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Abstract—Incremental input-to-state stability plays an
important role in the analysis of nonlinear systems, as it
opens up the possibility for accurate performance char-
acterizations beyond classical approaches. In this letter,
we are interested in deriving conditions for incremental
stability of a specific class of discontinuous dynamical
systems containing a so-called hybrid integrator. Recently,
it was shown that hybrid integrators have the potential for
overcoming fundamental performance limitations of linear
time-invariant control, thereby making them interesting for
use in, e.g., high-precision motion control applications. The
main contribution of this letter is to show that these hybrid
integrators have incremental input-to-state stability proper-
ties, and that, under an incremental small-gain condition,
the feedback interconnection of a hybrid integrator and
a linear time-invariant plant is incrementally input-to-state
stable.

Index Terms—Hybrid integrator-gain system, incremen-
tal stability, small-gain theorem.

I. INTRODUCTION

THE IDEA of developing nonlinear control strategies that
can overcome some of the fundamental limitations of

linear time-invariant (LTI) control for LTI systems already
dates back to the 1950’s when J.C. Clegg introduced its cel-
ebrated integrator with resetting mechanism [1]. Since its
introduction, the Clegg integrator has inspired many alterna-
tive strategies including generalized reset elements [2], [3], [4],
[5], split-path integrators [7], [8], switching controllers [6], and
hybrid integrator-gain systems (HIGS) [9], [10], [11]. HIGS
recently gained much attention due to its ability to overcome
fundamental limitations of linear feedback control [10] and
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various engineering successes were reported in industrial
applications such as wafer scanners [14] and atomic force
microscopes [11]. These promising results motivate further
exploration of HIGS-based controller strategies.

Unfortunately, the potential performance benefits when tran-
sitioning from the linear to the nonlinear controller realm as
with HIGS-based control come at the cost of an increased
complexity in system analysis and design. As stability is a
prerequisite for control system performance, a particular chal-
lenge to be solved for the non-smooth and even discontinuous
control strategies mentioned above lies in the development
of constructive tools for stability analysis. Over the years,
many tools for stability analysis have been proposed, ranging
from signal-based approaches [16], [31] to Lyapunov tech-
niques [3], [9] and graphical methods [4], [12]. Most of these
methods, however, primarily focus on stability of some equi-
librium point, typically the zero equilibrium, or an equilibrium
set. Although important, these approaches do not provide any
information regarding the qualitative behaviour of solutions
with respect to each other. For example, it is well-known that,
contrary to LTI systems, general nonlinear systems are sen-
sitive to their initial conditions, meaning that starting from a
different initial state can result in completely different system
behaviour. To qualify nonlinear system performance, it is
therefore of interest to study the behaviour of different solu-
tions (related to the same input) with respect to each other. One
of the notions that precisely does this is known as incremen-
tal input-to-state stability [18] abbreviated as δ-ISS. Proving
the δ-ISS property leads to the guarantee that for, e.g., peri-
odic inputs there exists a unique periodic limit solution that is
independent of the initial conditions [18]. This opens up possi-
bilities for accurate performance characterizations beyond, for
instance, the classical L2-gain. Namely, incrementally stable
systems allow for studying specific response characteristics in
the presence of specific inputs (e.g., periodic inputs), possi-
bly better reflecting the actual performance objective of the
control system than an L2-gain property would. Besides, the
δ-ISS property guarantees robustness in the sense that small
deviations in the input lead to small deviations in the out-
put [19]. Notions closely related to incremental stability are
known in the literature as convergence [17] and contraction
[13], [20].
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Fig. 1. Feedback interconnection of an LTI system P and a hybrid
integrator H.

Sufficient conditions for verifying incremental stability of
continuous (and possibly non-smooth) nonlinear systems have
been proposed in, e.g., [15], [18], [21], [24]. However, con-
ditions for incremental stability of discontinuous dynamical
systems such as the earlier discussed reset and hybrid
integrator-gain systems are scarcely available in the litera-
ture. Notable exceptions are [23], [25], [26], where sufficient
conditions for discontinuous piecewise affine (PWA) systems
are formulated in terms of linear matrix inequalities (LMIs).
Recently, we have started to address this shortcoming by
deriving sufficient conditions for δ-ISS of HIGS, focussing
on the complete closed-loop dynamics as a whole [27]. The
first main contribution of the current paper is to demonstrate
that under appropriate assumptions, the hybrid integrator pos-
sesses a δ-ISS property. The second main contribution is a
novel and “composite” condition that guarantees the feedback
interconnection of such hybrid integrator and an LTI plant to
be δ-ISS. Here, we do not use as in [27] a Lyapunov-based
dissipativity mechanism that requires certain passivity proper-
ties of the plant. Instead, our new conditions are based on a
small-gain argument and guarantee δ-ISS for plants that pos-
sibly violate the earlier passivity requirements [27]. This is
demonstrated in this letter through a numerical example.

The remaining part of this letter is organized as follows.
In Section II the system setting and problem formulation are
discussed. The incremental closed-loop system along with its
properties are provided in Section III. The main results are
presented in Section IV, and a numerical example is given in
Section V. Conclusions are given in Section VI.

Notation: The space of essentially bounded measurable sig-
nals is denoted by L∞ and is endowed with the L∞-norm,
defined as ‖x‖∞ = ess supt ‖x(t)‖. A function w : R≥0 → R is
said to be bounded piecewise continuous, denoted by w ∈ PC,
if w is bounded, i.e., supt ‖x(t)‖ < ∞, and there is a set of
times {tk}k∈N ⊂ [0,∞) with t0 = 0, tk+1 > tk for all k ∈ N,
limk→∞ tk = ∞, w is continuous for all t 	∈ {tk}k∈N, and
limt↓tk w(t) = w(tk), k ∈ N.

II. SYSTEM SETTING

In this letter we consider the Lur’e-type system as depicted
in Fig. 1, representing the negative feedback interconnection
of an LTI plant P (possibly containing LTI control elements),
and a hybrid integrator H, the latter which will be specified
in detail below.

The LTI plant P in Fig. 1 is given by

P :

{
ẋp = Axp + Bv + Fw,

yp = Cxp
(1)

with state xp(t) ∈ R
m, external input w(t) ∈ R

p, control input
v(t) ∈ R, and output yp(t) ∈ R at time t ∈ R≥0. We assume
that the matrices (A, B, C) describe a minimal realization of
the system P in (1).

A. Hybrid Integrator-Gain System

The hybrid integrator-gain system H is given by the scalar-
state switched differential algebraic equation

H :

⎧⎨
⎩

ẋh = fh(xh, z), if (z, u, ż) ∈ F1, (2a)

xh = khz, if (z, u, ż) ∈ F2, (2b)

u = xh (2c)

with state xh(t) ∈ R, input z(t) := yp(t) = Cxp(t) ∈ R, output
u(t) = −v(t) ∈ R at time t ∈ R≥0, and where fh : R×R → R

is a nonlinear function. Note that (2a) is equivalent to the
description used in [27] and generalizes [9], where fh was
restricted to be linear. Allowing fh to be nonlinear provides
additional freedom in controller design, and allows to include a
broader class of controllers, e.g., variable-gain or anti-windup
integrators. The parameter kh ∈ R≥0 relates to the gain-mode
constraint u = khz. Here, z is assumed to be (locally) abso-
lutely continuous, and ż denotes the time-derivative, which
exists for almost all times t. The flow sets F1 and F2 dictating
the active mode in (2a) are given by

F1 =
{
(z, u, ż) ∈ R

3 | zu ≥ u2

kh
∧ (z, u, ż) 	∈ F2

}
, (3a)

F2 =
{
(z, u, ż) ∈ R

3 | u = khz ∧ fh(xh, z)z > khżz
}

(3b)

of which the union forms the [0, kh]-sector defined as

F = F1 ∪ F2 =
{
(z, u, ż) ∈ R

3 | zu ≥ u2

kh
, ż ∈ R

}
. (4)

The sets F1 and F2 in (3) define regions where H operates
in either a dynamic mode or a static mode, and are designed as
to keep the input-output pair (z, u) within the sector F , thereby
guaranteeing the input z and output u to have the same sign at
all times. Intuitively, such sign equivalence helps in reducing
the phase lag typically induced by LTI integrators/low-pass fil-
ters as a consequence of Bode’s gain-phase relationship, and
may benefit robust performance and stability properties when
placing a hybrid integrator in closed-loop with an LTI plant. A
detailed discussion on the construction of the sets in (3) and
(4), along with a visualization, can be found in [9, Sec. 3],
whereas examples (both industrial and academic) motivating
and demonstrating the performance potential of the hybrid
integrator are given in, e.g., [9], [10], [14].

In developing our main results, we make the following
assumptions regarding the vector field in (2a).

Assumption 1: The function fh in (2a) satisfies fh(0, 0) = 0,
and fh(0, z)z ≥ 0 for all z ∈ R.

Assumption 2: There exist constants c1 > 0 and c2 ∈ R

such that fh satisfies for all xh
′, z′, xh

′′, z′′ ∈ R

(fh(x
′
h, z′) − fh(x

′′
h, z′′))δxh ≤ −c1δx2

h + c2δxhδz, (5)

where δxh := x′
h − x′′

h , and δz := z′ − z′′.
We pose Assumption 1 for ensuring (xh, z) = (0, 0) to be an

equilibrium point of (2a) for zero input, and for ensuring that
for xh = 0, z 	= 0 the vector field governed by the dynamics
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in (2a) points toward the interior of F so that trajectories
of (2a) cannot escape the [0, kh]-sector in (4) through the
sector boundary line (z, u) = (z, 0). Assumption 2 is remi-
niscent of a dissipativity condition, and plays a central role
in proving the δ-ISS property for H (Theorem 1). Note that
Assumptions 1 and 2 are trivially satisfied for functions fh of
the form fh(xh, z) = gh(xh) + ωhz with ωh ≥ 0, g being a
globally Lipschitz continuous function, and g(0) = 0.

B. Closed-Loop Dynamics

Due to the piecewise nonlinear nature of H in (2a), the
closed-loop system admits the compact state-space form

�:

{
ẋ = Ax + Bw + bh(x, w),

y = Cx
(6)

with states x(t) = [x�
p (t), xh(t)]� ∈ R

n, n = m + 1 input
w(t) ∈ R, output y(t) ∈ R at time t ∈ R≥0, and where the
function h : Rn × R → R is given by

h(x, w) =
{

fh(xh, Cxp) if (z, u, ż) ∈ F1,

khCAxp + khCFw if (z, u, ż) ∈ F2.
(7)

Clearly, ẋh = h(x, w), i.e., h denotes the discontinuous right-
hand side of (2a) (after differentiating the algebraic constraint
in (2b)). The system matrices are given by

A =
[

A −B
0 0

]
, B =

[
F
0

]
, b =

[
0
1

]
, and C =

[
C�
0

]�
, (8)

where the matrices A, B, C, F result from (1).
To show the existence and forward completeness of solu-

tions to (6), we can rely on the well-posedness result
in [22, Th. 8] as the closed-loop system (6) fits precisely in the
framework of extended projected dynamical systems (ePDS)
studied in [22]. Solutions to (6) are considered in the sense of
Carathéodory, i.e., locally absolutely continuous (AC) func-
tions x : [0, T] → R

n that satisfy (6) for almost all times
t ∈ [0, T]. It was shown in [22, Sec. II] that for ePDSs, and
thus for system (6) that fits within this class [9], Carathéodory
solutions coincide with Krasovskii solutions (see [22, Th. 3]).
Using the linearity of the plant dynamics and the bound in
Assumption 2, the results in [22] guarantee the existence of
solutions globally, i.e., on [0,∞), given an initial condition
x(0) = x0 and with input w ∈ PC.

C. Problem Formulation and Definitions

The main problem considered in this letter is to derive con-
ditions for δ-ISS of the closed-loop system (6). To make the
analysis precise, a definition is provided next.1

Definition 1 [18]: The closed-loop system (6) is said to be
incrementally input-to-state stable (δ-ISS) if there exist a KL-
function β and a K-function γ such that for any w′, w′′ ∈ PC,
and x′(0), x′′(0) ∈ R

n all corresponding solutions to (6) satisfy

‖x(t, x′(0), w′) − x(t, x′′(0), w′′)‖ ≤ β
(‖x′(0) − x′′(0)‖, t

)
+ γ

(
sup

0≤τ≤t
‖w′(τ ) − w′′(τ )‖

)
,

for all times t ∈ R≥0.

1We adopt standard definitions for class K- and KL-functions, see,
e.g., [30, Ch. 4, Sec. 4.4].

III. INCREMENTAL SYSTEM

For studying δ-ISS of the closed-loop system in (6), we con-
sider the incremental form of the closed-loop system dynamics
in (6). In particular, define δx(t) := x′(t) − x′′(t) ∈ R

n as
the difference between two trajectories x′(t) = x(t, x′(0), w′)
and x′′(t) = x(t, x′′(0), w′′) generated by (6) subject to inputs
w′, w′′ ∈ PC, and initial conditions x′(0), x′′(0) ∈ R

n con-
sistent with the region of H where trajectories live, i.e.,
(z(0), xh(0), ż(0)) ∈ F . The incremental form of (6) reads

δ� :

{
δẋ = Aδx + Bδw + b�(x′, w′, x′′, w′′),
δy = Cδx

(9)

with incremental input δw(t) = w′(t)−w′′(t) ∈ R, incremental
output δy(t) := y′(t) − y′′(t) ∈ R at time t ∈ R≥0, and where

�(x′, w′, x′′, w′′) = δẋh = h(x′, w′) − h(x′′, w′′)

=

⎧⎪⎪⎨
⎪⎪⎩

fh(x′
h, z′) − fh(x′′

h, z′′), if
(
q′, q′′) ∈ F1 × F1,

khδż, if
(
q′, q′′) ∈ F2 × F2,

fh(x′
h, z′) − khż′′, if

(
q′, q′′) ∈ F1 × F2,

khż′ − fh(x′′
h, z′′), if

(
q′, q′′) ∈ F2 × F1

(10)

with δxh(t) := x′
h(t)−x′′

h(t) ∈ R the increment of the integrator
state in (2a), δz(t) := z′(t)−z′′(t) = δyp(t) ∈ R the incremental
input at time t ∈ R≥0, and where (q′, q′′) = (q′�, q′′�)� with
q = (z, u, ż) the signals that determine mode switching of the
system.

We will exploit a particularly useful property (derived from
Assumption 2) of the incremental dynamics in (10), which
we will use here in a new manner. It essentially shows
that (10) inherits the incremental dissipativity property (5) in
a subregion of the incremental input-output (δz, δu)-space.2

Property 1 [27]: Suppose Assumption 2 is satisfied. Then,
the incremental system in (10) satisfies for all (δz, δxh) ∈ 	

(δẋh)δxh ≤ (−c1δxh + c2δz)δxh (11)

where

	 := R
2\
{
(δz, δxh) ∈ R

2 | δzδxh ≥ 1

kh
δx2

h

}
. (12)

In the next section, we will exploit Property 1 as fol-
lows: When regarding δz(t) as an input to the incremental
system in (10), one may also recognize from the dissipa-
tion inequality in (11) that δx2

h could resemble a local δ-ISS
Lyapunov function [18]. Combining this with the fact that for
all (δz, δxh) 	∈ 	 we have ‖δxh‖ ≤ kh‖δz‖, in fact, sug-
gests (10) to be δ-ISS. This hints toward the possibility for
applying an incremental small-gain result, which is favorable
from a “compositional” design perspective. That is, we can
shape properties of the plant P to guarantee the negative
feedback interconnection with H to be δ-ISS.

IV. MAIN RESULTS

In this section, we will formalize the ideas outlined above.
We start by formally demonstrating that the hybrid integrator-
gain system in (2a) is δ-ISS, which is our first main result.

2Contrary to [27] we make no assumption on P regarding the relative
degree from w and u to yp = z, such that ż may directly depend on w and u.
It can easily be shown that in this case Property 1 still remains valid.
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Fig. 2. Mechanism underlying the ISS property of the incremental
system in (10).

Theorem 1: Consider the hybrid integrator-gain system H
in (2a). Suppose that Assumptions 1–2 are satisfied and, fur-
thermore, suppose that supτ∈R≥0

‖δz(τ )‖ < ∞. Then, (2a)
is δ-ISS in the sense of Definition 1 and all corresponding
solutions satisfy for all t ∈ R≥0

‖δxh(t)‖ ≤ e−εt‖δxh(0)‖ + γz

(
sup

τ∈R≥0

‖δz(τ )‖
)

(13)

with γz = max{kh,
c2

c1−ε
} and 0 < ε < c1.

Proof: Consider the set

M :=
{
(δz, δxh) ∈ R

2 | ‖δz‖ ≤ ρ, ‖δxh‖ ≤ γzρ
}
, (14)

where ρ := supτ∈R≥0
‖δz(τ )‖. Note that ρ is finite due to the

assumption that δz is bounded. The set M in (14) is visualized
in Fig. 2 by (the interior of) the black rectangle for the case
kh < c2

c1−ε
.

Suppose that a trajectory is outside the set M, i.e.,
(δz(t), δxh(t)) 	∈ M. Note from the fact that −ρ ≤ δz(t) ≤ ρ

that this implies ‖δxh(t)‖ > γzρ ≥ γz‖δz(t)‖. As such
(δz(t), δxh(t)) ∈ 	, see also Fig. 2. Then, it immediately
follows from Property 1 (with c1 > 0) that (11) satisfies

(δẋh)δxh ≤ −c1δx2
h + c2δxhδz

= −εδx2
h + (−c1 + ε)δx2

h + c2δxhδz

≤ −εδx2
h, (15)

where we used ‖δz(t)‖ ≤ 1
γz

‖δxh(t)‖ ≤ c1−ε
c2

‖δxh(t)‖ and thus

(−c1 + ε)δx2
h + c2δxhδz ≤ (−c1 + ε)δx2

h + c2

γz
δx2

h ≤ 0.

From (15) for (δxh(t), δz(t)) 	∈ M, it follows from similar
arguments as in the proof of [28, Lemma 2.14]) that M is
a positively invariant set, i.e., if there exists a t0 such that
(δxh(t0), δz(t0)) ∈ M, then (δxh(t), δz(t)) ∈ M for all t ≥ t0.
Now let t1 = inf{t ≥ 0 | δxh(t) ∈ M} ≤ ∞. Then it follows
that

‖δxh(t)‖ ≤ γzρ = γz sup
τ∈R≥0

‖δz(τ )‖ for all t ≥ t1. (16)

For 0 ≤ t < t1, (δxh(t), δz(t)) 	∈ M and, consequently, (15)
holds almost everywhere on [0, t1). By the Bellmann-Grönwall
lemma this leads to

‖δxh(t)‖ ≤ e− ε
2 t‖δxh(0)‖ for all t ≤ t1. (17)

Combining (16) and (17) leads to (13).
Building upon Theorem 1, we formulate our second main

result in terms of a small-gain theorem for δ-ISS of (6).
Theorem 2: Consider the closed-loop system (6) and sup-

pose that its trajectories are bounded. Suppose the matrix A
in (1) is Hurwitz and the small-gain relation

γ̄zγu < 1 (18)

is satisfied, where γ̄z = max{kh,
c2
c1

} and γu = ∫∞
0 |CeAτ B|dτ .

Then the closed-loop system in (6) is δ-ISS in the sense of
Definition 1.

Proof: Without loss of generality we can assume (possibly
after a state transformation) that C in (1) satisfies ‖C‖ = 1
such that ‖δz(t)‖ = ‖Cδxp(t)‖ ≤ ‖δxp(t)‖. Since by assump-
tion trajectories of the non-incremental system in (6), i.e., the
interconnection of the LTI system in (1) and H in (2a) remain
bounded, it follows that ‖δz(t)‖ < ∞ for all t ≥ 0. As such,
the incremental input δz to (10) is bounded, and the bound (13)
in Theorem 1 holds for 0 < ε < c1 and γz.

Observe that the solution of the incremental LTI system
in (9) is given by

δxp(t) = eAptδxp(0) +
∫ t

0
eA(t−τ)Bδv(τ )dτ

+
∫ t

0
eA(t−τ)Fδw(τ )dτ. (19)

Since both δu = δxh and δw are bounded, an upper-bound on
the output of (9) can be obtained as

‖δz(t)‖ ≤ ‖Cδxp(t)‖ ≤ ke−λt‖δxp(0)‖

+ γu

(
sup

0≤t′≤t
‖δu(t′)‖

)
+ γw

(
sup

0≤t′≤t
‖δw(t′)‖

)
(20)

with ‖δu(t)‖ = ‖δv(t)‖, γu = ∫∞
0 |CeAτ B|dτ < ∞, and γw =∫∞

0 |CeAτ F|dτ < ∞, where boundedness follows from the
fact that A is Hurwitz (see also [30, p. 174]). Take ε such that
γz = max{kh, c2/(c1 − ε)} is such that γzγu < 1, which, under
the hypothesis γ̄zγu < 1 is always possible (take for instance
0 < ε < c1 − γuc2 < c1).

By applying the small-gain theorem for ISS systems
[29, Th. 2.1] (see [17, Th. 2.1.13] within the incremental con-
text and [16] within the context of discontinuous systems3)
with γzγu < 1 the δ-ISS property follows.

3We care to highlight that, even though [29] treats continuous systems, the
proofs only rely on signal properties, rather than properties of the dynamics.
The fact that we consider discontinuous dynamics therefore does not change
the validity of the arguments, see also [16, Sec. II].
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Fig. 3. Feedback control scheme with nonlinearity H.

A few remarks regarding Theorem 2 are in order.
Remark 1: A crucial assumption in Theorem 2 is that tra-

jectories of the non-incremental closed-loop system (6) remain
bounded, i.e., supτ∈R≥0

‖x(τ )‖ < ∞. This assumption can be
verified using different tools such as, e.g., the circle-criterion
or LMI-based methods, see [9].

Remark 2: It is interesting to observe that γu =∫∞
0 |CeAτ B|dt corresponds to the induced L∞-norm of the

single-input single-output (SISO) LTI system described by
Gyu(s) = C(sI − A)−1B, which is equivalent to the L1-norm
of its impulse response function g(t) = CeAtB (for zero initial
conditions and zero noise). As such, γu can be obtained from
measurement data [33].

V. NUMERICAL EXAMPLE

To demonstrate the applicability of the tools that are
presented in this letter, consider the feedback interconnection
as depicted in Fig. 3.

Here, the plant P is a mass-spring-damper system that is
described by the transfer function

P(s) = 1

s2 + 2β0ω0s + ω2
0

, (21)

with natural frequency ω0 = 54 · 2π rad/s and dimension-
less damping coefficient β0 = 0.009. Such systems typically
arise in, e.g., microelectromechanical (MEM) nanoposition-
ing applications such as atomic force microscopes [11] and
piezo-actuated motion stages that are used in the lithography
industry [4], and thus are of relevance to high-precision motion
control applications. The LTI controller C is given by

C(s) = kp

(
s + ωi

s

)(
ω2

lp

s2 + 2βωlps + ω2
lp

)
(22)

with kp = 7·104 N/m, ωi = 4.75·2π rad/s, ωlp = 6.5·2π rad/s,
and βlp = 0.8. The hybrid integrator H is as given in (2a) with
fh(xh, z) = −αxh + ωhz, and α,ωh ∈ R>0, and furthermore
kh = 0.6. Note that the function fh satisfies Assumptions 1–2
with c1 = α and c2 = ωh. From an engineering point-of-
view, the use of a hybrid integrator H as an add-on to the
existing LTI controller C may induce additional gain at low-
frequencies to provide better disturbance rejection properties,
without introducing the 90 degrees phase lag that is typically
associated with an LTI integrator. This potentially allows for
balancing steady-state performance and transient time-domain
response in a more desired manner. Although a detailed dis-
cussion on the performance enhancing benefits of introducing

Fig. 4. Closed-loop response resulting from a sine input and different
initial conditions x ′(0), x ′′(0) ∈ R

m (depicted by the grey lines) and the
steady-state solution (depicted in black).

a hybrid integrator into an otherwise LTI control system is
not included due to space limitations, extensive motivations
and successful (industrial) applications can be found in our
previous works [9], [10], [14].

The feedback configuration in Fig. 3 can be rearranged into
an equivalent Lur’e form as depicted earlier in Fig. 1. In this
context we find P in (1) to be described by

P(s) = [
Gyu(s) Gyw(s)

] = C(sI − A)−1[B F
]
,

with

Gyu(s) = −P(s)C(s)

1 + P(s)C(s)
, Gyw(s) = P(s)

1 + P(s)C(s)
. (23)

By design, the poles of these transfer functions lie in the open
left-half complex plane, such that (due to minimality of P)

the matrix A in (1) is Hurwitz. Moreover, the non-incremental
closed-loop system in Fig. 3 is ISS by virtue of the circle-
criterion [9, Th. 6.1] and thus trajectories are bounded - this
is an assumption used in Theorem 2.

By means of numerical computation we have found the L1-
norm of the impulse response to be equal to γ = 1.4214
(where the impulse response is considered over a time window
t ∈ [0, 104] seconds, guaranteeing sufficient settling). As such,
we can guarantee the closed-loop system in Fig. 3 to be δ-ISS
for γz < 0.7035. Since kh = 0.6, the ratio ωh/α should satisfy
ωh/α < 0.7035. The output of the hybrid integrator (with α =
0.9 ·2π and ωh = 0.6 ·2π rad/s) when the system is simulated
with an input w(t) = sin(6 · 2π t) and for two different sets of
initial conditions x′(0), x′′(0) ∈ R

m is shown in Fig. 4. As a
consequence of the incremental stability property, the solutions
asymptotically converge to a unique limit solution (indicated
in black in Fig. 4) that has the same fundamental period of
6 Hz as the input w [18]. Note that this response is continuous,
but not smooth.

It is interesting to compare this result with the conditions
presented in [27]. For this purpose consider again the choice
α = 0.9 ·2π and ωh = 0.6 ·2π rad/s, such that ωh/α = 2/3 <

0.7035 and thus the system is δ-ISS according to Theorem 2.
When testing the LMI conditions [27, Th. 3], however, it turns
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out that no feasible solution exists, and thus δ-ISS cannot be
verified by means of the results in [27]. This is explained as
follows. A necessary condition for the LMIs in [27, Th. 3] to
be feasible is that the frequency-domain inequality

khωh‖Gyu(jω)‖2 + Re
{
W(jω)Gyu(jω)

}+ 2α > 0 (24)

with W(jω) = khα + 2ωh − khjω is satisfied for all
ω ∈ R ∪ {∞} (this condition results from applying the
Kalman-Yakubovich-Popov lemma [32] to [27, eq. (17b)]).
However, for the chosen values of α,ωh, and kh the frequency-
domain inequality in (24) is violated, and thus no solution
to the LMIs exists. On the other hand, for cases where
ωh/α > 0.7035, and thus the small-gain condition is violated,
the conditions in [27] may still yield feasible results; take
for instance α = ωh = 3 · 2π rad/s. The observations illus-
trate that the small-gain conditions require different properties
of the plant P as compared to the passivity-based conditions
in [27] and thus both papers are of independent interests.

VI. CONCLUSION

In this letter we have presented conditions for δ-ISS of
(closed-loop) hybrid integrator-gain systems. First, we have
shown that a hybrid integrator itself is δ-ISS (Theorem 1).
Second, this property is used in combination with a small-
gain argument to show δ-ISS when the integrator is placed
in feedback with an LTI system (Theorem 2). The conditions
can be tested by computing the L1-norm of the linear system’s
impulse response. We have shown through a numerical exam-
ple that the results presented in this letter complement previous
Lyapunov-based δ-ISS conditions, in the sense that these allow
for verifying incremental stability of systems for which this
was not possible with existing tools.

Important directions for future work include studying the
connection between the new small-gain result and Lyapunov-
based results in [27] as well as extending the results to multi-
dimensional systems.
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[5] G. Zhao, D. Nešić, Y. Tan, and C. Hua, “Overcoming over-
shoot performance limitations of linear systems with reset control,”
Automatica, vol. 101, pp. 27–35, Mar. 2019.

[6] A. Feuer, G. C. Goodwin, and M. Salgado, “Potential benefits of hybrid
control for linear time invariant plants,” in Proc. Amer. Control Conf.,
vol. 5, 1997, pp. 2790–2794.

[7] W. C. Foster, D. L. Gieseking, and W. K. Waymeyer, “A nonlinear filter
for independent gain and phase (with applications),” Trans. ASME J.
Basic Eng., vol. 88, no. 2, pp. 457–462, 1966.

[8] B. Sharif, A. van der Maas, N. van de Wouw, and W. P. M. H. Heemels,
“Filtered split-path nonlinear integrator: A hybrid controller for transient
performance improvement,” IEEE Trans. Control Syst. Technol., vol. 30,
no. 2, pp. 451–463, Mar. 2022.

[9] D. A. Deenen, B. Sharif, S. van den Eijnden, H. Nijmeijer,
W. P. H. M. Heemels, and M. F. Heertjes, “Projection-based integrators
for improved motion control: Formalization, well-posedness and stabil-
ity of hybrid integrator-gain systems,” Automatica, vol. 133, Nov. 2021,
Art. no. 109830.

[10] S. J. A. M. van den Eijnden, M. F. Heertjes, W. P. M. H. Heemels, and
H. Nijmeijer, “Hybrid integrator-gain systems: A remedy for overshoot
limitations in linear control?” IEEE Control Syst. Lett., vol. 4, no. 4,
pp. 1042–1047, Oct. 2020.

[11] K. Shi, N. Nikooienejad, I. R. Petersen, and S. O. R. Moheimani, “A
negative imaginary approach to hybrid integrator-gain system control,”
in Proc. CDC, 2022, pp. 1968–1973.

[12] A. Dastjerdi, A. Astolfi, and S. HosseinNia, “Frequency-domain stability
methods for reset control systems,” Automatica, vol. 148, Feb. 2023,
Art. no. 110737.

[13] F. Bullo, Contraction Theory for Dynamical Systems. Seattle, WA, USA:
Kindle, 2023.

[14] S. J. A. M. van den Eijnden, Y. Knops, and M. Heertjes, “A hybrid
integrator-gain based low-pass filter for nonlinear motion control,” in
Proc. IEEE CCTA, Copenhagen, Denmark, 2018, pp. 1108–1113.

[15] B. P. Demidovich, Lectures on Stability Theory, NAUKA, Moscow,
Russia, 1967.

[16] D. Nesic and D. Liberzon, “A small-gain approach to stability analysis
of hybrid systems,” in Proc. IEEE CDC, 2005, pp. 5409–5414.

[17] A. Pavlov, N. van de Wouw, and H. Nijmeijer, Uniform Output
Regulation of Nonlinear Systems: A Convergent Dynamics Approach.
Boston, MA, USA: Birkhäuser, 2005.

[18] D. Angeli, “A Lyapunov approach to incremental stability properties,”
IEEE Trans. Autom. Control, vol. 47, no. 3, pp. 410–421, Mar. 2002.

[19] V. Fromion, G. Scorletti, and G. Ferreres, “Nonlinear performance of a
PI controlled missile: An explanation,” Int. J. Robust Nonlinear Control,
vol. 9, no. 8, pp. 485–518, 1999.

[20] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for nonlinear
systems,” Automatica, vol. 34, pp. 683–696, Aug. 1998.

[21] A. Pavlov and L. Marconi, “Incremental passivity and output regulation,”
Syst. Control Lett., vol. 7, no. 5, pp. 400–409, 2008.

[22] W. P. M. H. Heemels and A. Tanwani, “Existence and completeness
of solutions to extended projected dynamical systems and sector-
bounded projection-based controllers,” IEEE Control Syst. Lett., vol. 7,
pp. 1590–1595, 2023, doi: 10.1109/LCSYS.2023.3274954.

[23] A. Pavlov, A. Pogromsky, N. van de Wouw, H. Nijmeijer, and K. Rooda,
“Convergent piecewise affine systems: Analysis and design—Part II:
Discontinuous case,” in Proc. IEEE CDC, 2005, pp. 5397–5402.

[24] B. G. Romanchuk and M. C. Smith, “Incremental gain analysis of linear
systems with bounded controls and its application to the anti-windup
problem,” in Proc. IEEE CDC, vol. 3, 1996, pp. 2942–2947.

[25] S. Waitman, P. Massioni, L. Bako, G. Scorletti, and V. Fromion,
“Incremental L2-gain analysis of piecewise-affine systems using piece-
wise quadratic storage functions,’ in Proc. IEEE CDC, 2016, pp. 1334–
1339.

[26] S. Waitman, P. Massioni, L. Bako, and G. Scorletti, “Incremental L2-gain
stability of piecewise-affine systems with piecewise-polynomial storage
functions,” Automatica, vol. 107, Sep. 2019, pp. 224–230.

[27] S. J. A. M. van den Eijnden, M. F. Heertjes, H. Nijmeijer,
W. P. M. H. Heemels, “On convergence of systems with sector-bounded
hybrid integrators,” in Proc. IEEE CDC, 2022, pp. 7636–7641.

[28] E. D. Sontag and Y. Wang, ‘On characterizations of the input-to-state
stability property,” Syst. Control Lett., vol. 24, no. 5, pp. 351–359, 1995.

[29] Z.-P. Jiang, A. R. Teel, and L. Praly, ‘Small-gain theorem for
ISS systems and applications,” Math. Control Signal Syst., vol. 7,
pp. 95–120, Jun. 1994.

[30] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[31] A. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear
Control. Berlin, Germany: Springer Int., 2017.

[32] A. Rantzer, ‘On the Kalman–Yakubovich–Popov lemma,” Syst. Control
Lett., vol. 28, no. 1, pp. 7–10, 1996.

[33] N. K. Rutland and P. G. Lane, “Computing the 1-norm of the impulse
response of linear time-invariant systems,” Syst. Control Lett., vol. 26,
no. 3, pp. 211–221, 1995.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on December 22,2023 at 14:43:19 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/LCSYS.2023.3274954


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


