tangential”
part of ¢j(-), namely g¢;,(-) if we adopt the notation in the foregoing section, is set to a constant value
during I. Since making oy (t9) < 0 is difficult, the next idea is to use the decrease of V() on phases
), to compensate for possible oy (tp) > 0. But since V(-) can at best decrease exponentially on €

3This result stands also because of the choice we made of the signal g4 (-) that is set to zero on (to, t’}, where t’} is the end
of Iy.

58



(the Paden and Panja scheme does not even guarantee this), one should take great care that the phases
Qy, duration and/or the feedback gains, remain uniformly bounded over the discrete motion in (102). In
other words, once the cycle frequency and feedback gains have been chosen, one has to find a control
strategy which prevents jumps oy (t9) from amplifying from one cycle & to the next cycle k& + 1. Here
claim 8.4 may be useful.

8.1.6 Detachment conditions (controlled LCP)

We have essentially focused on the stabilization on 0% and its consequences on stability. However
the system also has to take off 9® when desired. When h(q) = g1, such an event is ruled by the
complementarity conditions

0<qu(t) LA >0 (108)

which implies on phases Qg4+1 Where ¢ (t) = ¢1(¢) = 0 the following
0<qi(t) LA >0 (109)

Replacing ¢ (¢) by its value calculated from the dynamics, allows one to transform (109) into a LCP
with unknown A;. This LCP(A1) is the tool that allows one to detect detachment as summarized in
figure 17. It can be shown that ¢ () = A(q)A1 + b(g, ¢,w). Therefore if b(q(t), ¢(¢),u(t)) > 0 then
A1(t) = 0 and necessary conditions for detachment are fulfilled. It then suffices to check whether or not
g1(t) = b(q(t),q(t),u(t)) > 0 to conclude on actual detachment. Thus the conditions in (109) can be
considered as a controlled LCP.

Remark 8.8 Clearly the complementarity conditions cannot be ignored in the control design. If there
are m constraints then one has to check the solution of a LCP with higher dimension.

8.2 Tracking control inside a disk (billiard control)

A different approach has been taken by Menini and Tornambé in [71]. They consider a planar system
(g € IR?) that evolves inside a disc, i.e. ® = {(q1,¢2)|¢? +¢3 —1 < 0}. The impacts are perfectly elastic
and frictionless, which, in particular, implies that solutions (velocities) are piecewise continuous [7].
More precisely, there exists & > 0 such that ¢;1 —t; > d forall £ > 0. The desired trajectory ¢4(-) to be
tracked is chosen as a polygon with N vertices inside the disc. Therefore ¢4(-) has discontinuities at some
known instants. The stability notion that is introduced takes into account the fact that two trajectories
which do not jump simultaneously cannot be arbitrarily close one to each other in the neighborhood of an
impact time, as is well-known (see e.g. [17, §1.3.2, §7.1.1]). Here again the use of dead-beat controllers
which assure some finite-time convergence and would enable one to get simultaneous discontinuities in
both ¢4(-) and ¢(-), is disregarded because it has little chance to work in practice.

Remark 8.9 One sees that the tracking problem that is attacked in [71] and the one described in subsec-
tion 8.1, are quite different one from each other. It is not question in [71] to stabilize the system on 9.
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The task is closer to a hammer-like motion, or to stabilization by feedback of some billiard trajectory
(see [17, def.7.4]). The central question then is: can tracking be assured despite the impacts? The type of
dynamics considered here is therefore close to that of an ODE with impulsive input as considered in [5],
with state dependent jump times ¢x(x). However one should keep in mind that impact times are defined
only implicitly in mechanical systems subject to unilateral constraints, not explicitly. Whether or not this
complicates trajectory tracking control design, is another issue.

The main result of [71] is that a PD-like control u = —vy1(q¢ — q4) — v2(¢ — ¢q) is sufficient to
assure tracking control of the polygon trajectory, provided the feedback gains are large enough. We
retrieve here one characteristic of the controllers described in the previous section(see figure 18), i.e.
they have a fixed structure with respect to ¢ and ¢, but are discontinuous in their time argument (because
Ga(-) has jumps). The stability is proved using a discrete-time Lyapunov function that corresponds to a
stroboscopic Poincaré map. More precisely, assume that ¢4(-) jumps at integer times ¢, = k. The system

is sampled at times ¢t = k — % The Lyapunov function is simply chosen as
~ A 1 AT A 1 ~T ~
V(@a) =54 d+5ma g (110)

Under the condition that there is exactly one impact in the interval (k — %, k+ %), the following is true:
there exists a constant vy, > 0 such that, if y; = 2 and 5 = 2+ one has

1 1 1. -

V(@ + 5,0k + 5) ~ V(alk — 2),d(k — ) < —oMllak - )ik~ p)I> (1)

where o () > 0 for v > ~x. Thus the Poincaré map is exponentially stable. It follows that

o limyy o0 [|G(1)]] = 0, limp—s o0 |Gk +7)7|| = 0, lim_ 40 ||G(E +7)F|| = 0 forall = € (0, 1),

o foralle > 0, for all 8 € (0, 1), there exists § > 0 such that if ||§(0)|| < & and ||§(0)|| < 4, then
1d@)|| < e ||G(t)|| < e forall ¢ such that |t — k| > 3.

The very last condition means that all neighborhoods of times k& where ¢4(-) jumps, are eliminated. See
figure 20 for an illustration: between points a and b both velocity trajectories cannot be arbitrarily close
one to each other, despite they may be when ¢ > ¢, and ¢ < k. Evidently this result holds only if the
system is initialized far enough from any impact so that the trajectory has sufficient time to converge
close enough towards the desired one. This is why the result holds only if impacts are well separated on
the time axis.

Remark 8.10 Another common feature of both controllers in sections 8.1 and 8.2, is that they assure
local stability only, i.e. the state (g, ¢) has to be initialized inside some set.

8.3 Summary

In summary, the extension of trajectory tracking to complementarity Lagrangian systems, is not trivial.
We have described two approaches in the foregoing subsections 8.1 and 8.2.
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Figure 20: Closeness of trajectories around impacts.

One problem that has not been treated yet, is that of orbital stabilization. In other words, given a
desired orbit ~4 in the configuration space C, design a controller such that the trajectory ¢(-) converges
towards g in the sense that min,¢,, ||g(t) — p|| — 0 for all ¢ > 0. Some constraints on the velocity
should also be added to avoid triviality of this stability concept.

8.4 Control of biped robots

The control of biped robots is a very specific and challenging control problem. It is not our goal here
to survey this wide area, see [52] for references and discussions on modelling, stability and control.
The stability of a biped robot has itself been the subject of some controversies, and still remains open
(see [100] where it is shown that the widely used ZMP criterion, has severe drawbacks and should not be
used for walking stability). The complementarity framework is the suitable one for the design of stable
feedback controllers. It retains the most important dynamical features (impacts, Coulomb friction), and
at the same time is simple enough.

The stability of a biped robot that walks, can be seen from two points of view. The first one is that
a biped is stable, as long as its foot does not slip on the ground and as long as it does not fall down:
this can be called the discrete-event stability. The second one is trajectory tracking: the legs have to
track some desired trajectory. This is a low-level, or continuous part stability. Both are related since
the discrete-event stability restricts the class of trajectories that can be tracked. The feedback control of
biped robots is, to a large extent, still an open problem.

9 Conclusions

In this paper we have presented the complementarity class of hybrid dynamical systems. Though rela-
tively new in the systems and control field, such systems possess a long history in other fields of science
like mechanics, optimization and circuit theory. The aim of the paper was to make the reader familiar
with the main features of these highly nonsmooth and highly nonlinear systems and to provide many
examples illustrating the developments. This class of hybrid systems is particularly interesting because
it has a strong structure related to convex analysis and mathematical programming, which allows one to
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investigate deeply its properties. At the same time there are many applications domains, motivated either
by physics or by abstract problems. Moreover, various links exists to many other interesting modelling
formalism like piecewise affine systems, mixed logical dynamical systems, differential inclusions, evo-
lutional variational inequalities, projected dynamical systems and so on. However, one has observed that
the class of complementarity systems has its own peculiarities in the sense of mode dynamics living on
lower dimensional subspaces and the possibility of discontinuities in the state variables. This complicates
the analysis on one hand, but makes it a huge challenge on the other. In this paper we have tentatively
shown that complementarity systems, despite the fact that they constitute only a subclass of hybrid sys-
tems, provide a wealth of potential theoretical studies (controllability, observability, stabilization, etc.)
that are widely open. Some preliminary results have been included in the paper that could serve as a
starting point on one hand and indicate the difficulties one has to face on the other. We hope that we
stimulated many readers in going into this appealing research field and contributing to the analysis and
synthesis problems, that are interesting to overcome in view of the broad range of applications.
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