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Abstract: Event-triggered control is a control strategy which allows the savings of communica-
tion resources in networked control systems. In this paper, we are interested in periodic event-
triggering mechanisms in the sense that the triggering condition is only verified at predefined
periodic sampling instants, which automatically ensures that Zeno behavior does not occur. We
consider the case where both the output measurement and the control input are transmitted
asynchronously using two independent triggering conditions. The developed result is dedicated
to a class of nonlinear systems, where both the plant model and the feedback law can be described
by polynomial functions. The overall problem is modeled and analyzed in the framework of
time-delay systems, which allows to derive sum-of-squares (SOS) conditions to guarantee the
global asymptotic stability in terms of the sampling period and the parameters of the triggering
conditions. The approach is illustrated on a nonlinear numerical example.
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1. INTRODUCTION

The emergence of communication networks has made pos-
sible to connect the elements of a control loop through a
shared communication channel providing improvements in
terms of flexible architectures or reduced installation costs
(Hespanha et al., 2007; Zhang et al., 2013). It is important
in these systems to efficiently use the network since the
communication resources are limited and shared between
many components/applications (Hespanha et al., 2007).
Hence, traditional periodic time-triggered implementation
may not be suitable in such systems because with time-
triggered setups, the communication resources can be used
even if it is not necessary from the stability/performance
perspectives. To overcome this issue, the event-triggered
approach has been proposed in the literature as an al-
ternative to time-triggered control, see e.g., (Tabuada,
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2007; Heemels et al., 2008; Wang and Lemmon, 2011).
The main idea behind the event-triggered paradigm is
to transmit information across the network only when a
state/output-dependent rule is satisfied. Hence, the feed-
back information is only transmitted when it is necessary,
which can help in reducing the amount of transmission
over the network while guaranteeing the desired closed-
loop behavior.

Most existing event-triggered techniques are designed
based on continuous monitoring of the plant state/output
(Tabuada, 2007; Wang and Lemmon, 2011; Donkers and
Heemels, 2012; Guinaldo et al., 2014). However, to imple-
ment such type of triggering conditions, a special hardware
is required. Moreover, the treatment of Zeno behavior
becomes a challenging task, in particular when only an
output of the plant can be measured but not the full state
(Donkers and Heemels, 2012) or disturbances are present
(Borgers and Heemels, 2014). To overcome these issues, pe-
riodic event-triggered control (PETC) has been proposed
in the literature to create a balance between continuous
event-triggered control (CETC) and time-triggered con-
trol, see e.g., (Heemels et al., 2013; Heemels and Donkers,
2013), where the term PETC was coined. The essence is
to sample the output measurement in a periodic fashion
and to verify the event-triggering condition only at those
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periodic sampling instants. Hence, the minimal inter-event
time is naturally guaranteed by the sampling period, which
prevents the occurrence of Zeno behavior. In addition,
PETC results more easily implementable in digital plat-
forms than CETC paradigm.

Because of the previously mentioned advantages, PETC
has attracted the attention of many researchers. In sev-
eral works as (Eqtami et al., 2010; Peng et al., 2013;
Heemels and Donkers, 2013), it is studied the case of
discrete event-triggered schemes. The main difference be-
tween PETC and discrete event-triggered control is that
the latter approach assumes that an exact discretization of
the plant can be performed. This assumption can be very
restrictive (even non-realistic) in the presence of external
disturbances acting on the system. Additionally, dealing
with the plant in continuous-time as in PETC opens the
door for possible extensions to nonlinear systems, while
in the discrete event-triggered case only some Takagi-
Sugeno schemes have been performed (Hu et al., 2015). In
(Heemels et al., 2013, 2016) a formal analysis framework
for continuous-time plants is proposed. Furthermore, the
application of time-delay strategies to networked control
systems has been used to establish event-triggered con-
trollers, see e.g., (Hu and Yue, 2012; Peng and Han, 2013;
Yue et al., 2013; Aranda-Escolástico et al., 2016). However,
the existing literature considers principally the study of
linear systems, while the problem of nonlinear systems
remains open. To the best of our knowledge, only the
techniques of (Postoyan et al., 2013; Wang et al., 2016)
and (Li et al., 2015) handle the case of PETC for nonlinear
systems. In (Postoyan et al., 2013; Wang et al., 2016)
an emulation-based approach is developed to determine
the sampling period and redesign the triggering condition
to preserve a similar performance to CETC, while in (Li
et al., 2015) a distributed receding horizon control is de-
veloped.

In this paper, we explore the analysis techniques based
on time-delay systems to nonlinear polynomial systems
under PETC. Polynomial systems are a relevant class of
nonlinear systems with a wide range of applications, since
many control problems can be modeled or approximated
by polynomial systems, for example through Taylor expan-
sion (Ebenbauer and Allgöwer, 2006). Stability conditions
in terms of sum of squares (SOS) (Papachristodoulou and
Prajna, 2002; Prajna et al., 2004) are derived based on
the Lyapunov-Krasovskii theory. The use of the theory
developed for time-delay systems provides useful tools to
guarantee the stability of the system and has the poten-
tial to consider other network imperfections in a unified
framework and/or to handle more general implementation
situations. In addition, our scheme presents three main
differences in comparison with previous results (Postoyan
et al., 2013; Li et al., 2015; Wang et al., 2016). First, we ad-
dress the output-feedback case, which has been not studied
in the mentioned references. Second, we consider an event-
triggering mechanism in each channel (input and output).
Third, once the stability is proved, the implementation
does not require hard online computations as we only need
to verify a simple triggering condition on real time.

The remainder of the paper is organized as follows. No-
tation and necessary definitions are outlined in Section 2.
In Section 3, the studied class of polynomial systems and

the PETC design are presented. In Section 4, the stabil-
ity analysis of polynomial systems under PETC through
Lyapunov-Krasovskii theory is developed. In Section 5,
some simulations illustrate the theory. Finally, conclusions
are provided in Section 6.

2. PRELIMINARIES

We define the set of real numbers and the set of natural
numbers as R and N, respectively and R≥0 denotes the
set {x ∈ R|x ≥ 0}. The n-dimensional real space is defined
by Rn and we denote by L2[−h, 0] the space of functions

ϕ : [−h, 0] → R with the norm ∥ϕ∥L2 =

[
0∫

−h

∥ϕ(s)∥2ds

] 1
2

.

Let x ∈ Rn and y ∈ Rm. We refer to the euclidean norm

of vector x ∈ Rn as ∥x∥ :=
√
xTx. Let A ∈ Rn×m, the

transpose matrix of A is denoted by AT . The maximum
and the minimum eigenvalue of a symmetric real matrix
A are denoted by λmax(A) and λmin(A), respectively.

Symmetric matrices of the form

(
A BT

B C

)
are denoted as

(
A ⋆
B C

)
. We further denote a symmetric positive-definite

matrix P ∈ Rn×n as P > 0. Matrices P ≥ 0, P < 0 and
P ≤ 0 refer to symmetric positive-semidefinite, negative-
definite, and negative-semidefinite matrices, respectively.
We denote the identity matrix I ∈ Rn×n by In. A function
µ : R≥0 → R≥0 is of class K if it is continuous, zero at zero
and strictly increasing. We denote byW [−h, 0] the space of
functions ϕ : [−h, 0] → R, which are absolutely continuous
on [−h, 0), have finite limit limθ→0−ϕ(θ) and have square
integrable first order derivatives with the norm ∥ϕ∥W =

maxθ∈[−h,0] ∥ϕ(θ)∥+

[
0∫

−h

∥ϕ̇(s)∥2ds

] 1
2

. Given x : R → Rn,

we denote by xt : [−h, 0] → Rn the function given by
xt(θ) = x(t + θ), for θ ∈ [−h, 0] and t ∈ R. We define a
scalar polynomial function such as p(x) : Rn → R and a
monomial vector g(x) ∈ Rm such that its ith component is

gi(x) = xd1i
1 xd2i

2 · · ·xdni
n with d1i, ..., dni ∈ N nonnegative

integers. Then, we say that a polynomial p is SOS if it can
be written as a sum of squares of forms of x, i.e., if and only
if there exists a monomial g(x) and a positive-semidefinite
matrix P such that p(x) = gT (x)Pg(x).

We make use of the following Leibniz formula in the
stability analysis.

Leibniz formula (Dieudonné, 2013): Consider x ∈ Rn,
t ∈ R, A ⊂ Rn open, and I = [a, b] ⊂ R. Let f : A×I → R
be a continuous function such that the partial derivative
of f with respect to x exits, and is continuous on A × I.
Also suppose that the functions a(x), b(x) : A → I are
both continuously differentiable. Then,

d

dx

(∫ b(x)

a(x)

f(x, t)dt

)
=

∫ b(x)

a(x)

∂f(x, t)

∂x
dt

+ f(x, b(x))
db(x)

dx
− f(x, a(x))

da(x)

dx
.

(1)

The following inequality will be also useful to construct a
bound on some integral terms in the stability analysis.
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Jensen inequality (Jensen, 1906): Let M ∈ Rm×m be a
symmetric positive definite matrix, a, b ∈ R scalars with
b > a, and ω : [a, b] → Rm an integrable vector function.
Then, it holds that for any β ∈ [a, b]∫ b

a

ωT (β)Mω(β)dβ ≥

1

b− a

(∫ b

a

ω(β)dβ

)T

M

(∫ b

a

ω(β)dβ

)
.

(2)

3. PROBLEM STATEMENT

We consider the nonlinear system

ẋ(t) = f (x(t), û(t)) ,

y(t) = q (x(t)) ,

u(t) = Kg1(ŷ(t)),

x(t0) = x0,

(3)

where x(t) ∈ Rnx is the state vector, x0(t) ∈ Rnx is
the initial condition, y(t) ∈ Rny is the output vector,
u(t) ∈ Rnu is the control input vector and t ∈ R≥0. It
is assumed that f , q are polynomial vector functions, g1
is a monomial vector function and K is a feedback gain
of appropriate dimensions. ŷ(t) and û(t) are the output
and the input received by the controller and the actuator,
respectively. Since we study a PETC implementation of
a polynomial system, we assume that the plant and the
controller communicate with each other over a digital
network. Hence, the plant output and the control input
are only transmitted to the controller and to the plant at
discrete time instants tyk and tuk , k ∈ N, respectively.

To efficiently use the network, we consider that the se-
quences of transmission instants are produced by two
event-triggering mechanisms. Since we aim for a PETC
implementation, the output transmission times (to trans-
mit from the sensor to the controller (ETM-SC)) are deter-
mined by a criterion based on the sampled measurements,
produced with sampling period h > 0 in instants lh, l ∈ N,
and the input transmission times are determined by a cri-
terion based on the computed inputs (to transmit from the
controller to the actuator (ETM-CA)), as shown in Figure
1. The sampled output is obtained from the plant and the
first event-triggering mechanism (ETM-SC) decides if each
sampled output is transmitted or not to the controller.
When an output is transmitted, a new input signal is
computed. If the second event-triggering condition (ETM-
CA) is satisfied, then the recently computed input signal is
transmitted to the actuator. As a consequence, the output
measurement and the control input are asynchronously
transmitted due to different triggering conditions, but they
are synchronously sampled with sampling period h.

Then, the actual transmitted output is ŷ(t) = y(tyk), for t ∈
[tyk, t

y
k+1), where t

y
k is the aforementioned last transmission

instant of the output y. The control law u(t) = Kg1(ŷ(t))
is static and has been designed in continuous-time such
that the closed-loop system (3) is globally asymptotically
stable. Since the input signal is updated in the actuator
only if another triggering condition is satisfied, we obtain

û(t) = u(tuk), for t ∈ [tuk , t
u
k+1), (4)

where tuk is the last transmission instant of the control
input u. We define now the following output error ey(t) :=

Fig. 1. Block diagram of the system. (Solid) Continu-
ous signals. (Dotted) Periodic time-triggered signals.
(Dashed) Event-triggered transmissions.

ŷ(t)−y(t), which is reset to zero at each triggering instant
tyk. Similarly, the input error is defined by eu(t) := û(t)−
u(t), which is reset to zero at each triggering instant tuk .
Consequently, the ETM is defined by

tyk+1 = inf {lh > tyk | Cy (ŷ(lh), y(lh)) ≥ 0, l ∈ N} ,
tuk+1 = inf {lh > tuk | Cu (û(lh), u(lh)) ≥ 0, l ∈ N} ,

(5)

where Cy (ŷ(t), y(t)) := eTy (t)ey(t)−σ2
yy

T (t)y(t) with σy ≥
0 and Cu (û(t), u(t)) := eTu (t)eu(t) − σ2

uu
T (t)u(t) with

σu ≥ 0.

We analyze the stability by using the framework of time-
delay systems (Fridman, 2014, 2010; Gu et al., 2003). To
that end, we define an artificial delay δ(t) = t − lh for
t ∈ [lh, (l + 1)h). Hence, for t ∈ [lh, (l + 1)h), the control
input in (4) can be expressed as

û(t) = eu(lh) + u(lh)

= eu(lh) +Kg1(ey(lh) + y(lh)) (6)

= eu(t− δ(t)) +Kg1(ey(t− δ(t)) + y(t− δ(t))).

Finally, the control problem to solve can be summarized.

Statement 1. Given the polynomial system (3), design
the sampling period h and the threshold parameters σy, σu

for ETM (5) such that the closed-loop system (3), (5) is
globally asymptotically stable.

4. MAIN RESULTS

In this section, the global asymptotic stability of the
PETC system formed by the nonlinear system (3) with
ETM (5) is studied. For this purpose, we make use of the
following lemma for time-delay systems.

Lemma 1. ((Fridman, 2014), Lemma 2). Let ϵ1, ϵ2 and ϵ3
be positive numbers. If there exists a functional V :
R × W [−h, 0] × L2[−h, 0] → R≥0 continuous from the
right for all x satisfying (3), absolutely continuous and
differentiable for t ̸= lh and satisfies

ϵ1∥x(t)∥2 ≤ V (t, xt, ẋt) ≤ ϵ2∥xt∥2W (7)

lim
t→lh−

V (t, xt, ẋt) ≥ V (t, xt, ẋt)|t=lh (8)

V̇ (t, xt, ẋt) ≤ −ϵ3∥x(t)∥2, t ̸= lh, (9)

then the system is globally asymptotically stable.

Condition (7) implies that the Lyapunov functional is
positive definite and radially unbounded. The inequality
(8) ensures that the functional does not increase at the
sampling times lh, where it can be discontinuous. Finally,
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Jensen inequality (Jensen, 1906): Let M ∈ Rm×m be a
symmetric positive definite matrix, a, b ∈ R scalars with
b > a, and ω : [a, b] → Rm an integrable vector function.
Then, it holds that for any β ∈ [a, b]∫ b

a

ωT (β)Mω(β)dβ ≥

1

b− a

(∫ b

a

ω(β)dβ

)T

M

(∫ b

a

ω(β)dβ

)
.

(2)
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x(t0) = x0,

(3)
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Fig. 1. Block diagram of the system. (Solid) Continu-
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(Dashed) Event-triggered transmissions.
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σu ≥ 0.

We analyze the stability by using the framework of time-
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that end, we define an artificial delay δ(t) = t − lh for
t ∈ [lh, (l + 1)h). Hence, for t ∈ [lh, (l + 1)h), the control
input in (4) can be expressed as

û(t) = eu(lh) + u(lh)

= eu(lh) +Kg1(ey(lh) + y(lh)) (6)

= eu(t− δ(t)) +Kg1(ey(t− δ(t)) + y(t− δ(t))).

Finally, the control problem to solve can be summarized.

Statement 1. Given the polynomial system (3), design
the sampling period h and the threshold parameters σy, σu

for ETM (5) such that the closed-loop system (3), (5) is
globally asymptotically stable.

4. MAIN RESULTS

In this section, the global asymptotic stability of the
PETC system formed by the nonlinear system (3) with
ETM (5) is studied. For this purpose, we make use of the
following lemma for time-delay systems.

Lemma 1. ((Fridman, 2014), Lemma 2). Let ϵ1, ϵ2 and ϵ3
be positive numbers. If there exists a functional V :
R × W [−h, 0] × L2[−h, 0] → R≥0 continuous from the
right for all x satisfying (3), absolutely continuous and
differentiable for t ̸= lh and satisfies

ϵ1∥x(t)∥2 ≤ V (t, xt, ẋt) ≤ ϵ2∥xt∥2W (7)

lim
t→lh−

V (t, xt, ẋt) ≥ V (t, xt, ẋt)|t=lh (8)

V̇ (t, xt, ẋt) ≤ −ϵ3∥x(t)∥2, t ̸= lh, (9)

then the system is globally asymptotically stable.

Condition (7) implies that the Lyapunov functional is
positive definite and radially unbounded. The inequality
(8) ensures that the functional does not increase at the
sampling times lh, where it can be discontinuous. Finally,
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p(x, ẋ, xδ, eδu, e
δ
y) = p1(x, ẋ) + p2(x, x

δ) + p3(x
δ, eδu, e

δ
y) + p4(x

δ, eδy) (13)

where

p1(x, ẋ) = 2ẋTJT (x)Pg2(x) + h2ẋTJT (x)RJ(x)ẋ, p2(x, x
δ) = −

(
g2(x)− g2(x

δ)
)T

R
(
g2(x)− g2(x

δ)
)
,

p3(x
δ, eδu, e

δ
y) = −µu

(
eδu

T
eδu

)
+ µu

(
σ2
ug

T
1

(
eδy + q

(
xδ

))
KTKg1

(
eδy + q

(
xδ

)))
,

p4(x
δ, eδy) = −µy

(
eδy

T
eδy

)
+ µy

(
σ2
yq

T
(
xδ

)
q
(
xδ

))
.

(9) makes that the functional decreases in every interval
between sampling instants. To fulfill the conditions of
Lemma 1, consider the following assumption.

Assumption 1: There exist a monomial g2(x) ∈ Rng2 of
x which includes all the elements of degree 1, matrices
P,R ∈ Rng2×ng2 , positive scalars σ, ϵi for i = 1, 2, 3,
functions µu, µy ∈ K, and a strictly positive sampling
period h such that

gT2 (x)Pg2(x)− ϵ1g
T
2 (x)g2(x) is SOS (10)

gT2 (x)Rg2(x)− ϵ2g
T
2 (x)g2(x) is SOS (11)

− p
(
x, ẋ, xδ, eδu, e

δ
y

)
− ϵ3g

T
2 (x)g2(x) is SOS, (12)

where x, ẋ, xδ, eδu, e
δ
y are arbitrary variables, p is defined in

(13) and J(x) = ∂g2(x)/∂x.

Conditions (10)-(11) will determine the form of the Lya-
punov functional and the resulting fulfillment of (7)-(8).
The negativeness of the functional derivative is implied by
(12), as will be shown in the proof of the next theorem.

Theorem 1. Consider system (3) with the event-triggering
mechanism (5). Suppose that Assumption 1 holds. Then,
system (3) with event-triggering conditions (5) is globally
asymptotically stable.

Proof : First, observe that the stability of the system
(3) is guaranteed if the system ġ2(x(t)) = J(x(t))ẋ(t) is
stable because of the definition of g2(x(t)) in Assumption
1. Consider the following Lyapunov functional candidate
V (t, g2t, ġ2t) = V1(g2t) + V2(t, ġ2t) with

V1(g2t) = gT2 (x(t))Pg2(x(t))

V2(t, ġ2t) = h

∫ 0

−h

∫ t

t+s

ġT2 (x(v))Rġ2(x(v))dvds,

where P , R and g2 as given in Assumption 1. Note that
conditions (10)-(11) are satisfied with some symmetric
positive definite matrices P , R and scalars ϵ1 and ϵ2. Con-
ditions (10)-(11) guarantee that the Lyapunov functional
is positive and lower bounded by λmin(P )∥g2(x(t))∥2 ≥
λmin(P )∥x(t)∥2. It is also satisfied that V (t, g2t, ġ2t) is
upper bounded by a function of ∥g2t∥W as follows. The
term V1 is clearly upper bounded by

V1(g2t) ≤ λmax(P )∥g2(x(t))∥2. (14)

For V2(t, ġ2t), we exchange the order of the integrals
with the corresponding change of the limits of integration

such that V2(t, ġ2t) = h
∫ t

t−h

∫ v−t

−h
ġT2 (x(v))Rġ2(x(v))dsdv.

Solving the inner integral, we obtain that

V2(t, ġ2t) = h

∫ t

t−h

(v + h− t)ġT2 (x(v))Rġ2(x(v))dv. (15)

Finally, we perform the change of variables v = θ+t, which

leads to V2(t, ġ2t) = h
∫ 0

−h
(θ + h)ġT2 (xt(θ))Rġ2(xt(θ))d(θ).

Due to ġT2 (xt(θ))Rġ2(xt(θ)) ≥ 0 (since R > 0), we have

h
∫ 0

−h
θġT2 (xt(θ))Rġ2(xt(θ))dθ ≤ 0. Then, it holds that

V2(t, ġ2t) ≤ h2λmax(R)

0∫

−h

∥ġ2(xt(θ))∥2dθ. (16)

In view of (13) and (16), condition (7) of Lemma 1 is
verified. To check (8), we observe that V1 is continuous
and that ẋ(t) is continuous for t ∈ ((l − 1)h, lh), l ∈ N.
Consequently, from (15)

h

∫ lh

lh−h

(v + h− lh)ġT2 (x(v))Rġ2(x(v))dv =

lim
t→lh−

h

∫ t

t−h

(v + h− t)ġT2 (x(v))Rġ2(x(v))dv,

and lim
t→lh−

V (t, g2t, ġ2t) = V (lh, g2t, ġ2t) is fulfilled. To

satisfy (9), the derivative of V (t, g2t, ġ2t) is computed.

If we take J(x) = ∂g2(x)/∂x, it yields V̇1(g2t) =
2ẋT (t)JT (x(t))Pg2(x(t)). For V2(t, ġ2t), we apply twice
the Leibniz formula (1)

V̇2(t, ġ2t) = h

∫ 0

−h

d

dt

(∫ t

t+s

ġT2 (x(v))Rġ2(x(v))dvds

)

= h2ẋT (t)JT (x(t))RJ(x(t))ẋ(t)

− h

∫ t

t−δ(t)

ġT2 (x(s))Rġ2(x(s))ds

− h

∫ t−δ(t)

t−h

ġT2 (x(s))Rġ2(x(s))ds.

The second integral term in the last part can be ignored
because it is a negative term. Hence, we avoid to increase
the order of the sum of squares. The first integral term is
bounded using Jensen inequality (2), leading to

− h

∫ t

t−δ(t)

ġT2 (x(s))Rġ2(x(s))ds

≤ − h

δ(t)

(∫ t

t−δ(t)

ġ2(x(s))ds

)T

R

(∫ t

t−δ(t)

ġT2 (x(s))ds

)

≤ − (g2(x(t))− g2(x(t− δ(t)))
T ×

R (g2(x(t))− g2(x(t− δ(t))) .

Consequently,

V̇ (t, g2t, ġ2t) ≤ 2ẋT (t)JT (x(t))Pg2(x(t))

− (g2(x(t))− g2(x(t− δ(t)))
T
R (g2(x(t))− g2(x(t− δ(t)))

+ h2ẋT (t)JT (x(t))RJ(x(t))ẋ(t).

Finally, to provide a negative term for the error functions,
we add and subtract µu(e

T
u (t − δ(t))eu(t − δ(t))) and

µy(ey(t− δ(t))T ey(t− δ(t))) and bound the positive parts
using the triggering conditions defined in (5) knowing
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that µu and µy are K-functions. This allows us to obtain
negative terms of eu(t− δ(t)) and ey(t− δ(t)) sufficiently
large to bound those terms which appears from (6). Hence,

V̇ (t, g2t, ġ2t) ≤ p
(
x(t), ẋ(t), x(t− δ(t)),

eu(t− δ(t)), ey(t− δ(t))
)
. (17)

Thus, from (17) we obtain that condition (12) implies (9)
and the globally asymptotic stability of the system. �

Remark 1: The form of the function µu and µy should
be provided to solve the SOS conditions. Since it may be
decisive for the stability analysis because it should contain
the negative terms of eu(t − δ(t)) and ey(t − δ(t)), which
bounds their respective nonnegative terms coming from
ẋ(t), a possible choice is to take µu or µy of a polynomial
form, i.e. µu(s) = a1s + a2s

2 + a3s
3 + ...ans

n for some
a1, ..., an ≥ 0, which can be added as free variables in
the SOS conditions, and increase the order until obtaining
desired results. A similar procedure can be followed for µy.

Remark 2: The number of decision variables of the SOS
problem depends strongly on the number of the states
and the degree of the plant. As a result, the problem
may be numerically complicated to solve. In this regard,
less conservative solutions, i.e, larger sampling period
or relaxed triggering conditions, can be obtained with
improved Lyapunov functionals (Fridman, 2014; Seuret
et al., 2013). However, the number of decision variables
may be increased excessively.

5. NUMERICAL EXAMPLE

In this section, an example is studied to illustrate the
effectiveness of the proposed strategy in Section 4.

Consider the system

ẋ(t) =

{
ẋ1(t) = −x3

1(t) + x2
2(t) + û(t)

ẋ2(t) = x1(t)

y(t) = x1(t) + x2(t) + x2
2(t),

(18)

where x1 and x2 are the states of the plant and y is the
output. The control input is u(t) = Kg1(ŷ(t)), where the
feedback gain can be simply K = −1 and gT1 (ŷ(t)) = ŷ(t).
To study the stability in the PETC case, we obtain a
time-delay expression for û(t) using (6) and considering
that ey(t) = ey(t − δ(t)) = ŷ(t − δ(t)) − y(t − δ(t))
and eu(t) = eu(t − δ(t)) = û(t − δ(t)) − u(t − δ(t)) for
t ∈ [lh, (l + 1)h). Then,

û(t) = eu(t− δ(t))− ŷ(t− δ(t))

= eu(t− δ(t))− y(t− δ(t))− ey(t− δ(t)).
(19)

for t ∈ [lh, (l + 1)h). Due to the form of û(t), the ETM
(5) will produce the same events (for σu = σy). Hence,
we can consider that the events will be synchronously
triggered and σu = 0 and eu(t) = 0 for all t. To
guarantee the stability through Theorem 1, we have to
choose g2. A possibility is to start with the lowest degree
for the monomial and to increase the order until obtaining
feasible values of P and R which satisfy (10)-(12). The
conditions of Theorem 1 could be satisfied with gT2 (x(t)) =(
x1(t) x2(t) x2

1(t) x1x2 x2
2(t)

)T
. For h = 0.01s, σy = 0.19,

ϵ1 = ϵ2 = ϵ3 = 10−3 and µy(s) = 2.69s positive
definite matrices P and R are obtained using the toolbox
SOSTOOLS (Papachristodoulou and Prajna, 2002) for
MATLAB leading to

Fig. 2. Evolution of x with only an ETM at the sensor-
controller channel. (Solid lines) PETC. (Dashed lines)
Periodic control.

Fig. 3. Inter-event times obtained with h = 0.01s, σy =
0.19 and σu = 0.

P =




2.72 ⋆ ⋆ ⋆ ⋆
0.77 2.66 ⋆ ⋆ ⋆
0.16 0.03 1.17 ⋆ ⋆
−0.11 0.15 0.32 0.60 ⋆
−0.04 −0.14 −0.14 0.04 0.11




R =




5843.00 ⋆ ⋆ ⋆ ⋆
−150.76 7912.60 ⋆ ⋆ ⋆
−0.05 −0.15 0.03 ⋆ ⋆
−0.23 0.05 −0.00 0.06 ⋆
13.77 −680.46 0.11 0.03 495.53




with eigenvalues λ(P ) = (0.06 0.46 1.31 1.95 3.47) and
λ(R) = (0.03 0.06 433.62 5832.30 7895.21), respectively.
Simulating the system (18) during 50 s with control law
(19), initial conditions x0 = (5 1)T , sampling period
h = 0.01 s, ETM (5) and σy = 0.19, we obtain the results
depicted in Figure 2. We observe that the states tend
asymptotically to the equilibrium. In addition, the inter-
event times (Figure 3) show the aperiodic transmission of
the output signal and consequently the aperiodic update
of the input signal. In fact, the number of triggered events
results 557, which makes an average inter-event time of
0.09 s, which is considerably larger than the designed
sampling period.

6. CONCLUSIONS

The design of PETC control laws for nonlinear systems is a
complicated task (Postoyan et al., 2013; Wang et al., 2016)
and here we proposed a new method for polynomial sys-
tems, which allows the study of a wide number of control
problems. The scheme considers the possibility of event-
triggering in the input channel, in the output channel or in
both of them and the global asymptotic stability of the sys-
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that µu and µy are K-functions. This allows us to obtain
negative terms of eu(t− δ(t)) and ey(t− δ(t)) sufficiently
large to bound those terms which appears from (6). Hence,

V̇ (t, g2t, ġ2t) ≤ p
(
x(t), ẋ(t), x(t− δ(t)),

eu(t− δ(t)), ey(t− δ(t))
)
. (17)

Thus, from (17) we obtain that condition (12) implies (9)
and the globally asymptotic stability of the system. �

Remark 1: The form of the function µu and µy should
be provided to solve the SOS conditions. Since it may be
decisive for the stability analysis because it should contain
the negative terms of eu(t − δ(t)) and ey(t − δ(t)), which
bounds their respective nonnegative terms coming from
ẋ(t), a possible choice is to take µu or µy of a polynomial
form, i.e. µu(s) = a1s + a2s

2 + a3s
3 + ...ans

n for some
a1, ..., an ≥ 0, which can be added as free variables in
the SOS conditions, and increase the order until obtaining
desired results. A similar procedure can be followed for µy.

Remark 2: The number of decision variables of the SOS
problem depends strongly on the number of the states
and the degree of the plant. As a result, the problem
may be numerically complicated to solve. In this regard,
less conservative solutions, i.e, larger sampling period
or relaxed triggering conditions, can be obtained with
improved Lyapunov functionals (Fridman, 2014; Seuret
et al., 2013). However, the number of decision variables
may be increased excessively.

5. NUMERICAL EXAMPLE

In this section, an example is studied to illustrate the
effectiveness of the proposed strategy in Section 4.

Consider the system

ẋ(t) =

{
ẋ1(t) = −x3

1(t) + x2
2(t) + û(t)

ẋ2(t) = x1(t)

y(t) = x1(t) + x2(t) + x2
2(t),

(18)

where x1 and x2 are the states of the plant and y is the
output. The control input is u(t) = Kg1(ŷ(t)), where the
feedback gain can be simply K = −1 and gT1 (ŷ(t)) = ŷ(t).
To study the stability in the PETC case, we obtain a
time-delay expression for û(t) using (6) and considering
that ey(t) = ey(t − δ(t)) = ŷ(t − δ(t)) − y(t − δ(t))
and eu(t) = eu(t − δ(t)) = û(t − δ(t)) − u(t − δ(t)) for
t ∈ [lh, (l + 1)h). Then,

û(t) = eu(t− δ(t))− ŷ(t− δ(t))

= eu(t− δ(t))− y(t− δ(t))− ey(t− δ(t)).
(19)

for t ∈ [lh, (l + 1)h). Due to the form of û(t), the ETM
(5) will produce the same events (for σu = σy). Hence,
we can consider that the events will be synchronously
triggered and σu = 0 and eu(t) = 0 for all t. To
guarantee the stability through Theorem 1, we have to
choose g2. A possibility is to start with the lowest degree
for the monomial and to increase the order until obtaining
feasible values of P and R which satisfy (10)-(12). The
conditions of Theorem 1 could be satisfied with gT2 (x(t)) =(
x1(t) x2(t) x2

1(t) x1x2 x2
2(t)

)T
. For h = 0.01s, σy = 0.19,

ϵ1 = ϵ2 = ϵ3 = 10−3 and µy(s) = 2.69s positive
definite matrices P and R are obtained using the toolbox
SOSTOOLS (Papachristodoulou and Prajna, 2002) for
MATLAB leading to

Fig. 2. Evolution of x with only an ETM at the sensor-
controller channel. (Solid lines) PETC. (Dashed lines)
Periodic control.

Fig. 3. Inter-event times obtained with h = 0.01s, σy =
0.19 and σu = 0.

P =
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
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R =




5843.00 ⋆ ⋆ ⋆ ⋆
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−0.05 −0.15 0.03 ⋆ ⋆
−0.23 0.05 −0.00 0.06 ⋆
13.77 −680.46 0.11 0.03 495.53




with eigenvalues λ(P ) = (0.06 0.46 1.31 1.95 3.47) and
λ(R) = (0.03 0.06 433.62 5832.30 7895.21), respectively.
Simulating the system (18) during 50 s with control law
(19), initial conditions x0 = (5 1)T , sampling period
h = 0.01 s, ETM (5) and σy = 0.19, we obtain the results
depicted in Figure 2. We observe that the states tend
asymptotically to the equilibrium. In addition, the inter-
event times (Figure 3) show the aperiodic transmission of
the output signal and consequently the aperiodic update
of the input signal. In fact, the number of triggered events
results 557, which makes an average inter-event time of
0.09 s, which is considerably larger than the designed
sampling period.

6. CONCLUSIONS

The design of PETC control laws for nonlinear systems is a
complicated task (Postoyan et al., 2013; Wang et al., 2016)
and here we proposed a new method for polynomial sys-
tems, which allows the study of a wide number of control
problems. The scheme considers the possibility of event-
triggering in the input channel, in the output channel or in
both of them and the global asymptotic stability of the sys-
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tem is analyzed through a Lyapunov-Krasovskii approach
combined with ideas from sums of squares methods. A
numerical example is provided to observe the benefits of
the approach in polynomial systems.

Future work may include the study of the asynchronous
sampling of the input and the output with dynamic output
feedback controllers and the extension to more general
classes of nonlinear problems. It may be interesting also
the search for improvements for the SOS conditions in
order to reduce the computational effort necessary to
guarantee the stability.

REFERENCES
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