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Abstract— Two new frequency-domain conditions for stabil-
ity analysis of the feedback interconnection between a linear
time-invariant (LTI) system and a sector-bounded hybrid inte-
grator are presented. Compared to existing results, the condi-
tions exploit more knowledge regarding the hybrid integrator’s
switching strategy, and guarantee the existence of a quadratic
Lyapunov function that does not need to be positive within the
full state-space. The conditions can be verified graphically on
the basis of frequency response function data in a manner that
is comparable to the classical Popov plot, making these tools
valuable in practice.

I. INTRODUCTION

Hybrid integrator-gain systems, abbreviated with HIGS,
are nonlinear, sector-bounded integrators that can be used for
overcoming fundamental performance limitations of linear
time-invariant (LTI) control systems [1]. Given the apparent
integrator characteristics with a phase lag of only 38.15
degrees as observed from its describing function, HIGS is
particularly appealing from a motion control perspective.
These performance benefits, however, do not come without
a cost. The nonlinear nature of the sector-bounded integrator
renders many classical frequency-domain tools for stability
and performance analysis inapplicable. As the current motion
control practice highly exploits frequency-domain methods,
lack of appropriate tooling may compromise applicability of
nonlinear control strategies like HIGS in industry.

To accommodate for this situation, in [2] conditions for
stability of HIGS-controlled systems that are graphically
verifiable on the basis of (measured) frequency response
function (FRF) data are proposed. A key step in the approach
is to write the closed-loop system in a Lur’e form, being
the feedback interconnection of an LTI system and HIGS.
Sector-boundedness of HIGS is then exploited for formulat-
ing circle-criterion-like stability conditions, see also [12].

Although useful in practice, the conditions presented in
[2] may render a rather conservative estimate on closed-
loop stability. To some extent, this is caused by the fact that
only sector-boundedness is taken into account in the anal-
ysis, while the interplay between the underlying integrator
dynamics of HIGS and the LTI dynamics is being ignored.
Hence, in the context of [2], HIGS is regarded as a generic
sector-bounded nonlinearity. This is evidenced by the fact
that the parameter associated with the integrator dynamics
plays no decisive role in the stability analysis whatsoever.
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In this paper, two novel, distinct sets of frequency-domain
conditions for stability analysis of the feedback interconnec-
tion of an LTI system and a dynamic nonlinearity such as
HIGS are presented. The conditions exploit more information
regarding the switching rules, as well as the interaction
between the underlying dynamics of HIGS and the dynamics
of the linear portion of the closed-loop system. The presented
conditions relate to the results in [4], [5], [6], [7], [8],
[9], [10], where frequency-domain conditions for classes
of switched and hybrid systems under arbitrary- and state-
dependent switching are given, which are all based on the
existence of a common quadratic Lyapunov function. Espe-
cially, the first set of conditions presented in this paper can be
seen as a special case of the results in [8], [9], but tailored
to HIGS. The second set of frequency-domain conditions
presented in this paper is truly novel in the sense that it makes
explicit use of the S-procedure for guaranteeing the existence
of a Lyapunov function that is guaranteed to be positive
only in a subset of the state space, and for which its time-
derivative is negative within this same subset. This relaxation
increases the admissible class of Lyapunov functions for
proving stability, and in that sense reduces conservatism in
the analysis. The practical relevance of the conditions comes
from the possibility to verify these graphically on the basis of
(measured) FRF data. This is shown to be done in a manner
that is comparable to the classical Popov plot [3].

Although mainly intended for HIGS, with some adjust-
ments the ideas and results outlined in this paper may be
applicable to a larger class of piecwise linear systems.

This paper is organized as follows. In Section II the control
system setting and HIGS are discussed. In Section III, the
main results of this paper are presented in the form of
two theorems that set forth graphically verifiable frequency-
domain conditions for stability. Application of the presented
results is demonstrated on an example in Section IV. Sec-
tion V states the main conclusions.

II. SYSTEM DESCRIPTION

The results in this paper are derived for the single-
input single-output (SISO) control configuration as depicted
in Fig. 1, which represents the feedback interconnection
of a linear time-invariant (LTI) system G and the hybrid
integrator-gain system H. The latter is specified in more
detail in Section II-A below.

The LTI system G is given in state-space format by

G :

{
ẋl = Alxl +Blu+Bww,

y = Clxl +Dlu+Dww
(1)
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Fig. 1: Feedback interconnection of an LTI system G and HIGS H.

with states xl(t) ∈ Rn, exogenous input w(t) ∈ R, con-
trolled output y(t) = −z(t) ∈ R, and control input u(t) ∈ R
at time t ∈ R≥0. It is assumed that (Al, Bl, Cl, Dl) is
minimal. Moreover,

Gyu(s) = Cl (sI −Al)−1Bl +Dl, (2a)

Gyw(s) = Cl (sI −Al)−1Bw +Dw (2b)

denote the transfers from u to y, and w to y, respectively.
The following assumption on the transfer functions Gyu(s)
and Gyw(s) in (2) is made.

Assumption 1. The transfer functions Gyu(s) and Gyw(s) in
(2) have a relative degree of at least two, i.e., Dl = Dw = 0,
and ClBl = ClBw = 0.

This assumption aids the proofs in this paper and is con-
sidered a mild assumption within a motion control context
where plants are typically described by double integrators
with additional structural dynamics, which naturally lead to
a relative degree of two or higher.

A. Hybrid Integrator-Gain System (HIGS)

In this paper, the hybrid integrator-gain system is repre-
sented as the piecewise linear (PWL) system with discontin-
uous right-hand side, given by

H :


ẋh = ωhz, if (z, u, ż) ∈ F1,

xh = khz, if (z, u, ż) ∈ F2,

u = xh,

(3)

where xh(t) ∈ R denotes the state of the integrator, z(t) ∈ R
is the input. The input function z is assumed to be at least
one-time differentiable, the time-derivative is denoted by ż,
and u(t) ∈ R is the generated output. The parameter ωh ∈
R>0 is the integrator frequency, and kh ∈ R>0 is the gain
value. The active dynamics of HIGS are dictated by the sets
F1 and F2, which are defined by

F1 :=
{

(z, u, ż) ∈ R3 | khzu ≥ u2
}
\ F2, (4a)

F2 :=
{

(z, u, ż) ∈ R3 | u = khz ∧ ωhz2 > khżz
}
. (4b)

Note that the union of these sets, F := F1 ∪ F2 ={
(z, u, ż) ∈ R2 | khzu ≥ u2

}
defines the [0, kh]-sector, and,

therefore, the choice for F1 and F2 in (4) confines the
input-output trajectory of HIGS to this sector. For a more
detailed discussion on HIGS, the choice for the sets in (4),
and different modelling setups, the reader is referred to e.g.,
[2], [11], and the references therein.

B. Closed-loop system description

Due to the PWL nature of HIGS (3), and under Assump-
tion 1, the closed-loop system in Fig. 1 naturally admits the
PWL representation

Σ :

{
ẋ = Aix+Bw, if Ex ∈ Fi, i ∈ {1, 2} ,
y = Cx

(5)

with augmented state vector x(t) = [xl(t)
>, xh(t)]> ∈

Rn+1, exogenous input w(t) ∈ R, and controlled output
y(t) ∈ R at time t ∈ R≥0. The system matrices are given by

A1 =

[
Al Bl
−ωhCl 0

]
, and A2 =

[
Al Bl

−khClAl 0

]
, (6)

and furthermore B = [B>l , 0]>, and C = [Cl, 0]. The matrix
E extracts the states from x that determine mode switching
of HIGS, that is, Ex = [z, u, ż]>, and is, therefore, given by

E> =

[
−C>l 0 −(ClAl)

>

0 1 0

]
. (7)

When the sub-dynamics governed by the matrix A1 are
active, the closed-loop system (5) is said to be in ‘integrator-
mode’, whereas the dynamics governed by A2 are referred
to as ‘gain-mode’. Note that A2 results from explicit dif-
ferentiation of the algebraic constraint xh = khz in (3).
The closed-loop system (5) admits two alternative represen-
tations, namely,

ẋ = A1x− bv1(x) +Bw, (8)

and
ẋ = A2x+ bv2(x) +Bw, (9)

where v1(x) = ϕ(Ex)cx and v2(x) = (1− ϕ(Ex))cx with

ϕ(Ex) =

{
0, if Ex ∈ F1,

1, if Ex ∈ F2,
(10)

b = [0, ωh]> and c = [Cy

(
kh
ωh
A− I

)
, 0]. Here, ϕ(Ex)

can be seen as an ‘on/off’ switch, which satisfies the sector
constraint ϕ(Ex) ∈ [0, 1], and 1−ϕ(Ex) ∈ [0, 1]. In fact, the
representation in (8) or (9) allows for direct application of the
circle-criterion, see e.g. [12, Theorem 8]. The interesting as-
pect is that the internal integrator/gain dynamics of HIGS (3)
are encapsulated in the linear part of the closed-loop system,
while state-dependent switching is captured by ϕ(Ex). This
viewpoint on the dynamics is instrumental in the upcoming
analysis. Switched systems with state-dependent constraints
are also considered in [8], [9].

C. Problem formulation

The main objective of this paper is to derive sufficient
conditions for assessing input-to-state stability (ISS) of the
closed-loop system in (5) using FRFs.

Definition 1 ([2]). The closed-loop system in (5) is said to
be input-to-state stable (ISS), if there exist a KL-function
α and a K-function β such that for any initial condition
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x(0) = x0 ∈ Rn+1 and any bounded input signal w, all
corresponding solutions to (5) satisfy for all t ∈ R≥0

‖x(t)‖ ≤ α(‖x(0)‖, t) + β

(
sup

0≤τ≤t
‖w(τ)‖

)
. (11)

Due to the discontinuous nature of the PWL system
(5), the existence of solutions is not immediate. In [11] it
has been shown that for inputs w belonging to the class
of piecewise Bohl functions [11, Definition 2], existence
and forward completeness of solutions to (5) is formally
guaranteed. In the remainder, it is assumed that locally
absolutely continuous solutions to (5) exist for all t ∈ R≥0
and for all bounded inputs and initial states.

III. MAIN RESULTS

This section presents the main results of the paper in
the form of two theorems consisting of different sufficient
frequency-domain conditions for guaranteeing ISS.

Theorem 1. Consider the closed-loop system (5) with As-
sumption 1 satisfied. Suppose that the following conditions
hold:

1) The matrix A1 given in (6) is Hurwitz;
2) There exist constants τ1 ≥ 0 and τ2 ∈ R such that

1 + Re {W1(jω)} > 0 for all ω ∈ R, (12)

where

W1(jω) := (c+ τ1cz + τ2h)(jωI −A1)−1b (13)

with b = [0, ωh]>, c = [Cy( khωh
A−I), 0], cz = [−Cy, 0], and

h = [−khCy,−1]. Then, (5) is ISS.

Proof. The proof is given in Appendix A.

The conditions in Theorem 1 can be verified using (mea-
sured) FRFs in a Popov-like graphical manner. To see how,
first note that the integrator-mode matrix A1 represents the
system matrix of the negative feedback interconnection of
Gyu(s) in (2a) and HIGS replaced by the LTI integrator
ωh/s, see also Fig. 1. Stability of this linear feedback inter-
connection, and thus the Hurwitz property of A1, can be ver-
ified by applying the Nyquist stability criterion [13, Section
6.3] to the open-loop characteristic L(jω) = ωh

jωGyu(jω).
Next, observe that W1(s) in (13) represents the transfer

function from an input v that enters the input channel in the
LTI integrator, to the output q = z− kh

ωh
ż+τ1z+τ2(khz−u).

On the basis of Fig. 1, with w = 0, H = H1(s) = ωh/s,
and z = −y one finds

W1(s) =

(
1 + τ1 + τ2kh −

kh
ωh
s

)
Gzv(s)− τ2Guv(s),

with

Gzv(s) = cz(sI −A1)−1b = − H1(s)Gyu(s)

1 +H1(s)Gyu(s)
, (14a)

Guv(s) = H1(s) (Gzv(s) + 1) =
H1(s)

1 +H1(s)Gyu(s)
,

(14b)

and where Gyu(s) is given in (2a). Verifying (12) in condi-
tion 2) amounts to verifying if there exist τ1 ≥ 0 and τ2 ∈ R
such that

1+Re
{(

1− kh
jω

ωh

)
Gzv(jω) + τ1Gzv(jω)

+τ2

(
kh −

ωh
jω

)
Gzv(jω)− τ2

ωh
jω

}
> 0

(15)

holds. By noting that Gzv(jω) = Re {Gzv(jω)} +
jIm {Gzv(jω)} one finds that (15) is equivalent to

1 +X1(jω)− τ1Y1(jω)− τ2Z1(jω) > 0, (16)

where

X1(jω) := Re {Gvz(jω)}+ kh
ω

ωh
Im {Gvz(jω)} , (17a)

Y1(jω) := −Re {Gvz(jω)} , (17b)

Z1(jω) :=
ωh
ω

Im {Gvz(jω)} − khRe {Gvz(jω)} . (17c)

One can verify that condition (16) implies that in the
(x, y, z)-space, the curve given by (17) should lie to the right
of the two-dimensional plane defined by 1+x−τ1y−τ2z = 0,
which can be verified graphically. Note, however, that finding
τ1, τ2 for ensuring this property, might be a cumbersome
task. On the other hand, by fixing either τ1 or τ2 a priori,
the graphical test becomes easier to verify at the cost of
possibly introducing conservatism. For example, when fixing
τ1, the two-dimensional curve given by (X̃1, Z1) with X̃1 :=
X1−τ1Y1 should lie to the right of the line 1+x−τ2z = 0,
i.e., a line that passes through (−1, 0) with a slope of 1/τ2. A
similar test follows when fixing τ2. Due to the resemblance
with the traditional Popov plot, Theorem 1 (after fixing
one of the two parameters τ1, τ2) thus provides a graphical
Popov-like stability test.

Theorem 1 guarantees the existence of a common
quadratic Lyapunov function (CQLF) for the pair of system
matrices A1 and A1−b(c+τ1cz+τ2h) = A2−b(τ1cz+τ2h),
see also [9, Comment 1]. Clearly, this shows that the gain-
mode matrix A2 itself does not need to be Hurwitz. For
τ1 = τ2 = 0 the conditions reduce to the circle-criterion
which guarantees the existence of a (CQLF) for the pair
(A1, A2), and thus verifies stability for a system that switches
arbitrarily between integrator-mode and gain-mode. Theo-
rem 1 exploits the interaction of the LTI dynamics in G (1)
and HIGS’ integrator dynamics in (3) in an explicit manner.
Compared to the existing frequency-domain conditions for
HIGS in [2, Theorem 1], the system matrix A in (1) does not
have to be Hurwitz, which typically provides an advantage
when using dynamic nonlinearities such as HIGS in open-
loop configurations. A possible drawback, however, is the
need for A1 to be Hurwitz, whereas it is known that an
unstable A1 may still yield a stable closed-loop system, and
may even largely contribute to improved closed-loop perfor-
mance. To address this issue, the next result is developed.

Theorem 2. Consider the closed-loop system (5) with As-
sumption 1 satisfied. Suppose that the following conditions
hold:
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1) The matrix A−khBuCy with (A,Bu, Cy) given in (1)
is Hurwitz;

2) There exists a constant τ ≥ 0 such that

1 + Re {W2(jω)} > 0 for all ω ∈ R, (18)

where

W2(jω) = (τωh(cz + cu) + cs + cz − 2cu)(jωI − Â2)−1b
(19)

with Â2 := A2 + 2
kh
bh, b = [0, ωh]>, h = [−khCy,−1],

cz = [−Cy, 0], cu = [0, 1
kh

], and cs = [− kh
ωh
CyA, 0]. Then,

(5) is ISS.

Proof. The proof is given in Appendix B.

Similar as before, the conditions in Theorem 2 can be
verified in a graphical Popov-like manner. First observe that
the matrix A−khBuCy represents the negative feedback in-
terconnection of Gyu given in (2a) with a gain kh. Hence, for
verifying the Hurwitz property of this matrix, one can apply
the Nyquist stability criterion to the open-loop characteristic
L(jω) = khGyu(jω).

Next, observe that Â2 can be seen as the system matrix of
the negative feedback interconnection of the system kh

ωh
(s+

2ωh

kh
)Gyu(s) with HIGS being replaced by a low-pass filter,

i.e., H = H2(s) = ωh/(s + 2ωh/kh). As such, it follows
that W2(s) in (19) represents the transfer function from an
input v entering the input channel in H2(s) to the output
q = τ̃(z + u/kh) + khż/ωh + z − 2u/kh, with τ̃ = τωh.
After some manipulation one finds

W2(s) =

(
τ̃ + 1 +

kh
ωh
s

)
Gzv(s)−

(
2− τ̃
kh

)
Guv(s),

with

Gzv(s) = cz(sI − Â2)−1b = −H2(s)Gyu(s)

1 + khGyu(s)
, (20a)

Guv(s) = khGzv(s) +H2(s) =
H2(s)

1 + khGyu(s)
, (20b)

and where Gyu(s) is given in (2a). Verifying condition (18)
amounts to finding τ ≥ 0 such that

1 +X2(jω)− τωhY2(jω) > 0, (21)

where

X2(jω) := −Re {Gzv(jω)} − kh
ω

ωh
Im {Gzv(jω)}

− (2ωh/kh)2

ω2 + (2ωh/kh)2
,

(22a)

Y2(jω) := −2Re {Gzv(jω)} − 2 · (ωh/kh)2

ω2 + (2ωh/kh)2
. (22b)

Then, in the (x, y)-plane, the curve defined by (22) should
lie to the right of a line that passes through the point (−1, 0)
with a slope of 1/(τωh).

The key differences between Theorem 1 and Theorem 2
regarding HIGS are as follows. First, Theorem 1 assumes
only the integrator-mode of HIGS to be stable, whereas
Theorem 2 assumes only the gain-mode of HIGS to be

stable. Hence, both results are applicable to different cases.
Second, the frequency-domain conditions in Theorem 2
guarantee the existence of a Lyapunov function that satisfies
V (x) > 0 for all x ∈

{
x ∈ Rn+1 | Ex ∈ F

}
\ {0}, i.e.,

one that is only guaranteed to be positive definite in the
sector, see Appendix B for details. On the other hand, Theo-
rem 1 and many other existing frequency-domain conditions
for switched systems in general, and HIGS in particular,
typically guarantee the existence of a common Lyapunov
function satisfying V (x) > 0 for all x ∈ Rm \ {0}, i.e.,
positive definite within the full state-space, which sometimes
is too restrictive.

IV. EXAMPLE

In this section, applicability of the presented tools is
demonstrated on a motion control example. Conform Fig. 1,
the linear transfer function from u to y, see (2a), is given
by Gyu(jω) = C(jω)P (jω), where P (jω) represents the
experimental motor-load motion system depicted in Fig. 2,
which consists of two rotating inertias connected by a thin,
flexible shaft, and C(jω) is the linear part of the controller.
Non-collocated actuation is considered, i.e., measurements
by the encoder at the load side (right side) are separated
from actuation by the motor side (left side). The measured
FRF data is provided in Fig. 3.

1
2

3

4 4

Fig. 2: Motor-load motion system with 1©: actuator (motor side),
2©: sensor (load side), 3©: flexible shaft, and 4©: rotating inertias.

The linear part of the controller is given by C(s) =
Cpid(s)Cn(s) with

Cpid(s) = kp

(
1 +

ωi
s

+
s

ωd

)
s+ ωc
ωc

ω2
lp

s2 + 2βωlps+ ω2
lp

,

Cn(s) =

(
ωp
ωz

)2

· s
2 + 2βzωzs+ ω2

z

s2 + 2βpωps+ ω2
p

.

Note that C(s) in series with HIGS represents a PID-type
of controller with a HIGS-based low-pass filter that aims
at improved phase properties, see also the design rationale
presented in [1]. The following parameter values are used:
kp = 1.1 N/m, ωi = 3 · 2π rad/s, ωd = 6 · 2π rad/s, ωlp =
38 ·2π rad/s, β = 0.9, ωz = 63 ·2π, βz = 0.01, ωp = 90 ·2π,
βp = 0.1, and ωc = ωh|1+4j/π|/kh with ωh = 40·2π rad/s,
and kh = 1. The open-loop characteristics of the integrator
mode, being Li(jω) := C(jω)P (jω)ωh/jω, and the gain-
mode, Lk(jω) := khC(jω)P (jω) are shown in Fig. 4.
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Fig. 3: Measured frequency response function of P (jω).
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Fig. 4: Open-loop characteristics of the integrator-and gain-mode.
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Fig. 5: Popov-like plot of the (X2, Y2)-curve.

By the Nyquist stability criterion, it follows that the
integrator-mode dynamics are unstable, whereas the gain-
mode dynamics are stable. Hence, Theorem 1 cannot be
applied, and thus one need to use Theorem 2 for asserting
closed-loop stability. For τ = 0.55

ωh
the conditions of Theo-

rem 2 are satisfied. The corresponding (X2, Y2)-plot (22) is
given in Fig. 5. Observe that in the critical frequency range
f ∈ [6, 18] Hz, there is some margin before violating the
conditions, which implies a certain amount of robustness.
This range corresponds to the rigid-body mode of the plant,
which is typically measured with high-accuracy. Using The-
orem 2, stability is verified for all ωh ≥ 28 · 2π rad/s.

V. CONCLUSIONS

In this paper, two novel frequency-domain conditions
for verifying stability of hybrid integrator-gain systems are
presented. The conditions explicitly take into account the
sector properties in integrator- and/or gain-mode, and the
interaction between HIGS’ dynamics and the dynamics of
the interconnected LTI system. In fact, the existence of
quadratic Lyapunov functions is guaranteed that may satisfy
the corresponding demands only in those subregions of the
state-space in which trajectories can evolve. The conditions
can be verified in a manner that is comparable with the
classical Popov plot, making them valuable tools in practice.

APPENDIX

A. Proof of Theorem 1

First observe that, under the conditions of the theorem and
Assumption 1, one has 1 + Re {limω→∞W1(jω)} > 0. In-
deed, due to the assumption on the relative degree of Gyu one
has lim|ω|→∞Gyu(jω) = 0. Since also lim|ω|→∞ ωh/jω =
0, one can eventually conclude that lim|ω|→∞W1(jω) =
0. Together with (12), this implies the transfer function
1+W1(s) to be strictly positive real (SPR) [3, Definition 6.4].
By virtue of the Kalman-Yakubovich-Popov (KYP) lemma
[3, Lemma 6.3], this implies the existence of a positive
definite matrix P = P>, matrix L, and a constant ε > 0
such that

A>1 P + PA1 = −L>L− εP (24a)

Pb = (c+ τ1cz + τ2h)> −
√

2L>. (24b)

Consider the quadratic function V (x) = x>Px that will be
shown to be an ISS-Lyapunov function. Note that V (x) > 0
for all x 6= 0. The time-derivative of V along the solutions
of (5) in integrator-mode (i = 1) satisfies

V̇ = x>
(
A>1 P + PA1

)
x+ 2x>PBw

(24)
= −x>L>Lx− εV + 2x>PBw

≤ −εV + 2‖PB‖‖x‖‖w‖ ≤ −µV + γ‖w‖2,

(25)

where for the second inequality use is made of Young’s
inequality, and with µ = ε−δ/λmin(P ), and γ = 2‖PB‖2/δ.
Choosing 0 < δ < ελmin(P ) guarantees µ, γ > 0.

Next, consider the time-derivative of V along the trajec-
tories of (5) in gain-mode (i = 2), which gives

V̇ = x>(A>2 P + PA2)x+ 2x>PBw

= x>(A>1 P + PA1)x− 2x>Pbcx+ 2x>PBw,

where it is used that A2 = A1 − bc. Substituting (24) yields

V̇ = −x>L>Lx− εV + 2x>PBw

− 2(x>((c+ τ1cz + τ2h)> − L>
√

2)cx)

= −x>(L−
√

2c)>(L−
√

2c)x− εV
− 2τ1x

>c>czx− 2τ2x
>c>hx+ 2x>PBw

≤ −εV + 2x>PBw − 2τ1z

(
z − kh

ωh
ż

)
− 2τ2x

>h>cx

≤ −µV + γ‖w‖2,
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with µ = ε−δ/λmin(P ) and γ = 2‖PB‖2/δ, and where use
is made of the fact that in gain-mode hx = 0 and khżz −
ωhz

2 < 0, τ1 ≥ 0 and τ2 ∈ R. The time-derivative of V in
each mode satisfies (almost everywhere) a common upper-
bound given by

V̇ ≤ −µ‖x‖2 + γ‖w‖2, (26)

and, therefore, the function V (x) is a suitable ISS-Lyapunov
function. This completes the proof.

B. Proof of Theorem 2

The proof is based on showing that the conditions in the
theorem imply the existence of an ISS-Lyapunov function of
the form

V (x) = x>Px+ τ

(
khz

2 + 2zxh −
3

kh
x2h

)
= x>(P + τQ)x,

(27)

with Q := khc
>
z cz + kh

(
c>z cu + c>u cz

)
− 3khc

>
u cu.

First note that under the condition that A − khBuCy is
Hurwitz, the matrix Â2 is also Hurwitz. To see why, consider
the transformation x̃ = Tx with T =

[
I 0

khCy 1

]
, such that

TÂ2T
−1 =

[
A− khBuCy Bu

0 −2ωh

kh

]
.

Due to the upper-triangular structure, the eigenvalues of
TÂ2T

−1, and thus also of Â2 are given by the eigenvalues
of A− khBuCy and −2ωh/kh. As such, Â2 is Hurwitz.

Similar as before, under the conditions of the theorem and
Assumption 1, one finds that 1+Re {limω→∞W2(jω)} > 0.
Together with (18) this implies the transfer function 1 +
W2(s) to be SPR. By virtue of the KYP-lemma as in the
above proof, there exist a positive definite matrix P = P>,
matrix L, and a real constant ε > 0 such that

Â>2 P+PÂ2 = −L>L− εP (28a)

Pb = τ̃(cz + cu)> +

(
F +

1

kh
h

)>
−
√

2L>, (28b)

where τ̃ = τωh and F := cs − cu.
Consider the candidate ISS-Lyapunov function (27). Since

P is positive definite and τ ≥ 0, and due to the sector
condition khz

2 ≥ zxh ≥ x2h/kh, it follows from the S-
procedure that V is positive definite for all x ∈ Rm \ {0}
with Ex ∈ F . The time-derivative of V in integrator-mode
(i = 1) satisfies

V̇ = x>(A>1 (P + τQ) + (P + τQ)A1)x+ 2x>PBw

= x>(Â>2 P + PÂ2)x− 2x>
(
Pb

(
F +

1

kh
h

))
x

+ 2τωhx
>
(

(cz + cu)>F +
1

k2h
h>h

)
x+ 2x>PBw,

where the identities A1 = Â2 − b(F + h/kh), and

A>1 Q+QA1 = ωhHe
(

(cz + cu)>F +
1

k2h
h>h

)
,

with He(X) = X>+X are used. Substituting the equalities
(28) yields

V̇ = −x>L>Lx− εx>Px+ 2x>PBw

− 2x>

((
F +

1

kh
h

)>
− L>

√
2

)(
F +

1

kh
h

)
x

− 4τωhx
>c>u (cz − cu)x

≤ −εx>Px+ 2x>PBw

− x>
(
L−
√

2

(
F +

h

kh

))>(
L−
√

2

(
F +

h

kh

))
x

≤ −µV + γ‖w‖2,

where use is made of the sector-condition khz2 − zxh ≥ 0,
and µ, γ > 0 are obtained in a standard manner.

The time-derivative of V in gain-mode (i = 2) satisfies

V̇ = x>(Â>2 P + PÂ2)x− 2

kh
x>Pbhx+ 2x>PBw.

Substituting the equalities in (28), using bounds on V as
before, and using the fact that in gain-mode hx = 0, leads
to the upper-bound in gain-mode as

V̇ ≤ −µV + γ‖w‖2, (29)

with µ, γ > 0 as before. As such, (29) is a uniform upper-
bound on V̇ almost everywhere and thus V classifies as a
suitable ISS-Lyapunov function, which completes the proof.
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