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a b s t r a c t

Self-triggered control is a recently proposed paradigm that abandons the more traditional periodic time-
triggered execution of control tasks with the objective of reducing the utilization of communication
resources, while still guaranteeing desirable closed-loop behavior. In this paper, we introduce a self-
triggered strategy based on performance levels described by a quadratic discounted cost. The classical
LQR problem can be recovered as an important special case of the proposed self-triggered strategy. The
self-triggered strategy proposed in this paper possesses three important features. Firstly, the control laws
and triggering mechanisms are synthesized so that a priori chosen performance levels are guaranteed by
design. Secondly, they realize significant reductions in the usage of communication resources. Thirdly,
we address the co-design problem of jointly designing the feedback law and the triggering condition.
By means of a numerical example, we show the effectiveness of the presented strategy. In particular,
for the self-triggered LQR strategy, we show quantitatively that the proposed scheme can outperform
conventional periodic time-triggered solutions.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

In many control applications, controllers are nowadays im-
plemented using communication networks in which the control
task has to share the communication resources with other tasks.
Despite the fact that resources can be scarce, controllers are typ-
ically still implemented in a time-triggered fashion, in which
control tasks are executed periodically. This design choice often
leads to over-utilization of the available communication resources,
and/or causes a limited lifetime of battery-powered devices, as it
might not be necessary to execute the control task every period to
guarantee the desired closed-loop performance. Also in the area of
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‘sparse control’ (Gallieri & Maciejowski, 2012), in which it is desir-
able to limit the changes in certain actuator signals while still real-
izing specific control objectives, periodic execution of control tasks
may not be optimal either. In both networked control systemswith
scarce communication resources and sparse control applications
arises the fundamental problem of determining optimal sampling
and communication strategies, where optimality needs to reflect
both implementation cost (related to the number of communica-
tions and/or actuator changes) as well as control performance. It is
expected that the solution to this problem results in control strate-
gies that abandon the periodic time-triggered control paradigm.

Two approaches that abandon the periodic communication pat-
tern are event-triggered control (ETC), see, e.g., Arzén (1999),
Åström and Bernhardsson (1999) and Donkers and Heemels
(2012), Heemels, Sandee, and van den Bosch (2008), Heemels et al.
(1999), Henningsson, Johannesson, and Cervin (2008), Lunze and
Lehmann (2010), Tabuada (2007) and Wang and Lemmon (2009),
and self-triggered control (STC), see, e.g., Almeida, Silvestre, and
Pascoal (2010, 2011), Anta and Tabuada (2010), Donkers, Tabuada,
and Heemels (2012), Mazo, Anta, and Tabuada (2010), Velasco,
Fuertes, and Marti (2003) and Wang and Lemmon (2009). Al-
though ETC is effective in the reduction of communication or
actuator movements, it was originally proposed for different rea-
sons, including the reduction of the use of computational resources
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and dealing with the event-based nature of the plants to be con-
trolled. In ETC and STC, the control law consists of two elements
being a feedback controller that computes the control input, and
a triggering mechanism that determines when the control input
has to be updated. The difference between ETC and STC is that
in the former the triggering consists of verifying a specific condi-
tion continuously and when it becomes true, the control task is
triggered, while in the latter at an update time the next update
time is pre-computed. ETC laws have been mostly developed for
continuous-time systems, although they have also appeared for
discrete-time systems, see, e.g., Cogill (2009), Eqtami, Dimarogo-
nas, and Kyriakopoulos (2010), Heemels and Donkers (2013), Li
and Lemmon (2011), Yook, Tilbury, and Soparkar (2002), Molin
and Hirche (2013) and Lehmann (2011, Sec. 4.5). In addition,
in Arzén (1999), Henningsson et al. (2008), Heemels et al. (2008)
and Heemels, Donkers, and Teel (2013) so-called periodic event-
triggered control strategies were proposed and analyzed for
continuous-time systems.

At present ETC and STC form popular research areas. However,
two important issues have only receivedmarginal attention: (i) the
co-design of both the feedback law and the triggering mechanism,
and (ii) the provision of performance guarantees (by design). To
elaborate on (i), note that current design methods for ETC and
STC are mostly emulation-based approaches, by which we mean
that the feedback controller is designed without considering the
scarcity in the system’s resources. The triggering mechanism is
only designed in a subsequent phase, where the controller has
already been fixed. Since the feedback controller is designed before
the triggering mechanism, it is difficult, if not impossible, to
obtain an optimal design of the combined feedback controller and
triggering mechanism in the sense that the minimum number
of control executions is achieved while guaranteeing closed-loop
stability and a desired level of performance.

Regarding (ii), only a few available ETC/STC methods provide
quantitative analysis tools for control performance, such as L2-
gains, quadratic cost, H2 type of criteria, and so on. For instance,
in Donkers and Heemels (2012) one can analyze the ETC/STC loop
a posteriori and evaluate what the L∞-gain is, and clearly by do-
ing this for various choices of the triggering mechanism one can
(indirectly) synthesize a controller with a good closed-loop L∞-
gain (in balancewith a reasonable communication usage) based on
an iterative design process. A similar procedure can be applied for
theL2-gain, see, e.g., Wang and Lemmon (2009). Alternatively, us-
ing Lunze and Lehmann (2010) and Yook et al. (2002), one can tune
the parameters of the event-triggering condition (once the con-
troller is fixed) to obtain a desirable ultimate bound on the state.
In addition, a few ETC and STC methods exist that aim at mini-
mizing a criterion involving besides control cost also communica-
tion cost (Cogill, 2009; Li & Lemmon, 2011; Molin & Hirche, 2013).
However, in most cases they do not provide guarantees in terms
of standard (LQR, L2, H2) control cost (i.e., without the presence
of communication cost), and, in fact, due to the resulting absolute
threshold in the event-triggering mechanism, these control cost
are typically not finite. The case of continuous-time linear systems
with a quadratic performance measure (LQR) is studied in Velasco
et al. (2011) and Yepez, Velasco, Marti, Martin, and Fuertes (2011).
Both papers aim at arriving at ETC laws that yield the same cost as
the optimal LQR controller, but require less communication than
the continuously updating optimal LQR controller. The main idea
behind the approach is to maximize the time until the next control
value update, considering that the rest of the (future) controller
executions will be according to standard periodic time-triggered
updates. In Velasco et al. (2011), the controller design is emulation-
based, whereas Yepez et al. (2011) studies a co-design method for
both the feedback law and the triggering condition. However, no
formal guarantees are given in these papers about the true cost
realized by the ETC implementation, and the framework in Velasco
et al. (2011) and Yepez et al. (2011) does not offer a possibility to
‘‘trade’’ performance for less communication resource usage.

The main contribution of the present paper is a novel STC strat-
egy for discrete-time linear systems in the presence of stochastic
disturbances, addressing the issues (i) and (ii) and allowing to trade
guaranteed performance levels with utilization of communication
resources. The contribution of this paper is threefold:

• the methods guarantee a desired performance level based on
quadratic (discounted) cost without an iterative design process.
In fact, the presented strategy aims at reducing the use of com-
munication resources, while still guaranteeing a prespecified
sub-optimal level of performance;

• for the considered control problem, we solve a co-design prob-
lem by jointly designing the feedback controller and the trig-
gering mechanism;

• by means of a numerical example, we demonstrate quantita-
tively that aperiodic control can outperform periodic control
when both control performance and communication cost are
important.

1.1. Nomenclature

Let R and N denote the set of real numbers and the set of non-
negative integers, respectively. The notation N≥s and N[s,t) is used
to denote the sets {r ∈ N | r ≥ s} and {r ∈ N | s ≤ r < t},
respectively, for some s, t ∈ N. The inequalities ≺, ≼, ≻ and ≽

are used for matrices, i.e., for a square matrix X ∈ Rn×n we write
X ≺ 0, X ≼ 0, X ≻ 0 and X ≽ 0 if X is symmetric and, in addition,
X is negative definite, negative semi-definite, positive definite
and positive semi-definite, respectively. Sequences of vectors are
indicated by bold letters, e.g., u = (u0, u1, . . . , uM) with ui ∈

Rnu , i ∈ {0, 1, . . . ,M}, where M ∈ N ∪ {∞} will be clear from
the context. Let X and Y be random variables. The expected value
of X is denoted by E(X) and the conditional expectation of X given
Y is denoted E[X | Y ]. The trace of a matrix A is denoted by tr(A).

2. Self-triggered linear quadratic control

In this section, we provide the problem formulation and the
general setup for the self-triggered control strategy. We consider
the control of a discrete-time LTI system given by

xt+1 = Axt + But + Ewt , (1)

for t ∈ N, where xt ∈ Rnx is the state, ut ∈ Rnu is the input
and wt ∈ Rnw is the disturbance, respectively, at discrete time
t ∈ N. We assume that the pair (A, B) is controllable and that
wt , t ∈ N, are independent and identically distributed random
vectors (not necessarily Gaussian distributed) with E[wt ] = 0 and
E[wtw

⊤
t ] = I , t ∈ N, where I ∈ Rnw×nw is the identity matrix. In

this section, we are interested in control strategies that guarantee
a certain control performance in terms of a discounted quadratic
cost function

J =

∞
t=0

E

αt x⊤

t Qxt + 2x⊤

t Sut + u⊤

t Rut


| x0

, (2)

involving the weighting matrices Q , R and S, where

Q S
S⊤ R


≻ 0.

The discount factor 0 < α ≤ 1 is assumed to be strictly less than
one when E ≠ 0 to assure that (2) is bounded. Note that E = 0
and α = 1 allow us to consider an LQR-like framework. If we
assume that the state is available at every t ∈ N and also that
the control input can be updated at every t ∈ N, it is well known
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(see, e.g., Bertsekas (2007, Sec. 3.2)) that the optimal cost for a given
initial state x0 is given by

V (x0) := x⊤

0 Px0 +
α

1 − α
tr(PEE⊤), (3)

where P is the unique positive semi-definite solution to the
discrete algebraic Riccati equation (DARE)

P = Q + αA⊤PA

−

αA⊤PB + S

 
R + αB⊤PB

−1 
αB⊤PA + S⊤


(4)

and that the optimal feedback policy is described by

u∗

t = K ∗xt , (5)

K ∗
= −


R + αB⊤PB

−1 
αB⊤PA + S⊤


. (6)

The control law given in (5) requires the transmission of measured
states and updates of control actions at each sample instant
t ∈ N, which might not be necessary to guarantee a certain
(sub-optimal) performance. In this paper, we are interested in
synthesizing control laws that require (much) less communication
between sensors, controller, and actuators (and/or less actuator
movements (Gallieri & Maciejowski, 2012)), while still providing
guarantees on the quadratic performance criterion in (2). More
specifically, we are interested in reducing the number of times
the input is updated (which directly influences the number of
required transmissions from sensors to controllers and controllers
to actuators), while still satisfying the following performance
guarantee

∞
t=0

E

αt x⊤

t Qxt + 2x⊤

t Sut + u⊤

t Rut


| x0


≤ Vβ1,β2(x0), (7)

where, for x ∈ Rnx ,

Vβ1,β2(x) := β1x⊤Px + β2
α

1 − α
tr(PEE⊤) (8)

and β1, β2 ≥ 1 are scaling factors of the state-dependent and
constant parts, respectively, in the optimal costs in (3). Note that
β1 = β2 = 1 corresponds to requiring the same costs as the opti-
mal time-triggered control law given by (5)–(6). The scaling factors
β1, β2 can be chosen to balance the usage of communication re-
sources and the degree of sub-optimality. In particular, the choice
β1 = β2 = β ≥ 1 specifies a degree of sub-optimality that cor-
responds to a percentage of the periodic control performance (3).
This is automatically the case when E = 0, since in that case β2
plays no role.

To address this problem, we propose a self-triggered strategy
that aims at reducing the number of input updates. The proposed
strategy solves the co-design problem of simultaneously synthe-
sizing the next transmission time and the next corresponding con-
trol value and is based on holding the control value constant for as
many steps as possible, while still guaranteeing the performance
guarantee (7) in the end.

3. Proposed setup

The self-triggered strategy is based on holding the current input
value as long as possiblewhile still guaranteeing (7) givenβ1, β2 ≥

1. In fact, the control strategy will have the structure
tl+1 = tl + M(xtl),
ut = ūl ∈ U(xtl), t ∈ N[tl,tl+1)

(9)
with t0 := 0, M : Rnx → {1, . . . , M̄}, M̄ ∈ N, and U :

Rnx ⇒ Rnu . Hence, U is a set-valued map. Here, M(x) denotes
the time between two transmissions and U(x) denotes the set of
possible control values when being in state x. The integer M̄ is a
predefined upper bound on the inter-transmission times, which
can be taken arbitrarily large. We are interested in solving the co-
design problem of both the next transmission time (through M)
and the chosen control value (through U).

Instrumental in the co-design of the mappingsM and U will be
the inequality

E
tl+1−1

t=tl

αt−tl

x⊤

t Qxt + 2x⊤

t Sūl + ū⊤

l Rūl


+ αtl+1−tlVβ1,β2(xtl+1) | xtl


≤ Vβ1,β2(xtl) (10)

at transmission time tl, l ∈ N. Summing (10) over all events
l ∈ N will give the performance guarantee (7) as we will show in
Theorem 3. At transmission time tl with state xtl we aim at finding
a maximal value for tl+1 such that there is a ūl satisfying (10). This
results inM(xtl) = tl+1 − tl.

To introduce the mappings U and M in (9) formally, we define
for x ∈ Rnx , UM(x) as the set of control values that can be held
constant for M steps, while still satisfying (10) when in state x at
time tl, i.e., after a shift in time, this leads to

UM(x) :=


ū ∈ Rnu

 E
M−1

j=0

αj(x̄⊤

j Q x̄j + 2x̄⊤

j Sū + ū⊤Rū)


+ αMVβ1,β2(x̄M) | x


≤ Vβ1,β2(x)


, (11)

where x̄j, j ∈ {1, 2, . . . ,M}, is the solution to (1) with x̄0 = x and
ut = ū, t ∈ N, i.e.,

x̄j = Ājx + B̄jū + ĒM
j wM , x̄0 = x (12)

where for j ∈ {1, 2, . . . ,M}, Āj := Aj, B̄j :=
j−1

i=0 A
iB and ĒM

j ∈

Rnx×Mnw is given by

ĒM
j :=


Aj−1E . . . AE E 0 . . . 0


, (13)

where wM := [w⊤

0 , w⊤

1 , . . . , w⊤

M−1]
⊤.

We now define in (9), for x ∈ Rnx and M̄ ∈ N,

M(x) := max

M ∈ {1, 2, . . . , M̄} | UM(x) ≠ ∅


, (14a)

U(x) := UM(x)(x). (14b)

The control law is now given by (9) and (14).

Remark 1. Note that this STC strategy is of a ‘‘greedy’’ nature, as
at time tl the next transmission time tl+1 = tl + M(xtl), l ∈ N, is
maximized while guaranteeing (10) without taking into account
the influence of this choice on the required number of future
transmissions after tl+1.

Remark 2. If multiple control commands can be sent in one
control packet, the STC approach can be extended towards packet-
based control in which a sequence of control values is transmitted
to the actuators at times tl, l ∈ N. More specifically, for t ∈

N[tl,tl+1), the control strategy will have the structure
tl+1 = tl + Mpb(xtl),
ut = upb,l

t−tl with [upb,l
0 , upb,l

1 , . . . , upb,l
M−1] ∈ U

pb
M (xtl),
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where for x ∈ Rnx we define

U
pb
M (x) :=


[upb

0 , upb
1 , . . . , upb

M−1] ∈ Rnu


E
M−1

j=0

αj(x̃⊤

j Q x̃j + 2x̃⊤

j Su
pb
j + (upb

j )⊤Rupb
j )



+ αMVβ1,β2(x̃M) | x


≤ Vβ1,β2(x)


,

where x̃j, j ∈ {1, 2, . . . ,M}, is the solution to (1) with x̃0 = x and
input sequence [upb

0 , upb
1 , . . . , upb

M−1] ∈ U
pb
M (x). Moreover,

Mpb(x) := max

M ∈ {1, 2, . . . , M̄pb

} | U
pb
M (x) ≠ ∅


,

where M̄pb
≥ 2 denotes the number of control values that can be

transmitted in one packet. At time tl, l ∈ N, the state is measured
and the sequence [upb,l

0 , upb,l
1 , . . . , upb,l

M−1] ∈ Upb(xtl) is sent to the
actuators that implement the received input sequence one-by-one.
The sensors can go in standby from time tl + 1 until tl+1 − 1. At
time tl+1 the state is measured by the sensors, and the procedure
is repeated.

Theorem 3. For fixed β1, β2 ≥ 1, the control law (9) with (14) is
well defined, i.e., for all x0 ∈ Rnx and all disturbance realizationsw =

[w0, w1, . . .], tl+1 ≥ tl + 1, l ∈ N. Moreover, the closed-loop system
given by (1), (9) and (14) satisfies the performance guarantee (7).

Proof. To prove the well-definedness of the control law (9) with
(14), for all x ∈ Rnx we will show that

x⊤Qx + 2x⊤Sū + ū⊤Rū + αE[Vβ1,β2(x̄1) | x] ≤ Vβ1,β2(x) (15)

holds for some ū ∈ Rnu showing that U1(x) ≠ ∅ as (15) is the
condition in (11) for M = 1. Suppose that we are at transmission
time tl for some l ∈ N and xtl = x. If ū is chosen as the optimal
control value K ∗x taken from (5)–(6), then we have

x⊤Qx + 2x⊤Sū + ū⊤Rū + αE[V (x̄1) | x] = V (x),

Indeed, if ū = K ∗x, then using (3), we have

x⊤Qx + 2x⊤Sū + ū⊤Rū + αE[V (x̄1) | x]

= x⊤


Q + 2SK ∗

+ (K ∗)⊤RK ∗
+ α(A + BK ∗)⊤P(A + BK ∗)


x

+ α tr(PEE⊤) +
α2

1 − α
tr(PEE⊤)

= x⊤Px +
α

1 − α
tr(PEE⊤) = V (x),

where in the second equality we used (4) and (6). Thus ū = K ∗x
satisfies (15) for β1, β2 ≥ 1. Hence, K ∗x ∈ U1(x). This shows that
U(x) ≠ ∅ andM(x) ≥ 1 for all x ∈ Rnx .

We will now prove that the control law (9) with (14) satisfies
the performance guarantee (7). For x ∈ Rnx and u ∈ Rnu , we define
g(x, u) := x⊤Qx+ 2x⊤Su+ u⊤Ru. We start by fixing a given L ∈ N,
and notice that

E
tL+1−1

t=0

αtg(xt , ut) | x0


= E
 L

l=0

αtl
tl+1−1
t=tl

αt−tlg(xt , ut) | x0


= E
 L

l=0

αtlE
tl+1−1

t=tl

αt−tlg(xt , ut) | xtl


| x0

, (16)
where we used the fact that for each l ∈ N ∪ {0}

E

αtl

tl+1−1
t=tl

E[αt−tlg(xt , ut) | xtl ] | x0


= E

αtl

tl+1−1
t=tl

αt−tlg(xt , ut) | x0

. (17)

Eq. (17) follows from standard properties of conditional expecta-
tions (Davis, 1993, p.16) and the fact that the underlying stochastic
process defined by (1) and (9), being a discrete-time Markov pro-
cess, is also a strongMarkov process (Meyn & Tweedie, 1993, p.72)
(then the Markov property holds at the stopping times tl, l ∈ N).

Using (10) in the last equation of (16) we obtain

E
tL+1−1

t=0

αtg(xt , ut) | x0


≤ E
 L

l=0

αtl

Vβ1,β2(xtl)

− αtl+1−tlE[Vβ1,β2(xtl+1) | xtl ]


| x0


= E
 L

l=0

αtlVβ1,β2(xtl) − αtl+1Vβ1,β2(xtl+1) | x0


= Vβ1,β2(x0) − E[αtL+1Vβ1,β2(xtL+1) | x0]

≤ Vβ1,β2(x0), (18)

where in the first equality we again used standard properties
of conditional expectations and the strong Markov property and
in the last inequality we used the fact that Vβ1,β2 takes only
nonnegative values.

Since L ≤ tL ≤ M̄L, from (18) we have that Vβ1,β2(x0) is also
an upper bound on E[

L
t=0 αtg(xt , ut) | x0], and, hence, we can

interchange the expectation and (finite) summation operations.
Taking the limit as L → ∞ we obtain
∞
t=0

E[αtg(xt , ut) | x0] ≤ Vβ1,β2(x0).

This completes the proof. �

The above theorem shows that the required control performance
in terms of the cost (2) is guaranteed by the proposed self-triggered
control law.

For sparse control applications (Gallieri & Maciejowski, 2012),
the savings in updates of actuator values is immediately clear from
the chosen setup. If the interest is in reducing the number of com-
munications between sensors, controller and actuators, one has to
distinguish two cases. For the case of sensors co-located with the
controller, the next update time can be computed at or closely to
the sensors. For distributed sensors the controller can compute and
broadcast the next update time. Both these implementations re-
sult in communication from sensors to controllers and controllers
to actuators only at the transmission times tl, l ∈ N.

4. On-line implementation

In this section, we discuss the on-line implementation of the
proposed self-triggered strategy. We start by showing how to test
if, for a fixed value of M , UM(x) ≠ ∅, for x ∈ Rnx , which is needed
to evaluate (14). Clearly, UM(x) ≠ ∅ if and only if

min
ū∈Rnu

E
M−1

j=0

αj x̄⊤

j Q x̄j + 2x̄⊤

j Sū + ū⊤Rū


+ αMVβ1,β2(x̄M) | x


≤ Vβ1,β2(x). (19)



T. Gommans et al. / Automatica 50 (2014) 1279–1287 1283
By using (8) and (12), we see that (19) is equivalent to

min
ū∈Rnu

x⊤FMx + x⊤GM ū +
1
2
ū⊤HM ū + cM ≤ Vβ1,β2(x),

where

FM = αMβ1Ā⊤

MPĀM +

M−1
j=0

αjĀ⊤

j Q Āj,

GM = 2

αMβ1Ā⊤

MPB̄M +

M−1
j=0

αj Ā⊤

j Q B̄j + Ā⊤

j S


,

HM = 2

αMβ1B̄⊤

MPB̄M +

M−1
j=0

αj B̄⊤

j Q B̄j + B̄⊤

j S + S⊤B̄j + R


,

cM = dM + β2α
M α

1 − α
tr(PEE⊤),

dM = αMβ1 tr

PĒM

M (ĒM
M )⊤


+

M−1
j=1

αj tr

Q ĒM

j (ĒM
j )⊤


. (20)

Note that HM ≻ 0 since P ≽ 0, α > 0 and

Q S
S⊤ R


≻ 0. To find

ū∗
:= argmin

ū∈UM (x)
x⊤FMx + x⊤GM ū +

1
2
ū⊤HM ū + cM ,

we solve

∂

∂ ū


x⊤FMx + x⊤GM ū +

1
2
ū⊤HM ū + cM


= 0,

which leads to x⊤GM + ū⊤HM = 0, and thus

ū∗
= −H−1

M G⊤

Mx =: KMx. (21)

The corresponding optimal cost in the left-hand side of (19) is
x⊤P∗

Mx + cM with P∗

M = FM −
1
2GMH−1

M G⊤

M . Hence, (19) holds,
i.e., UM(x) ≠ ∅, if and only if

x⊤P∗

Mx + c̄M ≤ β1x⊤Px, (22)

where

c̄M := dM − β2

M
j=1

αjtr(PEE⊤). (23)

We now see that (14a) can be rewritten as

M(x) = max

M ∈ {1, 2, . . . , M̄} | x⊤P∗

Mx + c̄M ≤ β1x⊤Px

, (24a)

and we know that the control input

KM(x)x ∈ UM(x)(x) (24b)

belongs to (14b). Then, the proposed control strategy, taking the
form (9), can be simply implemented as
tl+1 = tl + M(xtl),
ut = KM(xtl )

xtl , t ∈ N[tl,tl+1),
(25)

where the functionM : Rnx → N is given by (24a).

Remark 4 (Deterministic Case, i.e., E = 0). When no disturbances
act on (1) (E = 0), then from (20) and (23) we obtain that c̄M =

0 for all M . We can conclude from (1) and (25) that any initial
condition along the ray λx, λ > 0, will lead to the same triggering
sequence.
Remark 5 (Effect of Disturbances, i.e., E ≠ 0). The effect of distur-
bances on (22) is captured by c̄M , which is a linear function of the
disturbance covariance matrix given by EE⊤ and can be influenced
by β2 ≥ 1. In fact, from (20) and (23) it is easy to see that c̄M ,
M ∈ {1, 2, . . . , M̄}, can be made smaller by increasing β2 ≥ 1
(for fixed β1). Note that P∗

M ,M ∈ {1, 2, . . . , M̄}, is independent of
β2 and only depends on β1. Hence, by increasing β1 (with same β2)
M(x) will generally become larger.

In general, c̄M ≠ 0, M ∈ {1, 2, . . . , M̄}, which makes the trig-
gering rule (22) no longer invariant along rays (see Remark 4).
However, if the magnitude of the state is large compared to the
magnitude of the disturbance covariance matrix, then the trigger-
ing behavior is still similar to the deterministic case. Suppose now
that this is not the case, i.e., for a given (small) state x, c̄M plays an
important role in (22). From (20) and (13) we can conclude that an
unstable Awill favor large dM and, hence, positive c̄M . If c̄M is larger,
then for the same state x,M(x) given by (24a), will be smaller, which
is an indication that the average inter-transmission interval will be
smaller. Wewill observe this in the example provided in Section 5.
Contrarily, a stable Awill favor smaller dM , negative c̄M , and larger
M(x) for the same state x, which is an indication that the average
inter-transmission interval will be larger. This corresponds well
with intuition, as unstable systems require more attention (con-
trol updates).

Remark 6 (Minimum Inter-Transmission Interval). The minimum
inter-transmission interval for the closed-loop system given by (1),
(9) and (14) is defined as

Mmin := min

tx0,wl+1 − tx0,wl | l ∈ N, x0 ∈ Rnx and

w = [w0, w1, . . .], wi ∈ Rnw , i ∈ N

,

where we now included the explicit dependence of the transmis-
sion times on x0 and w = [w0, w1, . . .]. Based on the above rea-
soning, we obtain

Mmin = max{M ∈ {1, 2, . . . , M̄} | ∀x ∈ Rnx ,

x⊤P∗

Mx + c̄M ≤ β1x⊤Px}.

In the deterministic case, i.e., E = 0 and, as a consequence, c̄M = 0,
for allM , this reduces to

Mmin = max{M ∈ {1, 2, . . . , M̄} | P∗

M ≼ β1P}. (26)

Remark 7 (Effect of β1). For the sake of simplicity, consider that
E = 0 yielding that c̄M in (22) is zero for all M . If β1 is large, then
for a given state x, the condition x⊤(P∗

M − β1P)x ≤ 0 may hold
for large values of M . Hence, the system may operate in open loop
for a long time, with a control value obtained from (19), possibly
considerably moving away from the origin. We see that this is
possible since the final cost in (19) is bounded by β1 times the
cost of a periodic implementation afterM steps. As a consequence,
after a choice of a largeM ∈ {1, 2, . . . , M̄}, a considerable number
of transmissions may be required afterwards. This ‘greedy’ effect
(see also Remark 1) can be observed from the simulation results in
Section 5.

Note that (25) results in a ‘‘piecewise linear’’ control law, which
can be obtained by checking a finite number of inequalities as in
(22). In fact, it is easy to see that the state-space Rnx is partitioned
in regions induced by the inequalities

x⊤P∗

Mx + c̄M ≤ β1x⊤Px,

x⊤P∗

Nx + c̄M > β1x⊤Px, N = M + 1, . . . , M̄,

for M ∈ {1, 2, . . . , M̄}. Note that P∗

M , c̄M and P can be computed
off-line. In the absence of disturbances (E = 0), c̄M = 0 and these
regions are polyhedral.
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Fig. 1. Schematic representation of the considered system.

5. A numerical example

In order to illustrate the self-triggered strategy presented
in Section 2, we consider a system consisting of two masses
(m1 = m2 = 1) connected by a spring and damper, of which the
continuous-time dynamics are given by

ÿ1 = −ks(y1 − y2) − d(ẏ1 − ẏ2) + u + σ ω̇,

ÿ2 = ks(y1 − y2) + d(ẏ1 − ẏ2),

or equivalently, using x = [y1 y2 ẏ1 ẏ2]⊤, by the state-space
formulation

ẋ =

 0 0 1 0
0 0 0 1

−ks ks −d d
ks −ks d −d

 x +

0
0
1
0

 (u + σ ω̇)

=: Acx + Bcu + Ecω̇, (27)

where ks = 5 and d = 1 are the spring stiffness and damping coef-
ficient, respectively, and ω̇ is a scalar unitary variance white noise
process2 and σ is a positive constant. A schematic representation
of the considered system is given in Fig. 1. The control performance
is measured by a continuous-time infinite horizon discounted cost
function

Jc =


∞

0
e−αc sE


x⊤(s)x(s) + 25u⊤(s)u(s)


| x0


ds (28)

for αc ∈ R≥0. To convert this continuous-time setup into a
discrete-time setup, we apply exact discretization with sampling
period h = 0.25, assuming a zero-order hold input between two
sampling instants, which leads to a discrete-time LTI system of the
form (1), where A = eAch, B =

 h
0 eAc sdsBc and E =

 h
0 eAc sdsEc .

Similarly, by exact discretization of the continuous-time cost func-
tion (28), we obtain a discrete-time infinite horizon discounted
cost function taking the form (2), with


Q S
S⊤ R


=

 h

0
e−αc se


Ac Bc
0 0

⊤ 
I 0
0 25I


e


Ac Bc
0 0


ds

and α = e−αch, which is exactly equal to (28) given the sampled-
data implementation. As a consequence, all statements on cost pro-
vided below are expressed in terms of the continuous-time cost
(28). In the remainder of this section, we consider two cases. First,
we consider the casewhere there are no disturbances acting on the
system, i.e., E = 0, and as such, we recover an LQR like framework;
Second, we study the case where the system is subject to distur-
bances, i.e., E ≠ 0.

2 Formally, (27) corresponds to the stochastic differential equation dx = (Acx +

Bcu)dt + Ecdω, where ω is a scalar unitary covariance Wiener process.
Fig. 2. Cost of implementation at (average) inter-transmission times for different
control strategies, averaged over 100 initial conditions.

5.1. Self-triggered LQR control

In this section, we evaluate the effectiveness of the self-
triggered strategy in the absence of disturbances. We take σ = 0
(which implies E = 0) and αc = 0 (which implies α = 1) and, as
such,we recover an LQR like framework. Tomake a fair comparison
with standard periodic time-triggered LQR control, note that an
alternativeway to reduce the required communication is to simply
use larger h, i.e., to sample the system with a larger sampling
period. In this way fewer communication resources are required
as well, and we still obtain a guaranteed cost of the form (28)
via (3) by solving the corresponding discrete-time LQR problem
using (5). In Fig. 2 we compare this periodic time-triggered
LQR approach selecting larger sampling periods h with the STC
approach with M̄ = 150. We will plot the performance with
respect to the average sampling period havg . The results presented
are obtained by averaging over 100 initial conditions on the four
dimensional unit hypersphere. Fig. 2 shows the performance Jc of
the continuous-time controller and the performance Jd(h) of the
optimal periodic LQR controller for various sampling periods h.
Moreover, for β1 ∈ {1, 1.05, . . . , 1.45, 1.50}, Fig. 2 shows both the
upper-bound of the (averaged) cost for the STC implementation
Vβ1,β2(x0) = β1x⊤

0 Px0 and the (averaged) true cost of the STC
strategy (computed over a finite, but sufficiently large, horizon)
plotted against the ‘averaged’ inter-transmission times. Note that,
for E = 0, from (7)–(8) we see that β2 plays no role due to
the absence of disturbances. In fact, for E = 0 we have that
Vβ1,β2(x0) = β1V (x0). From Fig. 2 we can see that the STC strategy
can achieve havg = 10.89 for β = 1.20 with guaranteed cost
9.68, whereas periodic control with cost 9.68 requires sampling
at h = 4.46. Hence, on average we can sample and transmit a
factor 2.17 fewer by using the STC strategy while obtaining the
same performance guarantees. Moreover, the cost of the periodic
LQR implementation at h = 10.89 is 25.67, which is more than
2.5 times larger than the cost of the STC strategy at havg = 10.89.
Hence, this shows that the STC strategy can realize combinations
of average inter-transmission times havg and cost that cannot be
realized by periodic time-triggered LQR implementations. Table 1
shows the results for β1 = 1 to 1.3, and moreover contains the
guaranteed minimum inter-transmission times hmin := Mminh for
the STC strategy, determined using (26). Interestingly, theminimal
inter-transmission time hmin for the STC strategy with β1 = 1.20
is hmin = 3.75, which is not much lower than the corresponding
value h = 4.46 that is needed for a periodic LQR controllerwith the
same performance. From both Fig. 2 and Table 1 we observe that
for the STC strategy, increasing β1 above 1.20 is not useful for this
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Table 1
Results for self-triggered LQR strategy with different values of β1 .

β1 havg hmin β1 V (x0) True cost

1.00 0.2500 0.2500 8.0694 8.0694
1.05 5.9777 1.7500 8.4729 8.4285
1.10 6.4252 2.5000 8.8763 8.8095
1.15 7.2258 3.2500 9.2798 9.2000
1.20 10.8945 3.7500 9.6833 9.5772
1.25 10.0702 4.0000 10.0868 9.9543
1.30 9.3188 4.7500 10.4902 10.3315

Table 2
Results for different transmission sequences for two initial conditions.

x(1)
0 x(2)

0

havg (tx
(1)
0 ) 11.1413 11.1413

havg (tx
(2)
0 ) 10.6979 10.6979

β1(x
(i)
0 )⊤Px(i)

0 , i = 1, 2 2.3872 4.6968

True cost (tx
(1)
0 ) 2.3619 5.1760

True cost (tx
(2)
0 ) 2.4171 4.6408

example. A possible cause of this effect is the ‘‘greedy’’ behavior of
the STC strategy as mentioned in Remark 7.

Remark 8 (Other Time-Triggered Solutions/Feedback in the Trigger-
ing Mechanism). In this section, we compared our self-triggered
approach with the most common time-triggered control scheme,
namely, periodic (sampled-data) control, see Fig. 2. In general, it is
difficult to design alternative time-triggered solutions that, over
a range of initial conditions (or for various disturbance realiza-
tions wt , t ∈ N), yield similar performance in terms of utiliza-
tion of communication resources and control performance as the
proposed STC approach. To illustrate this fact and the need for
feedback in the triggering mechanism (as opposed to the ‘‘open-
loop’’ determination of the transmission times), consider the ini-
tial conditions x(1)

0 = [0.1126 0.0887 0.8330 − 0.5344]⊤

and x(2)
0 = [−0.9178 − 0.3530 − 0.1422 0.1130]⊤ and let

tx
(i)
0 , i = 1, 2, denote the sequence of triggering times obtained

from (25) for x(1)
0 and x(2)

0 , respectively. Table 2 shows the results
for the STC approach for these initial conditions for β1 = 1.20 and,
moreover, contains the results of simulating the system starting in
x(1)
0 but with the transmission times given by tx

(2)
0 , and vice versa.

We observe that the true costs for both initial conditions are higher
when the used transmission times are based on the other initial
condition. Compared to time-triggered approaches, self-triggered
control has the advantage of having ‘‘feedback’’ in determining
the transmission times, while a time-triggered control approach
selects the transmission times in an open-loop manner. Due to
this feedback, self-triggered control is able to obtain better perfor-
mance in terms of communication resources and control perfor-
mance over a range of initial conditions (or for various disturbance
realizations) than time-triggered control, in which one has to find
one sequence of transmission times that works well for all initial
conditions (and/or all disturbance realizations).

5.2. Self-triggered linear quadratic control with discounted cost

In this section, we consider the influence of disturbances on
the effectiveness of the STC strategy, meaning that we now take
E ≠ 0. More specifically, we consider the case where the actuation
of the system is subject to disturbances. For σ = 0.02, α = 0.99,
h = 0.25 and M̄ = 120, Fig. 3 shows the time response of the states
and inter-transmission times for the self-triggered strategy with
Fig. 3. State trajectories and inter-transmission times for STC strategy in the
presence of disturbances, with β1 = β2 = 1.1 and β1 = 1.1, β2 = 1.5.

Table 3
Results for self-triggered strategy, average over 10 initial conditions and 100Monte
Carlo simulations for each initial condition.

β1 β2 havg havg Cost Total Vβ1,β2 (x0)
t < 15 s t > 15 s t < 15 s cost

1.10 1.10 1.9539 0.3484 8.1106 8.1443 8.2951
1.10 1.50 3.1414 1.4447 8.1134 8.1560 8.3087

β1 = β2 = 1.1 starting from x0 = [0.49 −0.40 0.74 −0.25]⊤.
We observe that during the first 15 s the STC strategy significantly
reduces the required number of transmissions, despite the pres-
ence of the disturbance. However, after 15 s the STC strategy is not
able to significantly reduce the number of required transmissions.
This can be explained using the considerations provided in Re-
mark 5. In fact, when the state x is large in comparison to the noise
covariance, i.e., for about the first 15 s, we observe that the trig-
gering strategy shows a similar average transmission rate and per-
formance to the deterministic case. However, after 15 s the states
are close to the origin and the additional term c̄M due to distur-
bances dominates condition (22). By increasing β2 (hence, giving
away a bit of performance in steady state, see (7)–(8)), we can de-
crease c̄M . The results for the case where β1 = 1.1 and β2 = 1.5
are also shown in Fig. 3. For β2 = 1.5, we observe a significant re-
duction in communication resources, even if the state is close to
the origin. These observations are confirmed by 100 Monte Carlo
simulations over a finite, but sufficiently large, horizon for each of
the 10 initial conditions on the four dimensional unit hypersphere.
The averaged results are given in Table 3. With only a slight degra-
dation in performance (β1 = β2 = 1.1), and despite the presence
of disturbances, the STC strategy reduces the required communica-
tion during transients by a factor 7.8, on average, when compared
to time-triggered periodic control with h = 0.25. By studying the
second control configuration with an increased value of β2 to 1.5
we observe that, on average, the required communication reduces
also by a factor 5.8 after transients.

6. Conclusions

In this paper, we proposed a self-triggered control strategy
for discrete-time linear systems with (discounted) quadratic cost
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addressing two important issues: the guarantee of desirable per-
formance levels by co-design, and realizing a significant reduc-
tion in the utilization of the system’s communication and/or
actuator resources (compared to periodic time-triggered control).
Regarding the performance guarantees, the control laws and trig-
gering mechanisms were designed such that an a priori cho-
sen (sub-optimal) level of performance in terms of (discounted)
quadratic cost is guaranteed. Interestingly, our proposed method-
ology provided a solution to the problem of co-design of the feed-
back law and the triggering condition, a problem hardly addressed
in the literature. The designed self-triggered control strategy can
easily be implemented in practice as it results in a simple piece-
wise linear control law.

The effectiveness of the approach was illustrated by means of
a numerical example, showing a significant reduction in the usage
of the system‘s communication and/or actuator resources, without
trading much of the optimally achievable performance. In fact, for
the self-triggered LQR strategy, combinations of average sampling
periods and performance levels are obtained, which are not
achievable with standard periodic time-triggered LQR solutions.
As such, this paper is one of the first providing quantitative
evidence that aperiodic control strategies, such as the STC strategy
proposed in this paper, can significantly improve beyond time-
triggered periodic control. In the presence of disturbances, the
self-triggered strategy also realizes a significant reduction in
the usage of network resources, even at a slight degradation in
performance. As such, the proposed approach provides a viable
control strategy to balance the usage of the system’s resources and
control performance beyond the possibilities of standard periodic
time-triggered controllers.
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