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Abstract: In order to make the complex driving task of merging safer, in this paper we consider the
automated merging of an autonomous vehicle into a mixed-traffic flow scenario (i.e., traffic including
autonomous and manually driven vehicles). In particular, we propose a novel MPC-based algorithm to
perform a merging procedure from a double lane into a single lane and continue with (adaptive) cruise
control ((A)CC) functionality after the merge. The proposed MPC balances fast progress along the path
with comfort, while obeying safety and maximum allowed velocity bounds. Recursive feasibility, leading
to safety and proper behavior, is guaranteed by the design of a proper terminal set, extending existing
ones in the literature. The on-line MPC problem is translated into a mixed integer quadratic program
(MIQP) that can be solved for global optimality. Through numerical simulations we demonstrate the
behavior and effectiveness of the proposed MPC merging scheme.

Keywords: Autonomous vehicles; Predictive control; Trajectory Tracking and Path Following;
Nonlinear and optimal automotive control; Safety.

1. INTRODUCTION

Automated vehicles come with the promise that they will im-
prove mobility and transportation systems, making them safer,
more comfortable, more efficient and more sustainable. Addi-
tionally, for an increasing level of automation (Level 4+) (SAE,
2018) they will release the drivers from their driving tasks and
allow them to perform secondary activities during the drive.
Bringing these vehicles on the road will require a transition
where autonomous vehicles will coexist with manually driven
vehicles. As a result, one of the greatest challenges identified
in the literature is to plan safe and optimal trajectories for
automated vehicles in complex and uncertain situations, with
prior unknown movements of manually driven vehicles (Khonji
et al., 2020; Wang et al., 2020). To predict future movements
of manually driven vehicles, combined data-driven and model
based methods could be used. However, given these predictions,
the challenge remains to find an optimal trajectory and a con-
trol strategy for the automated Level 4+ vehicle in every road
situation (van Nunen et al., 2017; Paden et al., 2016).

Ideally, for Level 4+ systems, where drivers are not a backup
anymore, trajectory generation and control algorithms should
be scalable (i.e., function well in a broad mix of scenarios),
generalizable (i.e., apply also in new and unknown scenarios),
capable of dealing with manually driven vehicles, and benefit
(if possible and available) from other vehicles’ connectivity
and cooperation capabilities. In the development of Level 4+
systems, complex scenarios (e.g., scenarios with high traffic
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density and a lot of uncertainty) can pose major challenges in
mixed-traffic (i.e., traffic including autonomous and manually
driven vehicles) and can cause dangerous situations (Bouton
et al., 2019, 2020). One of these complex scenarios is lane
merging, which is the focus of this paper.

Merging into a dense traffic flow is a complex driving task, also
for human drivers, as they have to perform multiple tasks at
once (e.g., cognition (detecting empty space), decision making
(decide where to merge) and driving operations (drive car to
gap)) (Nagahama et al., 2021; Cao et al., 2019). This is also true
for an autonomous vehicle, due to uncertain measurements of
the surrounding vehicles, unknown intentions, unknown future
trajectories of other vehicles and interaction with other road
users (Hubmann et al., 2018; Bouton et al., 2020). When the
merging algorithm is not proactively able to make a decision in
time and find a gap, the autonomous vehicle can freeze and stop
functioning (Bouton et al., 2019, 2020), with all corresponding
risks involved.

In order to make merging safer, we present a new model pre-
dictive control (MPC) algorithm for merging. While developing
the MPC algorithm, the focus is on safety guarantees through a
rigorous proof of recursive feasibility and allowing good overall
driving behavior. This resulting algorithm is able to perform
the merging procedure from a double lane into a single lane. It
continues in an integrated manner, with adaptive cruise control
(ACC) functionality after the merge, all while guaranteeing an
appropriate time headway, which changes based on the stage
in the merging process (i.e., the ego vehicle in initial merging
lane, crossing the lane markings or being in the final lane). To
guarantee recursive feasibility of the MPC scheme at any time
we propose an appropriate control invariant terminal set, which



consists of the union of two disjoint sets based on merging
before or after the vehicle in the target lane. This forms an
enlargement of the terminal set in literature and avoids issues
that would be experienced with the set as proposed in Bali et al.
(2018), see Sec. 2 for a detailed discussion of related work.
The MPC is translated into a mixed integer quadratic program
(MIQP) that can be solved for global optimality. Through nu-
merical simulations we demonstrate the behavior and effective-
ness of the proposed merging scheme.

The remainder of this paper is as follows. Related work is
presented in Sec. 2. The problem and model setup for the
merging scenario is introduced in Sec. 3. In Sec. 4 we propose
our MPC for lane merging. In Sec. 5 we show the strength of
our new method in a numerical case study. This paper ends with
the conclusions and future work in Sec. 6.

2. RELATED WORK

The complex task of lane merging has received quite some
attention in recent years and different solutions and approaches
were proposed. In Bouton et al. (2020, 2019); Wang et al.
(2021) the problem of merging into dense traffic with au-
tonomous vehicles is solved by using reinforcement learning
(RL) and game theory. A drawback of RL might be that the
behavior of the controller is unpredictable in untrained situa-
tions, and given the safety-critical nature of automated driving
more transparent explainable methods with safety guarantees
are desirable. In Hubmann et al. (2018) local path planning
is considered, with merging an autonomous vehicle in an ur-
ban environment with high traffic density. The problem is for-
mulated as a Partially Observable Markov Decision Process
(POMDP), which includes the uncertain behavior of surround-
ing drivers in the state space with a motion model learned from
real-world data. The result is an algorithm that generates the
path the vehicle should take. However, no trajectory generation
and control is considered explicitly in Hubmann et al. (2018),
while this forms the focus in this paper.

Finally, several MPC-based solutions are available for au-
tonomous driving. For example, in Naus et al. (2010) an ACC
solution is proposed. However, the MPC-based ACC is not
shown to be recursively feasible, and in case infeasibility oc-
cures, the driving authority is giving back control to the driver.
This contrasts our research, where we prove recursive feasibil-
ity for the full merging scenario including the ACC functional-
ity after the merge. Further, in Katriniok et al. (2017); Schwei-
del et al. (2022) MPC is used to handle intersection automation,
Ioan et al. (2021) uses it for motion planning using mixed inte-
ger programming (MIP), Dixit et al. (2018) for overtaking with
potential fields, Alcalá et al. (2019) for trajectory tracking of
linear parameter varying (LPV) dynamic systems and Quirynen
et al. (2020) for obstacle avoidance. MPC is used to develop
trajectory generation in merging scenarios as well in Cao et al.
(2019); Bali et al. (2018); Mukai et al. (2017). In Cao et al.
(2019) the focus is on robustness enhancement and handling
sensor noise. In the corresponding MPC-development process,
a cooperative maneuver between two vehicles was developed,
different from our solution which focuses only on the ego vehi-
cle behavior, while including knowledge of the other road users.
In Mukai et al. (2017) an MPC-MIP merging path generation
is developed in a two-dimensional coordinate system, while
guaranteeing safety with predicting the other road users’ behav-
ior based on the initial state, car length and resulting available

gaps, without an explicit proof of recursive feasibility. This is
in contrast to our one-dimensional merging automation, which
includes full knowledge of target vehicles, maintaining a safe
time headway at anytime and a proof of recursive feasibility.
In Bali et al. (2018) a multi-vehicle MPC-MIQP controller
for merging at junctions is developed, different from our ego
vehicle lane merging automation. Differences are that the MPC
controller in Bali et al. (2018) solves a centralized multi-vehicle
solution, which incorporates all road users while giving priority
to certain vehicles, while in our research only the solution for
the ego-vehicle is determined, with full knowledge of the other
road users behavior and relative states. Further, collision pre-
vention is ensured in Bali et al. (2018) by using collision sets,
in contrast to our merging position-dependent safe following
distance. Similar as in this paper, Bali et al. (2018) shows the
recursive feasibility of the MPC-solution using time-headway
conditions on the vehicle distance. However, Bali et al. (2018)
shows recursive feasibility for a static obstacle and argues that
this holds for forward driving vehicles too. Different from our
proof, which includes directly dynamic obstacles, which leads
to a more explicit and practically less restrictive proof in case
the other road users’ velocity is non-negative.

In conclusion, to the authors’ best knowledge, merely no meth-
ods with proved feasibility exists for finding a trajectory in lane
merging scenarios with dynamic objects, which can also scale
to other scenarios, i.e., generalize to more situations (merging
and ACC). The majority of previous methods rely on transition-
ing the vehicle control to the human driver when no feasible
path is available or only prove the recursive feasibility for the
merging process in a specific situation. This can lead to danger-
ous situations, in the case where no feasible path is found. Find-
ing and executing a feasible path should be done completely by
the system in higher levels of vehicle automation. To handle
this complex task of merging in a fully automated way, a novel
method is needed.

3. PROBLEM FORMULATION & MODEL

In this section we discuss the merging use case, the vehicle
architecture, the adopted vehicle model and constraints, and the
problem formulation considered in this paper.

3.1 Use case description

In this research the objective is to develop a controller for
an autonomous vehicle, that should be able to execute the
following scenario (see Fig. 1):

(I) Initial position: The ego vehicle (Agent 1, grey vehicle
in Fig. 1) is driving on the ego lane. The target vehicle
(Agent 2, white car in Fig. 1) is driving on the target lane.

(II) Goal: The ego lane is closing off, requiring the ego
vehicle to merge into the target lane (with lane change
point LC, the fixed position where ego vehicle is at the
target lane for the first time), before a certain merging
point MP .

(III) Final position: The ego vehicle is driving on the target
lane, behind or in front of the target vehicle with a safe
relative distance (i.e., essentially using adaptive cruise
control (ACC) or cruise control (CC) functionality, re-
spectively).
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Fig. 1. Set-up of the lane-merging scenario.

3.2 Architecture of the autonomous vehicle

In Fig. 2 a high-level overview is shown of the control system
architecture needed for carrying out the merging manoeuvre. In
this figure, light grey blocks indicate algorithms assumed to be
already available, being a world model, a trajectory prediction
of other vehicles, a scenario generator, a path generator and
low-level vehicle controls. The white block, the block that is
developed in this paper, is a trajectory generation algorithm and
a vehicle control algorithm. In fact, we propose a model predic-
tive control (MPC) approach to provide an integrated solution
for trajectory generation and longitudinal vehicle control, under
the following assumptions:

(I) the path of the ego vehicle is fixed by a path generator and
exactly followed (i.e., the positions the vehicle will travel
during the merging process are given, but the speed of
traveling for the ego vehicle along the path is not known
and has to be determined );

(II) the future trajectory (i.e., position and velocity at any
time step) of the target vehicle (i.e., the other road users)
is known to the ego vehicle over the prediction horizon;

(III) the target vehicle is driving with a constant velocity, as
long as the ego vehicle is not preventing the target vehicle
from moving freely (i.e., when ego vehicle moves in front
of target vehicle the target vehicle starts to behave in an
ACC mode).
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Fig. 2. Overview of functions needed in the lane-merging
scenario, with light grey blocks assumed available and the
white block that has to be determined by our envisioned
MPC scheme.

3.3 Vehicle models

In this merging scenario, the dynamics of the ego and the target
vehicle (i.e., Agent 1 and 2, respectively) are formulated in

terms of the one-dimensional path coordinate sik with respect to
the center of vehicle i ∈ {1, 2} to the origin of the coordinate
system, the merging point MP , i.e., s1k = 0 indicates that
Agent 1 is at the merging point at time step k ∈ N0; velocity
vik (for Agent i ∈ {1, 2}); relative velocity ∆vk = v2k − v1k;
relative distance ∆sk = s2k − s1k and input acceleration uk

of the ego vehicle, all at discrete time k ∈ N0 (see Fig. 1).
Discrete time k ∈ N0 corresponds to real time t = kTs,
where Ts denotes the sampling period. By selecting the state as
xk =

[
∆sk ∆vk s1k v1k

]T ∈ Rnx with nx = 4, we can obtain
the relevant dynamics by exact discretization of the double
integrator dynamics, leading to

xk+1 = Axk +Buk (1)
with

A =

1 Ts 0 0
0 1 0 0
0 0 1 Ts

0 0 0 1

 and B =


−1

2
T 2
s

−Ts
1

2
T 2
s

Ts

 ,

where we made the modelling assumption in the dynamics that
the target vehicle (Agent 2) drives at constant speed. Future
work will include extensions towards the inclusion of varying
speeds

Note that, the dynamics are formulated in a one-dimensional
frame, with the distance towards MP . This is possible due to
the assumption that the ego vehicle path is exactly followed.

3.4 Vehicle constraints

For the ego vehicle, there are actuator limitations in terms of
minimal and maximal acceleration, given by umin < 0 <
umax. Hence, we must ensure that

umin ⩽ uk ⩽ umax for all k ∈ N0. (2)
Moreover, there are constraints for the maximally allowed
speed of the ego vehicle, vmax, which can vary from one road
segment to another, but for the considered merging scenario, we
assume it to be constant. Further, it is assumed that the speed is
always non-negative (i.e., vehicles are only driving forward or
stand still). Hence,

0 ⩽ v1k ⩽ vmax for all k ∈ N0. (3)

3.5 Control requirements and problem formulation

In the lane merging scenario it is desired that the following
requirements are met:

(i) Agent 1’s speed v1 should be as close as possible to the
desired speed v1ref with v1ref being set as, e.g., in a cruise
controller;

(ii) the merging behavior should be performed as efficiently
as possible in terms of fuel consumption (considered here
as to minimizing accelerations);

(iii) and achieving comfortable driving behavior (by minimiz-
ing step changes of control input related to jerk).

The objective of the paper can now be formulated as the design
of a control algorithm that solves the trajectory generation and
vehicle control problems in Fig. 2 in an integrated fashion for
the merging scenario described in Sec. 3.1 (including the safety
constraints, see Sec. 4.2) that meets the requirements (i)-(iii)
above, and adheres to the constraints (2) and (3) in Sec. 3.4.



4. CONTROLLER DESIGN

To develop an integrated solution for the trajectory generation
and the vehicle control, an MPC-based approach is used. As
a prediction model, we adopt the dynamics in (1). The cost
function and constraint sets for the MPC are defined below.

4.1 Cost function

To incorporate the desired requirements as defined in Sec. 3.5,
we propose the quadratic objective function for Agent 1 as

J(xk, Uk) := Q

N∑
j=1

(v1ref − v1k+j|k)
2 (4)

+R

N−1∑
j=0

(∆uk+j|k)
2 + S

N−1∑
j=0

(uk+j|k)
2

with xk|k = xk being the current state at time step k ∈ N0,
Uk = [uk|k, . . . , uk+N−1|k]

T denoting the predicted control
sequence of the agent over the control horizon with uk+j|k
the prediction of uk+j made at time step k and ∆uk+j|k =
uk+j|k−uk+j−1|k the predicted increment of the control input.
The constants Q > 0, R > 0 and S > 0 are positive weighting
coefficients, for the desired requirement (i) (i.e., speed as close
as possible to the desired speed), (iii) (i.e., achieving comfort-
able behavior by minimizing jerk) and (ii) (i.e., efficient fuel
consumption by minimizing accelerations) in Sec. 3.5, respec-
tively. Clearly, if one of the weighting coefficients is larger
than the other, the cost function will give more priority to that
desired requirement. Finally, N ∈ N denotes the prediction
horizon.

4.2 Constraints

The limitations on the deceleration and acceleration (as dis-
cussed in Sec. 3.4) result in the input constraint:

uk+j|k ∈ U := {u ∈ R|umin ⩽ u ⩽ umax} (5)

for j ∈ {0, 1, . . . , N − 1}. The limitations on the vehicle
speed lead to the following state constraint along the prediction
horizon:

xk+j|k ∈ X := {x ∈ R4|0 ⩽ v1 ⩽ vmax} (6)
where vmax dictates the maximal allowable speed and j ∈
{1, 2, . . . , N}.

Besides the hard state constraint (6), to guarantee safety, we will
include another hard state constraint, to enforce that Agent 1
keeps a safe (varying) distance dsafe from Agent 2 to avoid
collisions, when Agent 1 is behind Agent 2. When Agent 1 is in
front of Agent 2, we assume that Agent 2 will take care of this
safety distance (see assumption (3) in Sec. 3.2). Note that an
aggressive cut-in will not occur, since |∆s|⩾ 0 before Agent 1
is in front of Agent 2.

In fact, we will formulate the safety condition as a constraint
of the form |∆s|⩾ dsafe on the relative distance between
the vehicles. For proper merging and safety behavior dsafe
will depend on the situation and thus on the states during the
merge. In particular, we let dsafe depend on the position s1 of
Agent 1, relative to the merging point MP and the lane change
point LC, i.e., the point where Agent 1 crosses the line to the
target lane (see Fig. 1) and also on its velocity v1 (to introduce
an appropriate time headway (Swov,a, 2022; Swov,b, 2022)).

Hence, dsafe = dsafe(s
1, v1) is a function of the state variables

s1 and v1, and we propose to define it as follows:

(I) In case Agent 1 has not yet started the lane change
manoeuvre (i.e., when s1 < LC), then Agent 1 and
Agent 2 are still driving in separate lanes, with a safe
lateral distance, due to their paths being fixed. In this
situation we define dsafe(s

1, v1) := 0[m].
(II) In case Agent 1 started the lane change procedure, but

is not completely merged (i.e., LC < s1 < MP ), then
Agent 1 and 2 will partly drive in the same lane, therefore
a safe longitudinal distance towards Agent 2 is needed.
To accomplish this, we define dsafe(s

1, v1) := v1[m],
to guarantee a speed-dependent safety gap (i.e., a time
headway of 1[s])(Roelofsen, 2009).

(III) In case Agent 1 passed the merging point (i.e., s1 >
MP ), then Agent 1 and 2 drive in the same lane. This
calls for a safe longitudinal distance in case Agent 1
is behind Agent 2 (e.g., as seen in ACC functional-
ity)(Naus et al., 2010). Therefore, in this situation we set
dsafe(s

1, v1) := 2v1[m] to have a time headway of 2[s],
which is often used in ACC settings (Swov,a, 2022).

These constraints can be combined into the safety time head-
way constraint:

|∆s|⩾ dsafe(s
1, v1) =

{
2v1 if s1 > MP ∧ s2 > s1

v1 if LC < s1 ⩽ MP ∧ s2 > s1

0 otherwise.
(7)

4.3 Terminal set

In order to guarantee recursive feasibility, meaning that if the
MPC optimization problem is feasible at time k ∈ N0, then
it is also feasible at the next time step k + 1 , we will design
an appropriate terminal set. In particular, if the terminal set is
chosen to be controlled invariant for the dynamics (1), recursive
feasibility is guaranteed (Rawlings, 2009).
Definition 1. (Rawlings, 2009) A set XT is said to be controlled
invariant for the system xk+1 = Axk + Buk with input
constraint set U, if for all xk ∈ XT there is an input uk ∈ U
such that Axk +Buk ∈ XT .

The controlled invariant terminal set XT for our merging MPC
is the union of two disjoint sets that depend on whether Agent 1
merged in front or behind Agent 2, i.e., XT = Ω1∪Ω2 with Ω1

being a subset of the set described when ∆s ⩾ 0 ∧ s1 ⩾ MP
(i.e., a merge behind) and Ω2 a subset of ∆s ⩽ 0 ∧ s1 ⩾ MP
(i.e., a merge in front). In the vehicle dynamics it is assumed
that Agent 2 has a constant velocity and is not standing still
before the merging point; therefore, this invariant terminal set is
valid for a lane merging scenario of 2 vehicles, where the target
vehicle is a dynamic obstacle with constant speed. Note that
the terminal set conditions are defined in such a way that this
obstacle has zero acceleration. In future work, we are interested
in defining this set for a situation where the target vehicle is not
driving at a constant speed. Due to space limitations the proof
is omitted.
Theorem 2. The set

Ω1 = {
(
∆s ∆v s1 v1

)T ∈ R4|∆s ⩾ 2v1,

∆v ⩾ 2umin, 0 ⩽ v1 ⩽ vmax, s
1 ⩾ MP}

is controlled invariant for system (1) with input constraint set
[umin, umax], when umin < 0 ⩽ umax, time step 0 < Ts ⩽ 2,



2 ⩾ −vmax+v2
k

umin
and target car constant velocity at time k is

v2k ⩾ 0.

We select the set Ω2 as

Ω2 = {
(
∆s ∆v s1 v1

)T ∈ R4|∆s ⩽ 0,

0 ⩽ v1 ⩽ vmax, s
1 ⩾ MP}.

This set is used in case Agent 1 merges in front of Agent 2
(∆s ⩽ 0), at the end of the prediction horizon. In usual
traffic behaviour, the safety constraint has to be maintained
by Agent 2 in this scenario, however Agent 1 ensures a non-
aggressive cut-in due to safety constraints when it is still behind
Agent 2. Therefore, we will use Ω2 as part of the terminal set
XT = Ω1 ∪ Ω2 under the assumption that Agent 2 ensures
keeping a sufficiently large safety distance, e.g., by adjusting
its behavior according to an ACC functionality, thereby leading
to recursive feasibility, if we use XT as a terminal set. Note
that at the moment of the actual merge of Agent 1 in front of
Agent 2, (7) is in place enforcing a larger gap than just ∆s ⩽ 0.
In addition, the safety constraint (7) can be abandoned after the
actual merge has taken place and Agent 1 is in front of Agent 2.

In conclusion, in order to guarantee recursive feasibility in our
MPC scheme the following constraint is defined at the end of
the prediction horizon:

xN |k ∈ XT = Ω1 ∪ Ω2. (8)

Note that to prevent the solution being unintentionally infeasi-
ble before the merging point, the prediction horizon and time
step should be of sufficient length to incorporate the non-
feasibility before MP . In practice this will mean that the func-
tionality is activated when the car is sufficiently close to MP .

Note that this terminal set XT is in general not the maximal con-
trolled invariant set, inside X and given the allowable control
actions (Kerrigan et al., 2002). However, note that the terminal
set in (8) is larger than the set proposed by Bali et al. (2018),
in case v2k > − 1

2Tsumin. The (Bali et al., 2018)-set, is given in
the next theorem:
Theorem 3. (Bali et al., 2018) The set

Ω3 = {
(
∆s ∆v s1 v1

)T ∈ R4|∆s ⩾ thv
1, 0 ⩽ v1 ⩽ vmax}

with th > 0 the time headway, is controlled invariant for system
(1) with input constraint set [umin, 0], when umin < 0, if time
step 0 < Ts ⩽ 2th, th ⩾ vmax

−umin
− Ts

2 and target car constant
velocity at time k is v2k = 0[ms ].

When terminal sets (8) and Ω3 in Theorem 3 are compared
with each other, it can be seen that (8) restricts the maximum
relative velocity ∆v while Ω3 restricts the maximum velocity
v1. This means that our propsed terminal set has a larger
maximum allowed velocity set and terminal set, in case v2k >
− 1

2Tsumin, compared to Ω3. Hence, applying Ω3 restricts the
practical applicability of the control scheme to low speeds
while leveraging our proposed terminal set (8) does not.

4.4 Complete MPC algorithm

Assembling all the ingredients above, leads to the following
MPC problem for state xk at time k ∈ N0:

min
Uk

J(xk, Uk) (9)

s.t. xk+j+1|k = Axk+j|k +Buk+j|k, j = {0, 1, . . . , N − 1},
xk|k = xk,

xk+j|k ∈ X, j = {0, 1, . . . , N − 1},
uk+j|k ∈ U, j = {0, 1, . . . , N − 1},
xk+N |k ∈ XT ,

|∆sk+j|k| ⩾ dsafe(s
1
k+j|k, v

1
k+j|k), j = {0, 1, . . . , N − 1}.

Let U∗
k = [u∗

k|k, u
∗
k+1|k, . . . , u

∗
k+N−1|k] be a minimizer of (9)

at time k. The control input applied to the system (1) at time
k ∈ N0 is then uk = u∗

k|k for k ∈ N0. Note that existence
of a minimizer is in general guaranteed due to the fact that
the optimization problem can be reformulated as a MIQP with
positive definite cost following ideas from Bemporad et al.
(1999).

Note that by the construction of our terminal set, and under the
stated assumptions, the MPC scheme is recursively feasible,
i.e., if (9) is feasible for xk at time step k ∈ N0, then the
MPC problem is feasible at time step k + 1 for the new state
xk+1 = Axk +Bu∗

k|k.

5. NUMERICAL EXAMPLE

The behavior of the MPC-MIQP controller is verified and
compared to Bali et al. (2018) with a numerical example, which
could for example be witnessed during a traffic jam or urban
traffic scenario. In this example we will verify if desirable
behavior is obtained in two scenarios when Agent 1 merges
behind or in front of Agent 2, respectively. The following
parameters are selected: vref = 50

3.6 [
m
s ] (according to an urban

scenario), vmax = 1.1 · vref , Ts = 0.2[s], N = 50 (related to
a horizon of 10[s] to cover the whole lane merging scenario),
Q = 1, R = 1, S = 1 (to balance all desired requirements),
umin = −3[ms2 ], umax = 5[ms2 ], MP = 0[m], LC = −15[m],
initial positions s10 = −150[m], s20 = −144[m] (i.e., the
distance towards MP ) and ∆s0 = s20 − s10. Further, in the
terminal set vmax,T = v20 − 2umin[m/s] and vmax,T =
−umin(

1
2Ts + 2)[m/s] for the set defined in (8) and Theorem

3, respectively. 1

5.1 Scenario 1: Agent 1 merges behind Agent 2

In order to verify the behavior of Agent 1, when it merges
behind Agent 2, the initial velocities v10 = 12.5[ms ], v20 =

12[ms ] and ∆v0 = v20 − v10 [
m
s ] are selected. The MPC-MIQP

controllers results are visualised in Fig. 3. These results are
obtained in a maximum computation time of 0.4708[s] each
time step 1 , indicating that the sampling time of Ts = 0.2[s]
is currently too small for real world implementation. It is part
of future work to address this computational time, although
we expect that with a dedicated computation hardware our
algorithm can meet the real-time specification.

Agent 1 starts on the ego lane behind (in longitudinal direction)
Agent 2 in the merging lane. However, Agent 1’s velocity is
slightly larger than the velocity of Agent 2. It is not possible
to accelerate sufficiently to merge in front of Agent 2. There-
fore, the optimal solution is that Agent 1 decelerates and then
1 The numerical simulation has been executed with Gurobi MIQP solver in
Matlab R2022b on a Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz.
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Fig. 3. Merging behind Agent 2 behavior, resulting in path
coordinate si[m], velocity vi[ms ], acceleration ai[ms2 ] and
relative distance d = |s2 − s1|[m].

accelerates towards the velocity of Agent 2 and merges behind
Agent 2 with a safe distance. Agent 1 maintains the speed of
Agent 2 at a proper distance in the target lane (note, that this is
not the minimum safe distance, because this is not present in the
minimization of the cost function). During the merging process
the relative distance between the agents always satisfies the safe
distance. Note that (Bali et al., 2018)-controller velocity shows
a similar behavior, the differences between the controllers be-
comes visible in Scenario 2. The proposed merging MPC be-
haves properly, essentially integrating a merging controller and
an ACC, always adhering to all (safety) constraints.

5.2 Scenario 2: Agent 1 merges in front Agent 2

In order to verify the behavior of Agent 1 when it merges in
front of Agent 2, the initial velocities v10 = 12.5[ms ], v

2
0 =

11.7[ms ] and ∆v0 = v20 − v10 [
m
s ] are selected. The MPC

results are visualised in Fig. 4. These results are obtained in
a maximum computation time of 0.5316[s] 1 , what is larger
then the sampling time of Ts = 0.2[s], but in the same order of
magnitude.

Agent 1 starts in the ego lane behind Agent 2. However,
Agent 1’s velocity is larger than the velocity of Agent 2. There-
fore, the optimal solution is that Agent 1 accelerates even more,
until it drives the maximum allowed velocity vmax. Agent 1
overtakes Agent 2 (with ∆s ⩾ 0 in different lanes, i.e., no
aggressive cut-in scenario). Thereafter, Agent 1 decelerates and
maintains a constant velocity converging towards the desired
velocity vref , hence it behaves as a cruise controller (CC).
After the merge, Agent 1 drives further away from Agent 2.
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Fig. 4. Merging in front Agent 2 behavior, resulting in path
coordinate si[m], velocity vi[ms ], acceleration ai[ms2 ] and
relative distance d = |s2 − s1|[m].

During the merging process the relative distance between the
agents always satisfies the safe distance, as such showing that
our MPC solution works as desired. Note that in the (Bali
et al., 2018)-controller the velocity goes towards the maximum
allowed velocity as well, but for a shorter amount of time. For
this reason, the velocity of the ego vehicle is too low to merge in
front of Agent 2 and it is decided to merge behind, in contrast to
the merging in front of our proposed algorithm. In this scenario
leading to better performance, due to the definition of a smaller
terminal set in the (Bali et al., 2018)-controller. Note that, in
other scenarios the (Bali et al., 2018)-controller, can merge in
front as well. Interestingly, the overall proposed MPC scheme
integrates merging, a CC and ACC functionality, as shown with
the simulations.

6. CONCLUSIONS & FUTURE WORK

To overcome current challenges in trajectory generation for
autonomous vehicles, this paper introduces a new MPC-MIQP
algorithm for longitudinal lane merging automation. To extend
the functionality and its generalisability, this controller is able
to function during the lane merge and continues with (A)CC-
functionality afterwards. We showed that the proposed algo-
rithm is recursively feasible, using a larger controlled invariant
terminal set than known in literature. Therefore, the control
scheme adheres to the safety constraints during the complete
merging process. Interestingly, the overall MPC scheme inte-
grates merging, a CC and ACC functionality, as shown with the
simulations. Future work will focus on considering different
driving behavior of other road vehicles with uncertainty re-



garding their predicted behaviors (e.g., wider velocity profiles),
improve scalability of the algorithm by considering multiple
cars and consider lateral behavior of the ego vehicle. Also we
strive for guarantees regarding safe robust recursive feasibility
allowing variations in the velocity of the target vehicle and to
evaluate this algorithm in real-world experiments.
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